I
Big Data

m “Big” data arises in many forms:
— Physical Measurements: from science (physics, astronomy)
— Medical data: genetic sequences, detailed time series
— Activity data: GPS location, social network activity
— Business data: customer behavior tracking at fine detail
m Common themes:
— Datais large, and growing
— There are important patterns and trends in the data
— We don’t fully know how to find them
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Making sense of Big Data

m Want to be able to interrogate data in different use-cases:
— Routine Reporting: standard set of queries to run
— Analysis: ad hoc querying to answer ‘data science’ questions
— Monitoring: identify when current behavior differs from old
— Mining: extract new knowledge and patterns from data

m In all cases, need to answer certain basic questions quickly:
— Describe the distribution of particular attributes in the data
— How many (distinct) X were seen?
— How many X <Y were seen?

— Give some representative examples of items in the data
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Big Data and Hashing

m “Traditional” hashing: compact storage of data
— proportional to data size
— Fast, compact, exact storage of data
m Hashing with small probability of collisions: very compact storage
- (no false negatives, bounded false positives)
— Faster, compacter, probabilistic storage of data
m Hashing with almost certainty of collisions
— Sketches (items collide, but the signal is preserved)
— Fasterer, compacterer, approximate storage of data
— Enables “small summaries for big data”
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Data Models

m We model data as a collection of simple tuples
m Problems hard due to scale and dimension of input
m Arrivals only model:

_ : (%, 3), (y, 2), (x, 2) encodes X O Q O O O

the arrival of 3 copies of item x, y @O
2 copies of y, then 2 copies of x.

— Could represent eg. packets on a network; power usage
m Arrivals and departures:
_ . (%, 3), (v,2), (%, -2) encodes x Q00
final state of (x, 1), (y, 2). Yy ..

— Canrepresent fluctuating quantities, or measure differences
between two distributions
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Sketches and Frequency Moments

Sketches as hash-based linear transforms of data
Frequency distributions and Concentration bounds
Count-Min sketch for F_, and frequent items

AMS Sketch for F,

Estimating F,

Extensions:
— Higher frequency moments
— Combined frequency moments
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Sketch Structures

m Sketchis a class of summary that is a linear transform of input
— Sketch(x) = Sx for some matrix S

— Hence, Sketch(ax + By) = o Sketch(x) + B Sketch(y)
— Trivial to update and merge

m Often describe S in terms of hash functions

— If hash functions are simple, sketch is fast

m Aim for limited independence hash functions h: [n] = [m]

— If Prycpl h(iy)=is A h(iy)=i; A . h(i)=j ] = m™,
then H is k-wise independent family (“h is k-wise independent”)
— k-wise independent hash functions take time, space O(k)
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Fingerprints as sketches

101110101 ..

SOOI,

101100101 ..

m Testif two binary streams are equal
d_ (x,y) = 0 iff x=y, 1 otherwise

m To testin small space: pick a suitable hash function h

m Test h(x)=h(y) : small chance of false positive, no chance of
false negative

m Compute h(x), h(y) incrementally as new bits arrive
— How to choose the function h()?
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Polynomial Fingerprints

Pick h(x) = 2.._.;" x, r mod p for prime p, random r € {1...p-1}
Why?
Flexible: h(x) is linear function of x—easy to update and merge
For accuracy, note that computation mod p is over the field Z,
— Consider the polynomial ina, 2" (x;—vy,) o' =0
— Polynomial of degree n over Z, has at most n roots
Probability that r happens to solve this polynomial is n/p
So Pr[h(x)=h(y) | x=y]<n/p
— Pick p = poly(n), fingerprints are log p = O(log n) bits
Fingerprints applied to small subsets of data to test equality
— Will see several examples that use fingerprints as subroutine
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Sketches and Frequency Moments

Sketches as hash-based linear transforms of data
Frequency distributions and Concentration bounds
Count-Min sketch for F_, and frequent items

AMS Sketch for F,

Estimating F,

Extensions:
— Higher frequency moments

— Combined frequency moments
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Frequency Distributions

m Given set of items, let f, be the number of occurrences of item i

m Many natural questions on f; values:
— Find those i’s with large f; values (heavy hitters)
— Find the number of non-zero f; values (count distinct)
— Compute F, =2 (f)*— the k’th Frequency Moment
— Compute H =2, (f/F,) log (F,/f;) — the (empirical) entropy
Alon, Matias, Szegedy in STOC 1996
— Awarded Godel prize in 2005
— Set the pattern for many streaming algorithms to follow
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Concentration Bounds

m Will provide randomized algorithms for these problems
m Each algorithm gives a (randomized) estimate of the answer
m Give confidence bounds on the final estimate X

— Use probabilistic concentration bounds on random variables

m A concentration bound is typically of the form
Pr[ [X—x| >ey] <0

— At most probability 0 of being more than gy away from x

Probability
distribution

Tail probability

/

7
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Markov Inequality

m Take any probability distribution X s.t. Pr[X<0] =0

m Consider the event X > k for some constantk >0

m Foranydraw of X, klI(X>k) <X
— Either0<X<k,so I(X>k)=0
— OrX=>k, Ihs=k

m Take expectations of both sides: k Pr[ X > k] < E[X]

m Markov inequality: Pr[ X > k] < E[X]/k

— Prob of random variable exceeding k times its expectation < 1/k

IX| k

— Relatively weak in this form, but still useful
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Sketches and Frequency Moments

Sketches as hash-based linear transforms of data
Frequency distributions and Concentration bounds
Count-Min sketch for F_, and frequent items

AMS Sketch for F,

Estimating F,

Extensions:
— Higher frequency moments

— Combined frequency moments
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Count-Min Sketch

Simple idea relies primarily on Markov inequality
Model input data as a vector x of dimension U

Creates a small summary as an array of w x d in size
Use d hash function to map vector entries to [1..w]

Works on arrivals only and arrivals & departures streams

W

Array:
CMI[i,j] d
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Count-Min Sketch Structure

+C
é o
= K ”
, C o
\\\ o
\\‘i‘C
w = 2/¢

m Each entry in vector x is mapped to one bucket per row.
m Merge two sketches by entry-wise summation
m Estimate x[j] by taking min, CM[k,h,(j)]
— Guarantees error less than gF; in size O(1/¢ log 1/9)
— Probability of more error is less than 1-0
[C, Muthukrishnan '04]
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Approximation of Point Queries

Approximate point query x’[j] = min, CM[k,h,(j)]
m Analysis: In k'th row, CM[k,h,(j)] = x[j] + X, ;
— Xj= Zi X[i] I(h(i) = hy(j))

— E[X;] = Zi x[i1*Prlhy(i)=hy(j)]
< Prihg(i)=hi(j)] * Z; x[i]
=& F,/2 — requires only pairwise independence of h

— Pr[Xy;= €F;] = Pr[ X, ;= 2E[X, ;] ] < 1/2 by Markov inequality
m So, Prix'[jl = x[j] + eF;] = Pr[V k. X, ;> €F,] < 1/2081/5 = §

m Final result: with certainty x[j] < x’[j] and
with probability at least 1-0, x’[j] < x[j] + €F,
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Applications of Count-Min to Heavy Hitters

Count-Min sketch lets us estimate f, for any i (up to ¢F,)
asks to find i such that f;is large (> ¢ F,)
Slow way: test every i after creating sketch

Alternate way:
— Keep binary tree over input domain: each node is a subset
— Keep sketches of all nodes at same level
— Descend tree to find large frequencies, discard ‘light’ branches
— Same structure estimates arbitrary range sums

m Afirst step towards compressed sensing style results...
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Application to Large Scale Machine Learning

® In machine learning, often have very large feature space
— Many objects, each with huge, sparse feature vectors
— Slow and costly to work in the full feature space

o

O ”. work with a sketch of the features
— Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09]

®m Similar analysis explains why:

— Essentially, not too much noise on the important features

— See John Langford’s%

Streaming, Sketching and Big Data
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Sketches and Frequency Moments

m Frequency distributions and Concentration bounds
m Count-Min sketch for F__ and frequent items

m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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Chebyshev Inequality

21

Markov inequality applied directly is often quite weak
But Markov inequality holds for any random variable
Can apply to a random variable that is a function of X
SetY = (X —E[X])?
By Markov, Pr[Y > kE[Y] ] < 1/k
— E[Y] = E[(X-E[X])?]= Var[X]
Hence, Pr[ | X —E[X]]| > V(k Var[X]) ] < 1/k
Chebyshev inequality: Pr[ | X —E[X]| > k ] < Var[X]/k?
— If Var[X] <2 E[X]?, then Pr[|X —E[X]| > € E[X] ] = O(1)
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F, estimation

m AMS sketch (for Alon-Matias-Szegedy) proposed in 1996
— Allows estimation of F, (second frequency moment)

— Used at the heart of many streaming and non-streaming
applications: achieves dimensionality reduction

m Here, describe AMS sketch by generalizing CM sketch.
m Uses extra hash functions g;...g,,s 1/5{1...U}2 {+1,-1}

— (Low independence) Rademacher variables
m Now, given update (j,+c), set CM[k,h,(j)] += c*g,(j)

linear
projection

AMS sketch

Streaming, Sketching and Big Data
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F, analysis

/, A,*
e D=C o
==

—~—+c%05()

C204()

W = 4/¢?
Estimate F, = median, 2., CM[k,i]?
Each row’s result is 2 g(i)2x[i]* + 2 2 (1) g(j) x[i] x[j]
But g(i)2=-12=+1°=1, and 2 x[i]*=F,
g(i)g(j) has 1/2 chance of +1 or —1 : expectationis O ...

Streaming, Sketching and Big Data
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F, Variance

m Expectation of row estimate R, = 2. CM[k,i]? is exactly F,
m Variance of row k, Var[R,], is an expectation:

24

Var[Ry] = E[ (Zpycketsb (CMIK,b])? = F5)]
Good exercise in algebra: expand this sum and simplify

Many terms are zero in expectation because of terms like
g(a)g(b)g(c)g(d) (degree at most 4)

Requires that hash function g is four-wise independent: it
behaves uniformly over subsets of size four or smaller

m Such hash functions are easy to construct
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F, Variance

m Terms with odd powers of g(a) are zero in expectation

- g(a)g(b)g*(c), g(a)g(b)g(c)e(d), g(a)g*(b)
B Leaves
Var[R] < X, g4(i) x[i]*

+2%,,; g2(i) g2(i) x[i1x[j)?
+ 4 2 ieng) 82(1) 82() x[i1* x[j]?
- (x4 + 25, 2x(12 X1?)
<F,%/w

m Row variance can finally be bounded by F,%/w

— Chebyshev for w=4/¢? gives probability % of failure:
Prl |R,—F,| >e?F, 1<%

— How to amplify this to small o probability of failure?

— Rescaling w has cost linear in 1/6
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Tail Inequalities for Sums

m We achieve stronger bounds on tail probabilities for the sum of
independent Bernoulli trials via the Chernoff Bound:

— Let Xy, ..., X;,, be independent Bernoulli trials s.t. Pr[Xi=1] =p
(Pr[X;=0] = 1-p).
— Let X=2,_,X; ,and u = mp be the expectation of X.

— ’Pr[ X > (1+e)u] = Priexp(tX) > exp(t(1+e)u)] < E[exp(tX)]/exp(t(1+€)u)
— E[exp(tX)] = I1; E[exp(tX;)] = I I; (1-p + pet) < I1; exp(p (e*-1))
= exp(p(e* —1))
— Pr[ X > (1+e)u] <exp(u(et-1) - ut(1+e)) = exp(u(-st + t?/2 +t3/6 + ... )
< exp(u(t?/2 - e t))

— Balance: choose t=¢/2 < exp(-p €2/2)
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Applying Chernoff Bound

m Each row gives an estimate that is within € relative error with
probability p’ > %
m Take d repetitions and find the median. Why the median?

000000000

— Because bad estimates are either too small or too large
— Good estimates form a contiguous group “in the middle”
— At least d/2 estimates must be bad for median to be bad
m Apply Chernoff bound to d independent estimates, p=1/4
— Pr[ More than d/2 bad estimates ] < 2exp(-d/8)
— So we set d = ®(In 1/9) to give d probability of failure

m Same outline used many times in summary construction
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Applications and Extensions

m F, guarantee: estimate [|x||, from sketch with error ¢ ||x||,

— Since [Ix +yl,2 = [IX[l,2 + llyll,2 + 2x - y
Can estimate (x - y) with error g||x|,|lyll,

— Ify= e, obtain (x - ;) = x; with error ¢ ||x||; :
L, guarantee (“Count Sketch”) vs L; guarantee (Count-Min)

m Can view the sketch as a low-independence realization of the
Johnson-Lindendestraus lemma

— Best current JL methods have the same structure
— JLis stronger: embeds directly into Euclidean space

— JLis also weaker: requires O(1/¢g)-wise hashing, O(log 1/9)
independence [Nelson, Nguyen 13]
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Sketches and Frequency Moments

m Frequency Moments and Sketches

m Count-Min sketch for F__ and frequent items
m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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F, Estimation

m F,is the number of distinct items in the stream

— a fundamental quantity with many applications

m Early algorithms by Flajolet and Martin [1983] gave nice
hashing-based solution

— analysis assumed fully independent hash functions

m Will describe a generalized version of the FM algorithm due to
Bar-Yossef et. al with only pairwise indendence

— Known as the “k-Minimum values (KMV)” algorithm
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F, Algorithm

31

Let m be the domain of stream elements
— Each item in data is from [1...m]

Pick a random (pairwise) hash function h: [m] — [R]
— For R = m3 with probability at least 1-1/m, no collisions under h

00 ® o ® O

Om3 Vt m3

For each stream item i, compute h(i), and track the t distinct
items achieving the smallest values of h(i)

— Note: if same iis seen many times, h(i) is same
— Let v, = t'th smallest (distinct) value of h(i) seen

If n=F,<t, give exact answer, else estimate F';, = tR/v,
— v/R = fraction of hash domain occupied by t smallest

Streaming, Sketching and Big Data
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Analysis of F, algorithm

m Suppose F'y=tR/v, > (1+g) n [estimate is too high]

e |'o O e © 0 @9
OR |vt tR/(1+¢)n R

m Soforinput=setS e 2IM we have
— {s eS| h(s) <tR/(1+e)n }| > t
— Because € <1, we have tR/(1+¢g)n < (1-¢/2)tR/n
— Pr[ h(s) <(1-¢/2)tR/n] ~ 1/R * (1-¢/2)tR/n = (1-¢/2)t/n

— (this analysis outline hides some rounding issues)
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Chebyshev Analysis

m Let Y be number of items hashing to under tR/(1+¢)n
— E[Y] =n * Pr[ h(s) <tR/(1+g)n] = (1-g/2)t
— For each item i, variance of the event = p(1-p) <p
— Var[Y] =2...s Var[ h(s) < tR/(1+g)n] < (1-¢/2)t
m We sum variances because of pairwise independence

m Now apply Chebyshev inequality:

~ Pr[Y>t] <Pr[]Y —E[Y]| >et/2]
< 4Var[Y]/gt2
< 4t/(g2t?)

— Set t=20/¢? to make this Prob < 1/5
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Completing the analysis

34

We have shown
Pr[F'y>(1+e) F,] < 1/5
Can show Pr[ F'y < (1-¢) Fy] < 1/5 similarly
— too few items hash below a certain value
So Pr[(1-g) F, < F', < (1+€)F,] > 3/5 [Good estimate]

Amplify this probability: repeat O(log 1/0) times in parallel
with different choices of hash function h

— Take the median of the estimates, analysis as before
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F, Issues

m Space cost:
— Store t hash values, so O(1/¢? log m) bits
— Can improve to O(1/g? + log m) with additional tricks

O o ®e o e ©C 0 @0

B Time cost:
— Find if hash value h(i) < v,
— Update v, and list of t smallest if h(i) not already present
— Total time O(log 1/¢ + log m) worst case
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Count-Distinct

m Engineering the best constants: Hyperloglog algorithm
— Hash each item to one of 1/¢? buckets (like Count-Min)
— In each bucket, track the function max LIog(h(x))J
m Can view as a coarsened version of KMV
m Space efficient: need log log m = 6 bits per bucket
m Can estimate intersections between sketches
— Make use of identity |An B| = |A| + |[B] - |A U B]
— Error scales with ¢ V(|A||B]), so poor for small intersections
— Higher order intersections via inclusion-exclusion principle
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Subset Size Estimation from KMV

m Want to estimate the fraction f = |A|/|S|

— Sis the observed set of data

— Ais an arbitrary subset given later

— E.g. fraction of customers who are female 18-24 from Denmark
m Simple algorithm:

— Run KMV to get sample set K, estimate f' = |A n K| /k

— Need to bound probability of getting a bad estimate

— Analysis due to [Thorup 13]
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Subset Size Estimation

m Upperbound:
— Suppose we overestimate: |[ANnK|>(1+a)/(1-Db)fk
— Set threshold t = kR/(n(1-a))
m To have overestimate, must have one of:
1. Fewer than k elements from B hash below t : expect k/(1-a)

2. More than (1+b)(kf)/(1-a) elements from A hash below t:
expect kf/(1-a)

— Otherwise, cannot have overestimate

m To analyze, bound the probability of 1. and 2. separately
— Probability of overestimate is bounded by sum of these probs
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Bounding error probability

m Use Chebyshev to bound the two bad cases

Suppose mean number of m hash values below a threshold p=mp
Standard deviation o = ((1-p)pm)” < w”* (via pairwise independence)
Set a = 4/Vk, b = 4/V(fk)

For Event 1., we have u = k/(1-a) = k so, via Chebyshev,
Pr[ Event 1. ] < y/ac < 1/16

Similarly, for Event 2., we have u = kf/(1-a) 2 kf so
Pr[Event 2.]< w/bo <1/16

By union bound, at most 1/8 prob of overestimate

m Similar case analysis for the case of an underestimate

39
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Subset count accuracy

m With probability at least %, the error is O((fk)”)
— Arises from the choice of parameters b and a
— Error scales with f
m For some lower bound on f, f, can get relative error ¢:
— Set k oc f'/e? for (1 £ €) error with constant probability
m For improved error:
— Either increase k oc 1/6
— Or repeat log 1/6 times and take median estimate
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Frequency Moments

Intro to frequency distributions and Concentration bounds
Count-Min sketch for F_ and frequent items

AMS Sketch for F,

Estimating F,

Extensions:
— Higher frequency moments
— Combined frequency moments
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Higher Frequency Moments

m F fork>2. Use a sampling trick [Alon et al 96]:
— Uniformly pick an item from the stream length 1...n
— Set r = how many times that item appears subsequently
— Set estimate F', = n(rk— (r-1)¥)

B E[F J=1/n*n*[f K- (f-1)k+ (f-1)k- (f-2)% + ... + 1K-0K]+...
=fk+f,k+ .. =F
m Var[F ]<1/n*n2*[(f,*(f;-1))%+ ...]
— Use various bounds to bound the variance by k m*/kF,2
— Repeat k m*Vktimes in parallel to reduce variance
m Total space needed is O(k m¥¥/k) machine words

— Not a sketch: does not distribute easily. See next lecture!
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Combined Frequency Moments

m Let G[i,j] =1if (i,j) appears in input.

E.g. graph edge from itoj. Total of m distinct edges
m Letd; =2_," G[i,j] (aka degree of node i)
m Find aggregates of d.’s:

— Estimate heavy d;’s (people who talk to many)

— Estimate frequency moments:
number of distinct d; values, sum of squares

— Range sums of d/’s (subnet traffic)

m Approach: nest one sketch inside another, e.g. HLL inside CM
— Requires new analysis to track overall error
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Range Efficiency

m Sometimes input is specified as a collection of ranges [a,b]
— [a,b] means insert all items (a, a+1, a+2 ... b)
— Trivial solution: just insert each item in the range
m Range efficient F, [Pavan, Tirthapura 09]
— Start with an alg for Fy based on pairwise hash functions
— Key problem: track which items hash into a certain range
— Dives into hash fns to divide and conquer for ranges
m Range efficient F, [Calderbank et al. 05, Rusu,Dobra 06]
— Start with sketches for F, which sum hash values

— Design new hash functions so that range sums are fast
m Rectangle Efficient F,[Tirthapura, Woodruff 12]
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Summary

m Sketching Techniques summarize large data sets

B Summarize vectors:

45

Test equality (fingerprints)

Recover approximate entries (count-min, count sketch)
Approximate Euclidean norm (F,) and dot product
Approximate number of non-zero entries (F;)
Approximate set membership (Bloom filter)
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Current Directions in Streaming and Sketching

m Sparse representations of high dimensional objects
— Compressed sensing, sparse fast fourier transform
m Numerical linear algebra for (large) matrices
— k-rank approximation, linear regression, PCA, SVD, eigenvalues
m Computations on large graphs
— Sparsification, clustering, matching
m Geometric (big) data
— Coresets, facility location, optimization, machine learning
m Use of summaries in distributed computation

— MapReduce, Continuous Distributed models

46 Streaming, Sketching and Big Data



