
Big Data

 “Big” data arises in many forms:

– Physical Measurements: from science (physics, astronomy)

– Medical data: genetic sequences, detailed time series

– Activity data: GPS location, social network activity

– Business data: customer behavior tracking at fine detail

 Common themes:

– Data is large, and growing

– There are important patterns and trends in the data

– We don’t fully know how to find them

Streaming, Sketching and Big Data
2

Making sense of Big Data

 Want to be able to interrogate data in different use-cases:

– Routine Reporting: standard set of queries to run

– Analysis: ad hoc querying to answer ‘data science’ questions

– Monitoring: identify when current behavior differs from old

– Mining: extract new knowledge and patterns from data

 In all cases, need to answer certain basic questions quickly:

– Describe the distribution of particular attributes in the data

– How many (distinct) X were seen?

– How many X < Y were seen?

– Give some representative examples of items in the data

Streaming, Sketching and Big Data
3

Big Data and Hashing

 “Traditional” hashing: compact storage of data

– Hash tables proportional to data size

– Fast, compact, exact storage of data

 Hashing with small probability of collisions: very compact storage

– Bloom filters (no false negatives, bounded false positives)

– Faster, compacter, probabilistic storage of data

 Hashing with almost certainty of collisions

– Sketches (items collide, but the signal is preserved)

– Fasterer, compacterer, approximate storage of data

– Enables “small summaries for big data”

Streaming, Sketching and Big Data
4

Streaming, Sketching and Big Data

Data Models

 We model data as a collection of simple tuples

 Problems hard due to scale and dimension of input

 Arrivals only model:

– Example: (x, 3), (y, 2), (x, 2) encodes
the arrival of 3 copies of item x,
2 copies of y, then 2 copies of x.

– Could represent eg. packets on a network; power usage

 Arrivals and departures:

– Example: (x, 3), (y,2), (x, -2) encodes
final state of (x, 1), (y, 2).

– Can represent fluctuating quantities, or measure differences
between two distributions

x
y

x
y

5

Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Sketches as hash-based linear transforms of data

 Frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions:

– Higher frequency moments

– Combined frequency moments

6

Sketch Structures

 Sketch is a class of summary that is a linear transform of input

– Sketch(x) = Sx for some matrix S

– Hence, Sketch(x + y) = Sketch(x) + Sketch(y)

– Trivial to update and merge

 Often describe S in terms of hash functions

– If hash functions are simple, sketch is fast

 Aim for limited independence hash functions h: [n] [m]

– If PrhH[h(i1)=j1 h(i2)=j2 … h(ik)=jk] = m-k,
then H is k-wise independent family (“h is k-wise independent”)

– k-wise independent hash functions take time, space O(k)

Streaming, Sketching and Big Data
7

Streaming, Sketching and Big Data

Fingerprints as sketches

 Test if two binary streams are equal
d= (x,y) = 0 iff x=y, 1 otherwise

 To test in small space: pick a suitable hash function h

 Test h(x)=h(y) : small chance of false positive, no chance of
false negative

 Compute h(x), h(y) incrementally as new bits arrive

– How to choose the function h()?

1 0 1 1 1 0 1 0 1 …

1 0 1 1 0 0 1 0 1 …

8

Polynomial Fingerprints

 Pick h(x) = i=1
n xi ri mod p for prime p, random r {1…p-1}

 Why?

 Flexible: h(x) is linear function of x—easy to update and merge

 For accuracy, note that computation mod p is over the field Zp

– Consider the polynomial in , i=1
n (xi – yi)

i = 0

– Polynomial of degree n over Zp has at most n roots

 Probability that r happens to solve this polynomial is n/p

 So Pr[h(x) = h(y) | x y] n/p

– Pick p = poly(n), fingerprints are log p = O(log n) bits

 Fingerprints applied to small subsets of data to test equality

– Will see several examples that use fingerprints as subroutine

Streaming, Sketching and Big Data
9

Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Sketches as hash-based linear transforms of data

 Frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions:

– Higher frequency moments

– Combined frequency moments

10

Streaming, Sketching and Big Data

Frequency Distributions

 Given set of items, let fi be the number of occurrences of item i

 Many natural questions on fi values:

– Find those i’s with large fi values (heavy hitters)

– Find the number of non-zero fi values (count distinct)

– Compute Fk = i (fi)
k – the k’th Frequency Moment

– Compute H = i (fi/F1) log (F1/fi) – the (empirical) entropy

 “Space Complexity of the Frequency Moments”
Alon, Matias, Szegedy in STOC 1996

– Awarded Gödel prize in 2005

– Set the pattern for many streaming algorithms to follow

11

Concentration Bounds

 Will provide randomized algorithms for these problems

 Each algorithm gives a (randomized) estimate of the answer

 Give confidence bounds on the final estimate X

– Use probabilistic concentration bounds on random variables

 A concentration bound is typically of the form
Pr[|X – x| > y] <

– At most probability of being more than y away from x

Streaming, Sketching and Big Data

Probability
distribution

Tail probability

12

Markov Inequality

 Take any probability distribution X s.t. Pr[X < 0] = 0

 Consider the event X k for some constant k > 0

 For any draw of X, kI(X k) X

– Either 0 X < k, so I(X k) = 0

– Or X k, lhs = k

 Take expectations of both sides: k Pr[X k] E[X]

 Markov inequality: Pr[X k] E[X]/k

– Prob of random variable exceeding k times its expectation < 1/k

– Relatively weak in this form, but still useful

Streaming, Sketching and Big Data

k|X|

13

Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Sketches as hash-based linear transforms of data

 Frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions:

– Higher frequency moments

– Combined frequency moments

14

Streaming, Sketching and Big Data

Count-Min Sketch

 Simple sketch idea relies primarily on Markov inequality

 Model input data as a vector x of dimension U

 Creates a small summary as an array of w d in size

 Use d hash function to map vector entries to [1..w]

 Works on arrivals only and arrivals & departures streams

W

d
Array:

CM[i,j]

15

Streaming, Sketching and Big Data

Count-Min Sketch Structure

 Each entry in vector x is mapped to one bucket per row.

 Merge two sketches by entry-wise summation

 Estimate x[j] by taking mink CM[k,hk(j)]
– Guarantees error less than F1 in size O(1/ log 1/)

– Probability of more error is less than 1-

+c

+c

+c

+c

h1(j)

hd(j)

j,+c

d
=

lo
g
 1

/

w = 2/

[C, Muthukrishnan ’04]
16

Streaming, Sketching and Big Data

Approximation of Point Queries

Approximate point query x’[j] = mink CM[k,hk(j)]

 Analysis: In k'th row, CM[k,hk(j)] = x[j] + Xk,j

– Xk,j = Si x[i] I(hk(i) = hk(j))

– E[Xk,j] = Si j x[i]*Pr[hk(i)=hk(j)]
 Pr[hk(i)=hk(j)] * Si x[i]
= F1/2 – requires only pairwise independence of h

– Pr[Xk,j F1] = Pr[Xk,j 2E[Xk,j]] 1/2 by Markov inequality

 So, Pr[x’[j] x[j] + F1] = Pr[k. Xk,j > F1] 1/2log 1/ =

 Final result: with certainty x[j] x’[j] and
with probability at least 1-, x’[j] < x[j] + F1

17

Streaming, Sketching and Big Data

Applications of Count-Min to Heavy Hitters

 Count-Min sketch lets us estimate fi for any i (up to F1)

 Heavy Hitters asks to find i such that fi is large (> F1)

 Slow way: test every i after creating sketch

 Alternate way:

– Keep binary tree over input domain: each node is a subset

– Keep sketches of all nodes at same level

– Descend tree to find large frequencies, discard ‘light’ branches

– Same structure estimates arbitrary range sums

 A first step towards compressed sensing style results...

18

Application to Large Scale Machine Learning

 In machine learning, often have very large feature space

– Many objects, each with huge, sparse feature vectors

– Slow and costly to work in the full feature space

 “Hash kernels”: work with a sketch of the features

– Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09]

 Similar analysis explains why:

– Essentially, not too much noise on the important features

– See John Langford’s talk…

Streaming, Sketching and Big Data
19

Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions:

– Higher frequency moments

– Combined frequency moments

20

Chebyshev Inequality

 Markov inequality applied directly is often quite weak

 But Markov inequality holds for any random variable

 Can apply to a random variable that is a function of X

 Set Y = (X – E[X])2

 By Markov, Pr[Y > kE[Y]] < 1/k

– E[Y] = E[(X-E[X])2]= Var[X]

 Hence, Pr[|X – E[X]| > √(k Var[X])] < 1/k

 Chebyshev inequality: Pr[|X – E[X]| > k] < Var[X]/k2

– If Var[X] 2 E[X]2, then Pr[|X – E[X]| > E[X]] = O(1)

Streaming, Sketching and Big Data
21

Streaming, Sketching and Big Data

F2 estimation

 AMS sketch (for Alon-Matias-Szegedy) proposed in 1996

– Allows estimation of F2 (second frequency moment)

– Used at the heart of many streaming and non-streaming
applications: achieves dimensionality reduction

 Here, describe AMS sketch by generalizing CM sketch.

 Uses extra hash functions g1...glog 1/ {1...U} {+1,-1}

– (Low independence) Rademacher variables

 Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j)

linear

projection

AMS sketch
22

Streaming, Sketching and Big Data

F2 analysis

 Estimate F2 = mediank i CM[k,i]2

 Each row’s result is i g(i)2x[i]2 + h(i)=h(j) 2 g(i) g(j) x[i] x[j]

 But g(i)2 = -12 = +12 = 1, and i x[i]2 = F2

 g(i)g(j) has 1/2 chance of +1 or –1 : expectation is 0 …

+c*g1(j)

+c*g2(j)

+c*g3(j)

+c*g4(j)

h1(j)

hd(j)

j,+c

d
=

8
lo

g
 1

/

w = 4/2

23

Streaming, Sketching and Big Data

F2 Variance

 Expectation of row estimate Rk = i CM[k,i]2 is exactly F2

 Variance of row k, Var[Rk], is an expectation:

– Var[Rk] = E[(buckets b (CM[k,b])2 – F2)2]

– Good exercise in algebra: expand this sum and simplify

– Many terms are zero in expectation because of terms like
g(a)g(b)g(c)g(d) (degree at most 4)

– Requires that hash function g is four-wise independent: it
behaves uniformly over subsets of size four or smaller

 Such hash functions are easy to construct

24

Streaming, Sketching and Big Data

F2 Variance

 Terms with odd powers of g(a) are zero in expectation

– g(a)g(b)g2(c), g(a)g(b)g(c)g(d), g(a)g3(b)

 Leaves
Var[Rk] i g4(i) x[i]4

+ 2 j i g2(i) g2(j) x[i]2 x[j]2

+ 4 h(i)=h(j) g2(i) g2(j) x[i]2 x[j]2

- (x[i]4 + j i 2x[i]2 x[j]2)
 F2

2/w

 Row variance can finally be bounded by F2
2/w

– Chebyshev for w=4/2 gives probability ¼ of failure:
Pr[|Rk – F2| > 2 F2] ¼

– How to amplify this to small probability of failure?

– Rescaling w has cost linear in 1/

25

Streaming, Sketching and Big Data

Tail Inequalities for Sums

26

 We achieve stronger bounds on tail probabilities for the sum of
independent Bernoulli trials via the Chernoff Bound:

– Let X1, ..., Xm be independent Bernoulli trials s.t. Pr[Xi=1] = p

(Pr[Xi=0] = 1-p).

– Let X = i=1
m Xi ,and μ = mp be the expectation of X.

– Pr[X > (1+)] = Pr[exp(tX) > exp(t(1+))] E[exp(tX)]/exp(t(1+))

– E[exp(tX)] = i E[exp(tXi)] = i (1–p + pet) i exp(p (et-1))

= exp((et –1))

– Pr[X > (1+)] exp((et –1) - t(1+)) = exp((-t + t2/2 + t3/6 + …)

 exp((t2/2 - t))

– Balance: choose t=/2 exp(- 2/2)

Streaming, Sketching and Big Data

Applying Chernoff Bound

 Each row gives an estimate that is within relative error with
probability p’ > ¾

 Take d repetitions and find the median. Why the median?

– Because bad estimates are either too small or too large

– Good estimates form a contiguous group “in the middle”

– At least d/2 estimates must be bad for median to be bad

 Apply Chernoff bound to d independent estimates, p=1/4

– Pr[More than d/2 bad estimates] < 2exp(-d/8)

– So we set d = (ln 1/) to give probability of failure

 Same outline used many times in summary construction
27

Applications and Extensions

 F2 guarantee: estimate ǁxǁ2 from sketch with error ǁxǁ2

– Since ǁx + yǁ2
2 = ǁxǁ2

2 + ǁyǁ2
2 + 2x y

Can estimate (x y) with error ǁxǁ2ǁyǁ2

– If y = e
j
, obtain (x ej) = xj with error ǁxǁ2 :

L2 guarantee (“Count Sketch”) vs L1 guarantee (Count-Min)

 Can view the sketch as a low-independence realization of the
Johnson-Lindendestraus lemma

– Best current JL methods have the same structure

– JL is stronger: embeds directly into Euclidean space

– JL is also weaker: requires O(1/)-wise hashing, O(log 1/)
independence [Nelson, Nguyen 13]

Streaming, Sketching and Big Data
28

Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Frequency Moments and Sketches

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions:

– Higher frequency moments

– Combined frequency moments

29

Streaming, Sketching and Big Data

F0 Estimation

 F0 is the number of distinct items in the stream

– a fundamental quantity with many applications

 Early algorithms by Flajolet and Martin [1983] gave nice
hashing-based solution

– analysis assumed fully independent hash functions

 Will describe a generalized version of the FM algorithm due to
Bar-Yossef et. al with only pairwise indendence

– Known as the “k-Minimum values (KMV)” algorithm

30

Streaming, Sketching and Big Data

F0 Algorithm

 Let m be the domain of stream elements

– Each item in data is from [1…m]

 Pick a random (pairwise) hash function h: [m] [R]

– For R = m3 with probability at least 1-1/m, no collisions under h

 For each stream item i, compute h(i), and track the t distinct
items achieving the smallest values of h(i)

– Note: if same i is seen many times, h(i) is same

– Let vt = t’th smallest (distinct) value of h(i) seen

 If n = F0 < t, give exact answer, else estimate F’0 = tR/vt

– vt/R fraction of hash domain occupied by t smallest

m30m3 vt

31

Streaming, Sketching and Big Data

Analysis of F0 algorithm

 Suppose F’0 = tR/vt > (1+) n [estimate is too high]

 So for input = set S 2[m], we have

– |{ s S | h(s) < tR/(1+)n }| > t

– Because < 1, we have tR/(1+)n (1-/2)tR/n

– Pr[h(s) < (1-/2)tR/n] 1/R * (1-/2)tR/n = (1-/2)t/n

– (this analysis outline hides some rounding issues)

RtR/(1+)n0R vt

32

Streaming, Sketching and Big Data

Chebyshev Analysis

 Let Y be number of items hashing to under tR/(1+)n

– E[Y] = n * Pr[h(s) < tR/(1+)n] = (1-/2)t

– For each item i, variance of the event = p(1-p) < p

– Var[Y] = sS Var[h(s) < tR/(1+)n] < (1-/2)t

 We sum variances because of pairwise independence

 Now apply Chebyshev inequality:

– Pr[Y > t] Pr[|Y – E[Y]| > t/2]
 4Var[Y]/2t2

< 4t/(2t2)

– Set t=20/2 to make this Prob 1/5

33

Streaming, Sketching and Big Data

Completing the analysis

 We have shown
Pr[F’0 > (1+) F0] < 1/5

 Can show Pr[F’0 < (1-) F0] < 1/5 similarly

– too few items hash below a certain value

 So Pr[(1-) F0 F’0 (1+)F0] > 3/5 [Good estimate]

 Amplify this probability: repeat O(log 1/) times in parallel
with different choices of hash function h

– Take the median of the estimates, analysis as before

34

Streaming, Sketching and Big Data

F0 Issues

 Space cost:

– Store t hash values, so O(1/2 log m) bits

– Can improve to O(1/2 + log m) with additional tricks

 Time cost:

– Find if hash value h(i) < vt

– Update vt and list of t smallest if h(i) not already present

– Total time O(log 1/ + log m) worst case

35

Count-Distinct

 Engineering the best constants: Hyperloglog algorithm

– Hash each item to one of 1/2 buckets (like Count-Min)

– In each bucket, track the function max log(h(x))

 Can view as a coarsened version of KMV

 Space efficient: need log log m 6 bits per bucket

 Can estimate intersections between sketches

– Make use of identity |A B| = |A| + |B| - |A B|

– Error scales with √(|A||B|), so poor for small intersections

– Higher order intersections via inclusion-exclusion principle

Streaming, Sketching and Big Data
36

Subset Size Estimation from KMV

 Want to estimate the fraction f = |A|/|S|

– S is the observed set of data

– A is an arbitrary subset given later

– E.g. fraction of customers who are female 18-24 from Denmark

 Simple algorithm:

– Run KMV to get sample set K, estimate f’ = |A ∩ K|/k

– Need to bound probability of getting a bad estimate

– Analysis due to [Thorup 13]

Streaming, Sketching and Big Data
37

Subset Size Estimation

 Upper bound:

– Suppose we overestimate: |A ∩ K| > (1 + a) / (1 – b) fk

– Set threshold t = kR/(n(1-a))

 To have overestimate, must have one of:

1. Fewer than k elements from B hash below t : expect k/(1-a)

2. More than (1+b)(kf)/(1-a) elements from A hash below t:
expect kf/(1-a)

– Otherwise, cannot have overestimate

 To analyze, bound the probability of 1. and 2. separately

– Probability of overestimate is bounded by sum of these probs

Streaming, Sketching and Big Data
38

Bounding error probability

 Use Chebyshev to bound the two bad cases

– Suppose mean number of m hash values below a threshold = mp

– Standard deviation s = ((1-p)pm)½ ≤ ½ (via pairwise independence)

– Set a = 4/√k, b = 4/√(fk)

– For Event 1., we have = k/(1-a) ≥ k so, via Chebyshev,
Pr[Event 1.] ≤ /as < 1/16

– Similarly, for Event 2., we have = kf/(1-a) ≥ kf so
Pr[Event 2.] ≤ /bs < 1/16

– By union bound, at most 1/8 prob of overestimate

 Similar case analysis for the case of an underestimate

Streaming, Sketching and Big Data
39

Subset count accuracy

 With probability at least ¾, the error is O((fk)½)

– Arises from the choice of parameters b and a

– Error scales with f

 For some lower bound on f, f’, can get relative error :

– Set k f’/2 for (1) error with constant probability

 For improved error:

– Either increase k 1/

– Or repeat log 1/ times and take median estimate

Streaming, Sketching and Big Data
40

Streaming, Sketching and Big Data

Frequency Moments

 Intro to frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions:

– Higher frequency moments

– Combined frequency moments

41

Streaming, Sketching and Big Data

Higher Frequency Moments

 Fk for k>2. Use a sampling trick [Alon et al 96]:

– Uniformly pick an item from the stream length 1…n

– Set r = how many times that item appears subsequently

– Set estimate F’k = n(rk – (r-1)k)

 E[F’k]=1/n*n*[f1
k - (f1-1)k + (f1-1)k - (f1-2)k + … + 1k-0k]+…

= f1
k + f2

k + … = Fk

 Var[F’k]1/n*n2*[(f1
k-(f1-1)k)2 + …]

– Use various bounds to bound the variance by k m1-1/k Fk
2

– Repeat k m1-1/k times in parallel to reduce variance

 Total space needed is O(k m1-1/k) machine words

– Not a sketch: does not distribute easily. See next lecture!
42

Streaming, Sketching and Big Data

Combined Frequency Moments

 Let G[i,j] = 1 if (i,j) appears in input.
E.g. graph edge from i to j. Total of m distinct edges

 Let di = Sj=1
n G[i,j] (aka degree of node i)

 Find aggregates of di’s:

– Estimate heavy di’s (people who talk to many)

– Estimate frequency moments:
number of distinct di values, sum of squares

– Range sums of di’s (subnet traffic)

 Approach: nest one sketch inside another, e.g. HLL inside CM

– Requires new analysis to track overall error

43

Streaming, Sketching and Big Data

Range Efficiency

 Sometimes input is specified as a collection of ranges [a,b]

– [a,b] means insert all items (a, a+1, a+2 … b)

– Trivial solution: just insert each item in the range

 Range efficient F0 [Pavan, Tirthapura 05]

– Start with an alg for F0 based on pairwise hash functions

– Key problem: track which items hash into a certain range

– Dives into hash fns to divide and conquer for ranges

 Range efficient F2 [Calderbank et al. 05, Rusu,Dobra 06]

– Start with sketches for F2 which sum hash values

– Design new hash functions so that range sums are fast

 Rectangle Efficient F0 [Tirthapura, Woodruff 12]

44

Summary

 Sketching Techniques summarize large data sets

 Summarize vectors:

– Test equality (fingerprints)

– Recover approximate entries (count-min, count sketch)

– Approximate Euclidean norm (F2) and dot product

– Approximate number of non-zero entries (F0)

– Approximate set membership (Bloom filter)

Streaming, Sketching and Sufficient Statistics
45

Current Directions in Streaming and Sketching

 Sparse representations of high dimensional objects

– Compressed sensing, sparse fast fourier transform

 Numerical linear algebra for (large) matrices

– k-rank approximation, linear regression, PCA, SVD, eigenvalues

 Computations on large graphs

– Sparsification, clustering, matching

 Geometric (big) data

– Coresets, facility location, optimization, machine learning

 Use of summaries in distributed computation

– MapReduce, Continuous Distributed models

Streaming, Sketching and Big Data
46

