
Big Data

 “Big” data arises in many forms:

– Physical Measurements: from science (physics, astronomy)

– Medical data: genetic sequences, detailed time series

– Activity data: GPS location, social network activity

– Business data: customer behavior tracking at fine detail

 Common themes: 

– Data is large, and growing

– There are important patterns and trends in the data

– We don’t fully know how to find them

Streaming, Sketching and Big Data
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Making sense of Big Data

 Want to be able to interrogate data in different use-cases:

– Routine Reporting: standard set of queries to run

– Analysis: ad hoc querying to answer ‘data science’ questions

– Monitoring: identify when current behavior differs from old

– Mining: extract new knowledge and patterns from data

 In all cases, need to answer certain basic questions quickly:

– Describe the distribution of particular attributes in the data

– How many (distinct) X were seen?

– How many X < Y were seen?

– Give some representative examples of items in the data

Streaming, Sketching and Big Data
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Big Data and Hashing

 “Traditional” hashing: compact storage of data

– Hash tables proportional to data size

– Fast, compact, exact storage of data

 Hashing with small probability of collisions: very compact storage

– Bloom filters (no false negatives, bounded false positives)

– Faster, compacter, probabilistic storage of data

 Hashing with almost certainty of collisions

– Sketches (items collide, but the signal is preserved)

– Fasterer, compacterer, approximate storage of data

– Enables “small summaries for big data”

Streaming, Sketching and Big Data
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Streaming, Sketching and Big Data

Data Models

 We model data as a collection of simple tuples

 Problems hard due to scale and dimension of input

 Arrivals only model:

– Example: (x, 3), (y, 2), (x, 2) encodes
the arrival of 3 copies of item x, 
2 copies of y, then 2 copies of x.

– Could represent eg. packets on a network; power usage

 Arrivals and departures:

– Example: (x, 3), (y,2), (x, -2) encodes
final state of (x, 1), (y, 2).

– Can represent fluctuating quantities, or measure differences 
between two distributions

x
y

x
y
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Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Sketches as hash-based linear transforms of data

 Frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions: 

– Higher frequency moments

– Combined frequency moments
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Sketch Structures

 Sketch is a class of summary that is a linear transform of input

– Sketch(x) = Sx for some matrix S

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y)

– Trivial to update and merge

 Often describe S in terms of hash functions

– If hash functions are simple, sketch is fast

 Aim for limited independence hash functions h: [n]  [m]

– If PrhH[ h(i1)=j1  h(i2)=j2  … h(ik)=jk ] = m-k, 
then H is k-wise independent family (“h is k-wise independent”)

– k-wise independent hash functions take time, space O(k)

Streaming, Sketching and Big Data
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Streaming, Sketching and Big Data

Fingerprints as sketches

 Test if two binary streams are equal 
d= (x,y) = 0 iff x=y, 1 otherwise

 To test in small space: pick a suitable hash function h

 Test h(x)=h(y) : small chance of false positive, no chance of 
false negative

 Compute h(x), h(y) incrementally as new bits arrive 

– How to choose the function h()?

1 0 1 1 1 0 1 0 1 …

1 0 1 1 0 0 1 0 1 …
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Polynomial Fingerprints

 Pick h(x) = i=1
n xi ri mod p for prime p, random r  {1…p-1}

 Why?

 Flexible: h(x) is linear function of x—easy to update and merge

 For accuracy, note that computation mod p is over the field Zp

– Consider the polynomial in , i=1
n (xi – yi) 

i = 0

– Polynomial of degree n over Zp has at most n roots

 Probability that r happens to solve this polynomial is n/p

 So Pr[ h(x) = h(y) | x  y ]  n/p

– Pick p = poly(n), fingerprints are log p = O(log n) bits

 Fingerprints applied to small subsets of data to test equality

– Will see several examples that use fingerprints as subroutine

Streaming, Sketching and Big Data
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Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Sketches as hash-based linear transforms of data

 Frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions: 

– Higher frequency moments

– Combined frequency moments
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Streaming, Sketching and Big Data

Frequency Distributions

 Given set of items, let fi be the number of occurrences of item i

 Many natural questions on fi values:

– Find those i’s with large fi values (heavy hitters)

– Find the number of non-zero fi values (count distinct)

– Compute Fk = i (fi)
k – the k’th Frequency Moment

– Compute  H = i (fi/F1) log (F1/fi) – the (empirical) entropy

 “Space Complexity of the Frequency Moments”
Alon, Matias, Szegedy in STOC 1996

– Awarded Gödel prize in 2005

– Set the pattern for many streaming algorithms to follow
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Concentration Bounds

 Will provide randomized algorithms for these problems

 Each algorithm gives a (randomized) estimate of the answer

 Give confidence bounds on the final estimate X

– Use probabilistic concentration bounds on random variables

 A concentration bound is typically of the form
Pr[ |X – x| > y ] < 

– At most probability  of being more than y away from x

Streaming, Sketching and Big Data



Probability
distribution

Tail probability
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Markov Inequality

 Take any probability distribution X s.t. Pr[X < 0] = 0

 Consider the event X  k for some constant k > 0

 For any draw of X, kI(X  k)  X

– Either 0  X < k, so I(X  k) = 0

– Or X  k, lhs = k

 Take expectations of both sides: k Pr[ X  k]  E[X]

 Markov inequality: Pr[ X  k ]  E[X]/k

– Prob of random variable exceeding k times its expectation < 1/k

– Relatively weak in this form, but still useful

Streaming, Sketching and Big Data

k|X|

13



Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Sketches as hash-based linear transforms of data

 Frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions: 

– Higher frequency moments

– Combined frequency moments
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Streaming, Sketching and Big Data

Count-Min Sketch

 Simple sketch idea relies primarily on Markov inequality

 Model input data as a vector x of dimension U

 Creates a small summary as an array of w  d in size

 Use d hash function to map vector entries to [1..w]

 Works on arrivals only and arrivals & departures streams

W

d
Array: 

CM[i,j]
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Streaming, Sketching and Big Data

Count-Min Sketch Structure

 Each entry in vector x is mapped to one bucket per row.

 Merge two sketches by entry-wise summation

 Estimate x[j] by taking mink CM[k,hk(j)]
– Guarantees error less than F1 in size O(1/ log 1/)

– Probability of more error is less than 1-

+c

+c

+c

+c

h1(j)

hd(j)

j,+c

d
=

lo
g
 1

/

w = 2/

[C, Muthukrishnan ’04]
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Streaming, Sketching and Big Data

Approximation of Point Queries

Approximate point query x’[j] = mink CM[k,hk(j)]

 Analysis: In k'th row, CM[k,hk(j)] = x[j] + Xk,j

– Xk,j = Si x[i] I(hk(i) = hk(j))

– E[Xk,j] = Si j x[i]*Pr[hk(i)=hk(j)] 
 Pr[hk(i)=hk(j)] * Si x[i]
=  F1/2 – requires only pairwise independence of h

– Pr[Xk,j  F1] = Pr[ Xk,j  2E[Xk,j] ]  1/2 by Markov inequality 

 So, Pr[x’[j]  x[j] + F1] = Pr[ k. Xk,j > F1]  1/2log 1/ = 

 Final result: with certainty x[j]  x’[j] and 
with probability at least 1-,  x’[j] < x[j] + F1

17



Streaming, Sketching and Big Data

Applications of Count-Min to Heavy Hitters

 Count-Min sketch lets us estimate fi for any i (up to F1)

 Heavy Hitters asks to find i such that fi is large (>  F1)

 Slow way: test every i after creating sketch

 Alternate way: 

– Keep binary tree over input domain: each node is a subset

– Keep sketches of all nodes at same level

– Descend tree to find large frequencies, discard ‘light’ branches

– Same structure estimates arbitrary range sums

 A first step towards compressed sensing style results...
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Application to Large Scale Machine Learning

 In machine learning, often have very large feature space

– Many objects, each with huge, sparse feature vectors

– Slow and costly to work in the full feature space

 “Hash kernels”: work with a sketch of the features

– Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09]

 Similar analysis explains why:

– Essentially, not too much noise on the important features

– See John Langford’s talk…

Streaming, Sketching and Big Data
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Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions: 

– Higher frequency moments

– Combined frequency moments
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Chebyshev Inequality

 Markov inequality applied directly is often quite weak

 But Markov inequality holds for any random variable

 Can apply to a random variable that is a function of X

 Set Y = (X – E[X])2

 By Markov, Pr[ Y > kE[Y] ] < 1/k

– E[Y] = E[(X-E[X])2]= Var[X]

 Hence, Pr[ |X – E[X]| > √(k Var[X]) ] < 1/k

 Chebyshev inequality: Pr[ |X – E[X]| > k ] < Var[X]/k2

– If Var[X]  2 E[X]2, then Pr[|X – E[X]| >  E[X] ] = O(1)

Streaming, Sketching and Big Data
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Streaming, Sketching and Big Data

F2 estimation

 AMS sketch (for Alon-Matias-Szegedy) proposed in 1996

– Allows estimation of F2 (second frequency moment)

– Used at the heart of many streaming and non-streaming 
applications: achieves dimensionality reduction

 Here, describe AMS sketch by generalizing CM sketch. 

 Uses extra hash functions g1...glog 1/ {1...U} {+1,-1}

– (Low independence) Rademacher variables

 Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j)

linear 

projection

AMS sketch
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Streaming, Sketching and Big Data

F2 analysis

 Estimate F2 = mediank i CM[k,i]2

 Each row’s result is i g(i)2x[i]2 + h(i)=h(j) 2 g(i) g(j) x[i] x[j]

 But g(i)2 = -12 = +12 = 1, and i x[i]2 = F2

 g(i)g(j) has 1/2 chance of  +1 or –1 : expectation is 0 …

+c*g1(j)

+c*g2(j)

+c*g3(j)

+c*g4(j)

h1(j)

hd(j)

j,+c

d
=

8
lo

g
 1

/

w = 4/2
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Streaming, Sketching and Big Data

F2 Variance

 Expectation of row estimate Rk = i CM[k,i]2 is exactly F2

 Variance of row k, Var[Rk], is an expectation:

– Var[Rk] = E[ (buckets b (CM[k,b])2 – F2)2 ]

– Good exercise in algebra: expand this sum and simplify

– Many terms are zero in expectation because of terms like 
g(a)g(b)g(c)g(d) (degree at most 4)

– Requires that hash function g is four-wise independent: it 
behaves uniformly over subsets of size four or smaller

 Such hash functions are easy to construct
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Streaming, Sketching and Big Data

F2 Variance

 Terms with odd powers of g(a) are zero in expectation

– g(a)g(b)g2(c), g(a)g(b)g(c)g(d), g(a)g3(b)

 Leaves 
Var[Rk]  i g4(i) x[i]4

+ 2 j i g2(i) g2(j) x[i]2 x[j]2

+ 4 h(i)=h(j) g2(i) g2(j) x[i]2 x[j]2

- (x[i]4 + j i 2x[i]2 x[j]2)
 F2

2/w

 Row variance can finally be bounded by F2
2/w

– Chebyshev for w=4/2 gives probability ¼ of failure:
Pr[ |Rk – F2| > 2 F2 ]  ¼  

– How to amplify this to small  probability of failure?

– Rescaling w has cost linear in 1/
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Streaming, Sketching and Big Data

Tail Inequalities for Sums

26

 We achieve stronger bounds on tail probabilities for the sum of 
independent Bernoulli trials via the Chernoff Bound: 

– Let X1, ..., Xm be independent Bernoulli trials s.t. Pr[Xi=1] = p

(Pr[Xi=0] = 1-p). 

– Let X = i=1
m Xi ,and μ = mp be the expectation of X. 

– Pr[ X > (1+)] = Pr[exp(tX) > exp(t(1+))]  E[exp(tX)]/exp(t(1+))

– E[exp(tX)] = i E[exp(tXi)] = i (1–p + pet)  i exp(p (et-1))

= exp((et –1))

– Pr[ X > (1+)]  exp((et –1) - t(1+)) = exp((-t + t2/2 + t3/6 + … )

 exp((t2/2 -  t))

– Balance: choose t=/2  exp(- 2/2)



Streaming, Sketching and Big Data

Applying Chernoff Bound

 Each row gives an estimate that is within  relative error with 
probability p’ > ¾

 Take d repetitions and find the median.  Why the median?

– Because bad estimates are either too small or too large

– Good estimates form a contiguous group “in the middle”

– At least d/2 estimates must be bad for median to be bad

 Apply Chernoff bound to d independent estimates, p=1/4

– Pr[ More than d/2 bad estimates ] < 2exp(-d/8)

– So we set d = (ln 1/) to give  probability of failure

 Same outline used many times in summary construction
27



Applications and Extensions

 F2 guarantee: estimate ǁxǁ2 from sketch with error  ǁxǁ2

– Since ǁx + yǁ2
2 = ǁxǁ2

2 + ǁyǁ2
2 + 2x  y 

Can estimate (x  y) with error ǁxǁ2ǁyǁ2

– If y = e
j
, obtain (x  ej) = xj with error  ǁxǁ2 : 

L2 guarantee (“Count Sketch”) vs L1 guarantee (Count-Min)

 Can view the sketch as a low-independence realization of the 
Johnson-Lindendestraus lemma

– Best current JL methods have the same structure

– JL is stronger: embeds directly into Euclidean space

– JL is also weaker: requires O(1/)-wise hashing, O(log 1/)
independence [Nelson, Nguyen 13]

Streaming, Sketching and Big Data
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Streaming, Sketching and Big Data

Sketches and Frequency Moments

 Frequency Moments and Sketches

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions: 

– Higher frequency moments

– Combined frequency moments
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Streaming, Sketching and Big Data

F0 Estimation

 F0 is the number of distinct items in the stream 

– a fundamental quantity with many applications

 Early algorithms by Flajolet and Martin [1983] gave nice 
hashing-based solution

– analysis assumed fully independent hash functions

 Will describe a generalized version of the FM algorithm due to 
Bar-Yossef et. al with only pairwise indendence

– Known as the “k-Minimum values (KMV)” algorithm
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Streaming, Sketching and Big Data

F0 Algorithm

 Let m be the domain of stream elements

– Each item in data is from [1…m]

 Pick a random (pairwise) hash function h: [m]  [R]

– For R = m3 with probability at least 1-1/m, no collisions under h

 For each stream item i, compute h(i), and track the t distinct 
items achieving the smallest values of h(i)

– Note: if same i is seen many times, h(i) is same

– Let vt = t’th smallest (distinct) value of h(i) seen

 If n = F0 < t, give exact answer, else estimate F’0 = tR/vt

– vt/R  fraction of hash domain occupied by t smallest

m30m3 vt
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Streaming, Sketching and Big Data

Analysis of F0 algorithm

 Suppose F’0 = tR/vt > (1+) n [estimate is too high]

 So for input = set S  2[m], we have 

– |{ s  S | h(s) < tR/(1+)n }| > t

– Because  < 1, we have tR/(1+)n  (1-/2)tR/n

– Pr[ h(s) < (1-/2)tR/n]  1/R * (1-/2)tR/n = (1-/2)t/n

– (this analysis outline hides some rounding issues)

RtR/(1+)n0R vt
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Streaming, Sketching and Big Data

Chebyshev Analysis

 Let Y be number of items hashing to under tR/(1+)n

– E[Y] = n * Pr[ h(s) < tR/(1+)n] = (1-/2)t

– For each item i, variance of the event = p(1-p) < p

– Var[Y] = sS Var[ h(s) < tR/(1+)n] < (1-/2)t

 We sum variances because of pairwise independence

 Now apply Chebyshev inequality: 

– Pr[ Y > t ]  Pr[|Y – E[Y]| > t/2] 
 4Var[Y]/2t2

< 4t/(2t2)

– Set t=20/2 to make this Prob  1/5
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Streaming, Sketching and Big Data

Completing the analysis

 We have shown
Pr[ F’0 > (1+) F0 ] < 1/5

 Can show Pr[ F’0 < (1-) F0 ] < 1/5 similarly

– too few items hash below a certain value

 So Pr[ (1-) F0  F’0  (1+)F0] > 3/5 [Good estimate]

 Amplify this probability: repeat O(log 1/) times in parallel 
with different choices of hash function h

– Take the median of the estimates, analysis as before
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Streaming, Sketching and Big Data

F0 Issues

 Space cost: 

– Store t hash values, so O(1/2 log m) bits

– Can improve to O(1/2 + log m) with additional tricks

 Time cost: 

– Find if hash value h(i) < vt

– Update vt and list of t smallest if h(i) not already present

– Total time O(log 1/ + log m) worst case
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Count-Distinct

 Engineering the best constants: Hyperloglog algorithm

– Hash each item to one of 1/2 buckets (like Count-Min)

– In each bucket, track the function max log(h(x))

 Can view as a coarsened version of KMV

 Space efficient: need log log m  6 bits per bucket

 Can estimate intersections between sketches

– Make use of identity |A  B| = |A| + |B| - |A  B|

– Error scales with  √(|A||B|), so poor for small intersections

– Higher order intersections via inclusion-exclusion principle

Streaming, Sketching and Big Data
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Subset Size Estimation from KMV

 Want to estimate the fraction f = |A|/|S|

– S is the observed set of data

– A is an arbitrary subset given later

– E.g. fraction of customers who are female 18-24 from Denmark

 Simple algorithm: 

– Run KMV to get sample set K, estimate f’ = |A ∩ K|/k

– Need to bound probability of getting a bad estimate

– Analysis due to [Thorup 13]

Streaming, Sketching and Big Data
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Subset Size Estimation

 Upper bound: 

– Suppose we overestimate: |A ∩ K| > (1 + a) / (1 – b) fk

– Set threshold t = kR/(n(1-a))

 To have overestimate, must have one of:

1. Fewer than k elements from B hash below t : expect k/(1-a)

2. More than (1+b)(kf)/(1-a) elements from A hash below t:
expect kf/(1-a)

– Otherwise, cannot have overestimate

 To analyze, bound the probability of 1. and 2. separately

– Probability of overestimate is bounded by sum of these probs

Streaming, Sketching and Big Data
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Bounding error probability 

 Use Chebyshev to bound the two bad cases

– Suppose mean number of m hash values below a threshold  = mp

– Standard deviation s = ((1-p)pm)½ ≤ ½ (via pairwise independence)

– Set a = 4/√k, b = 4/√(fk)

– For Event 1., we have  = k/(1-a) ≥ k so, via Chebyshev,
Pr[ Event 1. ] ≤ /as < 1/16

– Similarly, for Event 2., we have  = kf/(1-a) ≥ kf so
Pr[Event 2. ] ≤  /bs < 1/16

– By union bound, at most 1/8 prob of overestimate

 Similar case analysis for the case of an underestimate

Streaming, Sketching and Big Data
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Subset count accuracy

 With probability at least ¾, the error is O((fk)½)

– Arises from the choice of parameters b and a

– Error scales with f

 For some lower bound on f, f’, can get relative error :

– Set k  f’/2 for (1  ) error with constant probability

 For improved error:

– Either increase k  1/

– Or repeat log 1/ times and take median estimate

Streaming, Sketching and Big Data
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Streaming, Sketching and Big Data

Frequency Moments

 Intro to frequency distributions and Concentration bounds

 Count-Min sketch for F and frequent items

 AMS Sketch for F2

 Estimating F0

 Extensions: 

– Higher frequency moments

– Combined frequency moments
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Streaming, Sketching and Big Data

Higher Frequency Moments

 Fk for k>2.  Use a sampling trick [Alon et al 96]:

– Uniformly pick an item from the stream length 1…n

– Set r = how many times that item appears subsequently 

– Set estimate F’k = n(rk – (r-1)k)

 E[F’k]=1/n*n*[ f1
k - (f1-1)k + (f1-1)k - (f1-2)k + … + 1k-0k]+…

= f1
k + f2

k + … = Fk

 Var[F’k]1/n*n2*[(f1
k-(f1-1)k)2 + …]

– Use various bounds to bound the variance by k m1-1/k Fk
2

– Repeat k m1-1/k times in parallel to reduce variance

 Total space needed is O(k m1-1/k) machine words

– Not a sketch: does not distribute easily.  See next lecture!
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Streaming, Sketching and Big Data

Combined Frequency Moments

 Let G[i,j] = 1 if (i,j) appears in input.
E.g. graph edge from i to j.  Total of m distinct edges

 Let di = Sj=1
n G[i,j] (aka degree of node i)

 Find aggregates of di’s:

– Estimate heavy di’s (people who talk to many)

– Estimate frequency moments:
number of distinct di values, sum of squares

– Range sums of di’s (subnet traffic)

 Approach: nest one sketch inside another, e.g. HLL inside CM

– Requires new analysis to track overall error
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Streaming, Sketching and Big Data

Range Efficiency

 Sometimes input is specified as a collection of ranges [a,b]

– [a,b] means insert all items (a, a+1, a+2 … b)

– Trivial solution: just insert each item in the range

 Range efficient F0 [Pavan, Tirthapura 05]

– Start with an alg for F0 based on pairwise hash functions

– Key problem: track which items hash into a certain range

– Dives into hash fns to divide and conquer for ranges

 Range efficient F2 [Calderbank et al. 05, Rusu,Dobra 06]

– Start with sketches for F2 which sum hash values

– Design new hash functions so that range sums are fast

 Rectangle Efficient F0 [Tirthapura, Woodruff 12]
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Summary

 Sketching Techniques summarize large data sets

 Summarize vectors:

– Test equality (fingerprints)

– Recover approximate entries (count-min, count sketch)

– Approximate Euclidean norm (F2) and dot product

– Approximate number of non-zero entries (F0)

– Approximate set membership (Bloom filter)

Streaming, Sketching and Sufficient Statistics
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Current Directions in Streaming and Sketching

 Sparse representations of high dimensional objects

– Compressed sensing, sparse fast fourier transform

 Numerical linear algebra for (large) matrices

– k-rank approximation, linear regression, PCA, SVD, eigenvalues

 Computations on large graphs

– Sparsification, clustering, matching

 Geometric (big) data

– Coresets, facility location, optimization, machine learning

 Use of summaries in distributed computation

– MapReduce, Continuous Distributed models

Streaming, Sketching and Big Data
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