Chapter 7

Hashing

The basic idea of hashing is that we have keys from a large set U, and we'd
like to pack them in a small set M by passing them through some function
h: U — M, without getting too many collisions, pairs of distinct keys =
and y with h(x) = h(y). Where randomization comes in is that we want
this to be true even if the adversary picks the keys to hash. At one extreme,
we could use a random function, but this will take a lot of space to storeﬂ
So our goal will be to find functions with succinet descriptions that are still
random enough to do what we want.

The presentation in this chapter is based largely on [MR95, §§8.4-8.5]
(which is in turn based on work of Carter and Wegman [CWT77] on universal
hashing and Fredman, Komlés, and Szemerédi [FKS84] on O(1) worst-case
hashing); on [PR04] and [Pag06] for cuckoo hashing; and [MU05, §5.5.3] for
Bloom filters.

7.1 Hash tables

Here we review the basic idea of hash tables, which are implementations
of the dictionary data type mapping keys to values. The basic idea of hash
tables is usually attributed to Dumey [T)nmﬁﬁ]El

!An easy counting argument shows that almost all functions from U to M take
|U|log| M| bits to represent, no matter how clever you are about choosing your repre-
sentation. This forms the basis for algorithmic information theory, which defines an
object as random if there is no way to reduce the number of bits used to express it.

ZCaveat: This article is pretty hard to find, so I am basing this citation on its fre-
quent appearance in later sources. This is generally a bad idea that would not really be
acceptable in an actual scholarly publication.

U Universe of all keys
S CU Set of keys stored in the table
n=|5] Number of keys stored in the table
M Set of table positions
m = |[M| Number of table positions
a=n/m Load factor

Table 7.1: Hash table parameters

Suppose we want to store n elements from a universe U of in a table
with keys or indices drawn from an index space M of size m. Typically
we assume U = [|[U|]]={0...|U|—-1}and M = [m|={0...m — 1}.

If |[U| € m, we can just use an array. Otherwise, we can map keys to
positions in the array using a hash function h : U — M. This necessarily
produces collisions: pairs (z,y) with h(x) = h(y), and any design of a
hash table must include some mechanism for handling keys that hash to the
same place. Typically this is a secondary data structure in each bin, but
we may also place excess values in some other place. Typical choices for
data structures are linked lists (separate chaining or just chaining) or
secondary hash tables (see below). Alternatively, we can push excess
values into other positions in the same hash table (open addressing or
probing) or another hash table (see .

For all of these techniques, the cost will depend on how likely it is that
we get collisions. An adversary that knows our hash function can always
choose keys with the same hash value, but we can avoid that by choosing
our hash function randomly. Our ultimate goal is to do each search in
O(1 + n/m) expected time, which for n < m will be much better than the
O(logn) time for pointer-based data structures like balanced trees or skip
lists. The quantity n/m is called the load factor of the hash table and is
often abbreviated as a.

All of this only works if we are working in a RAM (random-access ma-
chine model), where we can access arbitrary memory locations in time O(1)
and similarly compute arithmetic operations on O(log|U|)-bit values in time
O(1). There is an argument that in reality any actual RAM machine requires
either €2(logm) time to read one of m memory locations (routing costs) or,
if one is particularly pedantic, Q(m!/3) time (speed of light + finite volume
for each location). We will ignore this argument.

We will try to be consistent in our use of variables to refer to the different
parameters of a hash table. Table [7.]] summarizes the meaning of these
variable names.

7.2 Universal hash families

A family of hash functions H is 2-universal if for any = # y, Pr [h(z) = h(y)] <
1/m for a uniform random h € H. It’s strongly 2-universal if for any
x1 # w2 € U, g1,y € M, Pr[h(z1) = y1 A h(z2) = yo] = 1/m?> for a uniform
random h € H. Another way to describe strong 2-universality is that the val-
ues of the hash function are uniformly distributed and pairwise-independent.

For k > 2, k-universal usually means strongly k-universal: Given
distinet 1 ...z, and any 1 ... yg, Pr[h(z;) = y;)Vi] = m~*. This is equiv-
alent to uniform distribution and k-wise independence. It is possible to
generalize the weak version of 2-universality to get a weak version of k-
universality (Pr [h(z;) are all equal] < m~(*=1), but this generalization is
not as useful as strong k-universality.

7.3 FKS hashing

The FKS hash table, named for Fredman, Komlés, and Szemerédi [FKS84],
is a method for storing a static set S so that we never pay more than
constant time for search (not just in expectation), while at the same time
not consuming too much space. The assumption that S is static is critical,
because FKS chooses hash functions based on the elements of S.

If we were lucky in our choice of S, we might be able to do this with
standard hashing. A perfect hash function for a set S C U is a hash
function h : U — M that is injective on S (that is, = # y — h(x) # h(y)
when z,y € S). Unfortunately, we can only count on finding a perfect hash
function if m is large:

Lemma 7.3.1. If H is 2-universal and |S| = n with n> < m, then there is
a perfect h € H for S.

Proof. We'll do the usual collision-counting argument. For all = # gy, we
have §(z,y,H) < |H|/m. So 6(S,S,H) < n(n — 1)|H|/m. The Pigeonhole
Principle says that there exists a particular h € H with §(S,5,h) < n(n —
1)/m < n?/m < 1. But §(S,S,h) is an integer, so it can only be less than
1 by being equal to 0: no collisions. |

Essentially the same argument shows that if n? < am, then

Pr[h is perfect for S] > 1 — a. This can be handy if we want to find a
perfect hash function and not just demonstrate that it exists.

Using a perfect hash function, we get O(1) search time using O(n?) space.
But we can do better by using perfect hash functions only at the second
level of our data structure, which at top level will just be an ordinary hash
table. This is the idea behind the Fredman-Komlds-Szemerédi (FKS) hash
table [FKS&4).

The short version is that we hash to n = |S| bins, then rehash perfectly
within each bin. The top-level hash table stores a pointer to a header for
each bin, which gives the size of the bin and the hash function used within
it. The i-th bin, containing n; elements, uses O(n?) space to allow perfect

To analyze universal hash families, it is helpful to have some notation
for counting collisions. We’ll mostly be doing counting rather than prob-
abilities because it saves carrying around a lot of denominators. Since we
are assuming uniform choices of h we can alway get back probabilities by
dividing by |H|.

Let 6(xz,y,h) =1 if © # y and h(z) = h(y), 0 otherwise. Abusing nota-
tion, we also define, for sets X, Y, and H, 6(X,Y,H) = ¥ c x yey hen 0(x,y, h),
with e.g. &(x,Y,h) = 6({z},Y,{h}). Now the statement that H is 2-
universal becomes Vx,y : §(z,y, H) < |H|/m; this says that only a fraction
of 1/m of the functions in H cause any particular distinct = and y to collide.

If H includes all functions U — M, we get equality: a random function
gives h(x) = h(y) with probability exactly 1/m. But we might do better if
each h tends to map distinet values to distinct places. The following lemma
shows we can’t do too much better:

Lemma 7.2.1. For any family H, there exist =,y such that 6(x,y,H) >
)
m ul-1/-

Since 1 —]%l_—_ll is likely to be very close to 1, we are happy if we get the
2-universal upper bound of |H|/m.

Why we care about this: With a 2-universal hash family, chaining using
linked lists costs O(1+ s/n) expected time per operation. The reason is that
the expected cost of an operation on some key z is proportional to the size
of the linked list at h(x) (plus O(1) for the cost of hashing itself). But the

expected size of this linked list is just the expected number of keys y in the
dictionary that collide with z, which is exactly sé(x,y, H) < s/n.

hashing. The total size is O(n) as long as we can show that 37 ; n2 = O(n).
The time to do a search is O(1) in the worst case: O(1) for the outer hash
plus O(1) for the inner hash.

Theorem 7.3.2. The FKS hash table uses O(n) space.

Proof. Suppose we choose h € H as the outer hash function, where H is
some 2-universal family of hash functions. Compute:

mn mn
doni =3 (ni+ni(ni — 1))
i=1 i=1
—n+8(S,8,h).

Since H is 2-universal, we have 4(S,S,H) < |H|s(s — 1)/n. But then
the Pigeonhole principle says there exists some h € H with 4(S,S,h) <
]%[J(S?S,H) < n(n—1)/n =n—1. This gives X" ;n? < n+(n—1) =
2n —1=0(n). O

If we want to find a good h quickly, increasing the size of the outer table
to n/a gives us a probability of at least 1 — a of getting a good one, using
essentially the same argument as for perfect hash functions.

7.4 Cuckoo hashing

Goal: Get O(1) search time in a dynamic hash table at the cost of a messy
insertion procedure. In fact, each search takes only two reads, which can be
done in parallel; this is optimal by a lower bound of Pagh [Pag01], which
shows a matching upper bound for static dictionaries. Cuckoo hashing is
an improved version of this result that allows for dynamic insertions.

Cuckoo hashing was invented by Pagh and Rodler [PR04]; the version
described here is based on a simplified version from notes of Pagh [Pag06|
(the main difference is that it uses just one table instead of the two tables—
one for each hash function—in [PR04]).

7.4.1 Structure

We have a table T of size nn, with two separate, independent hash functions h
and ha. These functions are assumed to be k-universal for some sufficiently
large value k; as long as we never look at more than &k values at once, this
means we can treat them effectively as random functions. In practice, using
crummy hash functions seems to work just fine, a common property of hash

tables. There are also specific hash functions that have been shown to work
with particular variants of cuckoo hashing [PR04, PT12]. We will avoid
these issues by assuming that our hash functions are actually random.

Every key z is stored either in T[hi(z)] or T[ha(x)]. So the search
procedure just looks at both of these locations and returns whichever one
contains = (or fails if neither contains x).

To insert a value z; = x, we must put it in T'[hq(x1)] or T'[ha(x1)]. If one
or both of these locations is empty, we put it there. Otherwise we have to
kick out some value that is in the way (this is the “cuckoo” part of cuckoo
hashing, named after the bird that leaves its eggs in other birds’ nests). We
do this by letting zo = T'[hi(x1)] and writing =1 to T[hi(z1)]. We now have
a new “nestless” value x5, which we swap with whatever is in T'[ho(z2)]. If
that location was empty, we are done; otherwise, we get a new value 3 that
we have to put in T[hi(x3)] and so on. The procedure terminates when we
find an empty spot or if enough iterations have passed that we don’t expect
to find an empty spot, in which case we rehash the entire table. This process
can be implemented succinctly as shown in Algorithm [7.1]

1 procedure insert(z)
2 if T(hi(z) = = or T'(ha(x)) = = then
3 L return

4 pos < hi(zx)

5 fori+1...ndo
6 if T[pos] = L then
7

8

9

T[pos] < =
return
x = T[pos|

10 if pos = hi(z) then
11 ‘ pos « ha(x)
12 else
13 L pos « hi(x)
14 | If we got here, rehash the table and reinsert .

Algorithm 7.1: Insertion procedure for cuckoo hashing. Adapted
from [Pag06|

A detail not included in the above code is that we always rehash (in
theory) after m? insertions; this avoids potential problems with the hash
functions used in the paper not being universal enough. We will avoid this

issue by assuming that our hash functions are actually random (instead of
being approximately n-universal with reasonably high probability). For a
more principled analysis of where the hash functions come from, see [PR04].
An alternative hash family that is known to work for a slightly different
variant of cuckoo hashing is tabulation hashing, as described in the
proof that this works is found in [PT12].

7.4.2 Analysis

The main question is how long it takes the insertion procedure to terminate,
assuming the table is not too full.

First let’s look at what happens during an insert if we have a lot of
nestless values. We have a sequence of values z1, x9, ..., where each pair of
values x;, z;11 collides in hy or hyo. Assuming we don’t reach the loop limit,
there are three main possibilities (the leaves of the tree of cases below):

1. Eventually we reach an empty position without seeing the same key
twice.

2. Eventually we see the same key twice; there is some ¢ and j > i such
that z; = ;. Since x; was already moved once, when we reach it
the second time we will try to move it back, displacing z; ;. This
process continues until we have restored zo to T'[h;(x1)], displacing z;
to T'[ha(z1)] and possibly creating a new sequence of nestless values.
Two outcomes are now possible:

(a) Some zy is moved to an empty location. We win!

(b) Some z; is moved to a location we've already looked at. We lose!
We find we are playing musical chairs with more players than
chairs, and have to rehash.

Let’s look at the probability that we get the last, closed loop case. Fol-
lowing Pagh-Rodler, we let v be the number of distinct nestless keys in the
loop. Since v includes z;, v is at least 1. We can now count how many
different ways such a loop can form.

There are at most v3 choices for i, j, and £, m?~ ! choices of cells for the
loop, and n¥~1! choices for the non-z; elements of the loop. For each non-z;
element, its initial placement may determined by either h; or hs; this gives
another 2v—1 choicesﬂ This gives a total of v3(2nm)v~! possible closed loops
starting with z; that have v distinct nodes.

“The original analysis in [PR04] avoids this by alternating between two tables, so that
we can determine which of h; or hg is used at each step by parity.

Since each particular loop allows us to determine both hy and hs for all
v of its elements, the probability that we get exactly these hash values (so
that the loop occurs) is m~2Y. Summing over all closed loops with v ele-
ments gives a total probability of v?(2nm)"~im=2" = v3(2n/m)"~tm—v"1 <
v3(2n/m)'"Im=2.

Now sumover allv > 1. Weget m™23"_ v3(2n/m)"~t < m=23 %, v3(2n/m)v~1.
The series converges if 2n/m < 1, so for any fixed o < 1/2, the probability
of any closed loop forming is O(m~2. Since the cost of hitting a closed loop
is O(n +m) = O(m), this adds only O(m™!) to the insertion complexity.

Now we look at what happens if we don’t get a closed loop. This doesn’t
force us to rehash, but if the path is long enough, we may still pay a lot to
do an insertion.

It’s a little messy to analyze the behavior of keys that appear more than
once in the sequence, so the trick used in the paper is to observe that for any
sequence of nestless keys zj ... z,, there is a subsequence of size p/3 with no
repetitions that starts with z;. This will be either the sequence S; given by
Ty ...xj_1—the sequence starting with the first place we try to insert z;—or
Sy given by 1 = z34_1...xp, the sequence starting with the second place
we try to insert x;. Between these we have a third sequence S3 where we
undo some of the moves made in S;. Because |S1|+ |S3| + [S2| > p, at least
one of thee subsequences has size p/3. But |S3| < |S1|, so it must be either
Sl or Sg.

We can then argue that the probability that we get a sequence of v
distinct keys in either S; or S most 2(n/m)”‘l (since we have to hit
a nonempty spot, with probability at most n/m, at each step, but there
are two possible starting locations), which gives an expected insertion time
bounded by ¥~ 3v(n/m)?~! = O(1), assuming n/m is bounded by a constant
less than 1. Since we already need n/m < 1/2 to avoid the bad closed-loop
case, we can use this here as well.

An annoyance with cuckoo hashing is that it has high space overhead
compared to more traditional hash tables: in order for the first part of the
analysis above to work, the table must be at least half empty. This can be
avoided at the cost of increasing the time complexity by choosing between
d locations instead of 2. This technique, due to Fotakis et al. [FPSS03], is
known as d-ary cuckoo hashing; for suitable choice of d it uses (1 + €)n
space and guarantees that a lookup takes O(1/e€) probes while insertion
takes (1/€)O(log log(1/9) steps in theory and appears to take O(1/e) steps in
experiments done by the authors.

7.5 Practical issues

For large hash tables, local probing schemes are faster, because it is likely
that all of the locations probed to find a particular value will be on the
same virtual memory page. This means that a search for a new value usu-
ally requires one cache miss instead of two. Hopscotch hashing [HSTOS|
combines ideas from linear probing and cuckoo hashing to get better perfor-
mance than both in practice.

Hash tables that depend on strong properties of the hash function may
behave badly if the user supplies a crummy hash function. For this reason,
many library implementations of hash tables are written defensively, using
algorithms that respond better in bad cases. See http://svn.python.org/
view/python/trunk/0Objects/dictobject.c for an example of a widely-
used hash table implementation chosen specifically because of its poor the-
oretical characteristics.

7.6 Bloom filters

See [MUO05, §5.5.3] for basics and a formal analysis or http://en.wikipedia.
org/wiki/Bloom_filter| for many variations and the collective wisdom of
the unwashed masses. The presentation here mostly follows [MUO05].

7.6.1 Construction

Bloom filters are a highly space-efficient randomized data structure in-
vented by Burton H. Bloom [Blo70] that store sets of data, with a small
probability that elements not in the set will be erroneously reported as be-
ing in the set.

Suppose we have k independent hash functions hq, ho, ..., hr. Our mem-
ory store A is a vector of m bits, all initially zero. To store a key z, set
Alhi(z)] = 1 for all i. To test membership for x, see if A[h;(x)] =1 for all
i. The membership test always gives the right answer if z is in fact in the
Bloom filter. If not, we might decide that z is in the Bloom filter anyway.

7.6.2 False positives

The probability of such false positives can be computed in two steps: first,
we estimate how many of the bits in the Bloom filter are set after inserting
n values, and then we use this estimate to compute a probability that any
fixed x shows up when it shouldn’t.

If the h; are close to being independent random functions[”] then with n
entries in the filter we have Pr[A[i] = 1] = 1 — (1 — 1/m)*"™, since each of
the kn bits that we set while inserting the n values has one chance in m of
hitting position i.

We'd like to simplify this using the inequality 1 + z < e* but it goes
in the wrong direction; instead, we'll use 1 —z > e_w_mz, which holds for
0 <z <0.683803 and in our application holds for m > 2. This gives

PriAlij=1<1—(1—1/m)k
< 1— e km/m)(1+1/m)

—1_ e—ka(l—l—l/m)

!

—1—e ke

where a@ = n/m is the load factor and o/ = a(1 + 1/m) is the load factor
fudged upward by a factor of 1 4 1/m to make the inequality work.

Suppose now that we check to see if some value x that we never inserted
in the Bloom filter appears to be present anyway. This occurs if A[h;(z)] =1
for all 7. Since each h;(z) is assumed to be an independent uniform probe
of A, the probability that they all come up 1 conditioned on A is

(ZAH)R:. (7.6.1)

m

We have an upper bound E [}" A[i]] < m (1 - e_k"‘!)

So let’s assume for simplicity that our false positive probability is exactly
(1 — e *)* We can choose k to minimize this quantity for fixed o/ by
doing the usual trick of taking a derivative and setting it to zero; to avoid
weirdness with the k£ in the exponent, it helps to take the logarithm first
(which doesn’t affect the location of the minimum), and it further helps to
take the derivative with respect to z = e~ instead of k itself. Note that
when we do this, k = —é In z still depends on z, and we will deal with this
by applying this substitution at an appropriate point.
®We are going sidestep the rather deep swamp of how plausible this assumption is
and what assumption we should be making instead; however, it is known [KMOS| that

starting with two sufficiently random-looking hash functions h and h’ and setting h;(x) =

h(x) + ih'(z) works.

Compute

a In ((1 — I)k) = %k’ln(l —)
d

= (—élnm) In(1—z)
_ 1 (111(1—:1:) _ Inz)

o’ T 1—=x

Setting this to zero gives (1 — z)In(1 — z) = z Inz, which by symmetry
has the unique solution z = 1/2, giving k = é In 2.

In other words, to minimize the false positi»e rate for a known load factor
a, we want to choose k = é In2 = W In 2, which makes each bit one
with probability approximately 1 — e~ "2 =
since having each bit be one or zero with equa.l probability maximizes the
entropy of the data.

The probability of a false positive is then 27% = 2-In2/d’ For a given
maximum false :Posmve rate e, &I%Cl assuming optimal choice of k, we need
to keep o/ < m or a < (l+1/]vflrl:,}%n(l/e}'

Alternatively, if we fix € and n, we need m/(1 4+ 1/m) > n - %jéﬁ
1.442n1g(1/€), which works out to m > 1.442nlg(1/€) + O(1). This is very
good for constant e.

Note that for this choice of m, we have a = O(1/In(1/¢)), giving k =
O(loglog(1/€)). So for polynomial €, we get k = O(loglogn). This means
that not only do we use little space, but we also have very fast lookups
(although not as fast as the O(1) cost of a real hash table).

2. This makes intuitive sense,

7.6.3 Comparison to optimal space

If we wanted to design a Bloom-filter-like data structure from scratch and
had no constraints on processing power, we’d be looking for something that
stored an index of size lg M into a family of subsets S1,55,...5) of our
universe of keys U, where |S;| < €|U| for each i (giving the upper bound on
the false positive rate)ﬁ and for any set A C U of size n, A C §; for at least
one S; (allowing us to store A).

Let N = |U|. Then each set S; covers (E::‘T) of the (J:) subsets of size n. If
we could get them to overlap optimally (we can’t), we’d still need a minimum
of (V) /(G,f) = (N)n/(eN), =~ (1/€)™ sets to cover everybody, where the
approximation assumes N > n. Taking the log gives lgM =~ nlg(1/e),
meaning we need about lg(1/€) bits per key for the data structure. Bloom
filters use 1/1In 2 times this.

There are known data structures that approach this bound asymptoti-
cally; see Pagh et al. [PPRO5]. These also have other desirable properties,
like supporting deletions and faster lookups if we can’t look up bits in par-
allel. As far as I know, they are not used much in practice.

7.6.4 Applications

Bloom filters are popular in networking and database systems because they
can be used as a cheap test to see if some key is actually present in a
data structure that it’s otherwise expensive to search in. Bloom filters are
particular nice in hardware implementations, since the k hash functions can
be computed in parallel.

An example is the Bloomjoin in distributed databases [ML86|. Here
we want to do a join on two tables stored on different machines (a join is an
operation where we find all pairs of rows, one in each table, that match on
some common key). A straightforward but expensive way to do this is to
send the list of keys from the smaller table across the network, then match

®Technically, this gives a weaker bound on false positives. For standard Bloom filters,
assuming random hash functions, each key individually has at most an € probability of ap-
pearing as a false positive. The hypothetical data structure we are considering here—which
is effectively deterministic—allows the set of false positives to depend directly on the set
of keys actually inserted in the data structure, so in principle the adversary could arrange
for a specific key to appear as a false positive with probability 1 by choosing appropriate
keys to insert. So this argument may underestimate the space needed to get make the
false positives less predictable. On the other hand, we aren’t charging the Bloom filter
for the space needed to store the hash functions, which could be quite a bit if they are
genuine random functions.

them against the corresponding keys from the larger table. If there are ng
rows in the smaller table, ny rows in the larger table, and j matching rows
in the larger table, this requires sending n, keys plus j rows. If instead we
send a Bloom filter representing the set of keys in the smaller table, we only
need to send lg(1/¢€)/ In 2 bits for the Bloom filter plus an extra eny rows on
average for the false positives. This can be cheaper than sending full keys
across if the number of false positives is reasonably small.

7.6.5 Counting Bloom filters

It’s not hard to modify a Bloom filter to support deletion. The hasic trick is
to replace each bit with a counter, so that whenever a value z is inserted, we
increment A[h;(z)] for all ¢ and when it is deleted, we decrement the same
locations. The search procedure now returns min; A[ki(x)] (which means
that it principle it can even report back multiplicities, though with some
probability of reporting a value that is too high). To avoid too much space
overhead, each array location is capped at some small maximum value ¢;
once it reaches this value, further increments have no effect. The resulting
structure is called a counting Bloom filter, due to Fan et al. [FCABO0].

We'd only expect this to work if our chances of hitting the cap is small.
Fan et al. observe that the probability that the m table entries include one
that is at least ¢ after » insertions is bounded by

nk) 1 enk\° 1
m — <m|—) —
c | me¢ c me
(enk)c
=m| —
cm

= m(eka/c)".

(This uses the bound () < (%)k, which follows from Stirling’s formula.)

For k = LIn2, this is m(eIn2/c)°. For the specific value of ¢ = 16
(corresponding to 4 bits per entry), they compute a bound of 1.37 x 107 1%m,
which they argue is minuscule for all reasonable values of m (it’s a systems
paper).

The possibility that a long chain of alternating insertions and deletions
might produce a false negative due to overflow is considered in the paper,
but the authors state that “the probability of such a chain of events is so
low that it is much more likely that the proxy server would be rebooted in
the meantime and the entire structure reconstructed” An alternative way
of dealing with this problem is to never decrement a maxed-out register;

this never produces a false negative, but may cause the filter to slowly fill
up with maxed-out registers, producing a higher false-positive rate.

A fancier variant of this idea is the spectral Bloom filter [CMO3],
which uses larger counters to track multiplicities of items. The essential
idea here is that we can guess that the number of times a particular value
x was inserted is equal to min™, A[h;(z)]), with some extra tinkering to
detect errors based on deviations from the typical joint distribution of the
Alh;(z)] values. A fancier version of this idea gives the count-min sketches
of the next section.

7.6.6 Count-min sketches

Count-min sketches are designed for usc in data stream computation.
In this model, we are given a huge flood of data—far too big to store—in a
single pass, and want to incrementally build a small data structure, called
a sketch, that will allow us to answer statistical questions about the data
after we’ve processed it all. The motivation is the existence of data sets that
are too large to store at all (network traffic statistics), or too large to store
in fast memory (very large databasc tables). By building a sketch we can
make one pass through the data set but answer queries after the fact, with
some loss of accuracy.

An example of a problem in this model is that we are presented with a
sequence of pairs (i¢,¢;) where 1 <4y < n is an indez and ¢; is a count, and
we want to construct a sketch that will allows us to approximately answer
statistical queries about the vector a given by a; = > jj=; ¢ The size of
the sketch should be polylogarithmic in the size of a and the length of the
stream, and polynomial in the error bounds. Updating the sketch given a
new data point should be cheap.

A solution to this problem is given by the count-min sketch of Cor-
mode and Muthukrishnan [CMO5]| (see also [MUO5| §13.4]). This gives ap-
proximations of a;, > i_ya;, and a - b (for any fixed b), and can be used for
more complex tasks like finding heavy hitters indices with high weight.
The easiest case is approximating a; when all the ¢ are non-negative, so
we’ll start with that.

7.6.6.1 Initialization and updates

To construct a count-min sketch, build a two-dimensional array ¢ with depth
d = [In(1/4)] and width w = [e/e|, where € is the error bound and § is
the probability of exceeding the error bound. Choose d independent hash

functions from some 2-universal hash family; we’ll use one of these hash
function for each row of the array. Initialize ¢ to all zeros.

The update rule: Given an update (%, ¢;), increment ¢[j, h;j(i;)] by ¢; for
j=1...d. (This is the count part of count-min.)

7.6.6.2 Queries

Let’s start with point queries. Here we want to estimate a; for some fixed
i. There are two cases, depending on whether the increments are all non-
negative, or arbitrary. In both cases we will get an estimate whose error is

linear in both the error parameter € and the £1-norm |jal|; = >7;|ai| of a.
It follows that the relative error will be low for heavy points, but we may
get a large relative error for light points (and especially large for points that
don’t appear in the data set at all).

For the non-negative case, to estimate a;, compute a; = min; ¢[j, h;()|.
(This is the min part of coin-min.) Then:

Lemma 7.6.1. When all ¢; are non-negative, for a; as defined above:
&3- 2 a;, (762)
and
Prla; < a; + ¢€a|;]>1- 4. (7.6.3)
Proof. The lower bound is easy. Since for each pair (7, ¢) we increment each
c[j, h;()] by ¢;, we have an invariant that a; < c[j, h;(é)] for all j throughout
the computation, which gives a; < G; = min; ¢[j, h;(7)].
For the upper bound, let I;;;, be the indicator for the event that (i #
E) A (hj(i) = hj(k)), i.e., that we get a collision between i and k using h;.
The 2-universality property of the hj gives E [I;jz] < 1/w < €/e.
Now let X;; = > p—1 Lijkax. Then c[j, h;(i)] = a; + X;;. (The fact that
Xi; > 0 gives an alternate proof of the lower bound.) Now use linearity of
expectation to get

E [X;J] =F Z Iijkak]
=1
= ap E]
k=1

< g ax(e/e)
~ (¢/©)llal.

So Pr[c[j, hj(i)] > a;i + €lla||;] = Pr[Xi; > eE[Xj5]] < 1/e, by Markov’s in-
equality. With d choices for j, and each h; chosen independently, the proba-
bility that every count is too big is at most (1/€)~% = e~ < exp(—1In(1/4)) =
a. [l

Now let’s consider the general case, where the increments ¢; might be
negative. We still initialize and update the data structure as described in
but now when computing a@;, we use the median count instead of
the minimum count: @; = median {¢[j, h;(7)] | j =1...n}. Now we get:

Lemma 7.6.2. For a; as defined above,
Pr[a; — 3el|all; < a; < a; + 3e|al|;] > 1 — §+/1. (7.6.4)

Proof. We again define the error term Xj;; as above, and observe that

|

E [|ij ijk Ok

n
< Z arE [Iz_',lk

”M;s I

|ﬂk| (e/e)
(e/e)l\alll

Using Markov’s inequality, we get Pr [| Xj;|] > 3¢||al|,] = Pr[|X;| > 3e E[Xj;]] <
1/3e < 1/8. In order for the median to be off by more than 3e||al|,, we need
d/2 of these low-probability events to occur. The expected number that oc-
cur is g = d/8, so applying the standard Chernoff bound with § = 3
we are looking at

Pr[S>d/2 = Pr[S > (1+3)4]
< (83/44)d/8
< (38 /2)m(1/9)
_ gn2-3/8

< ol/4

(the actual exponent is about 0.31, but 1/4 is easier to deal with). This
immediately gives (|7.6.4). U

One way to think about this is that getting an estimate within €||a||; of
the right value with probability at least 1 — 4§ requires 3 times the width and
4 times the depth—or 12 times the space and 4 times the time—when we
aren’t assuming increments are non-negative.

Next, we consider inner products. Here we want to estimate a-b, where a
and b are both stored as count-min sketches using the same hash functions.
The paper concentrates on the case where a and b are both non-negative,
which has applications in estimating the size of a join in a database. The
method is to estimate a - b as min; >’ cq[7, k| - co[J, k.

For a single j, the sum consists of both gé)od-valu_es and bad collisions; we

have 3250y cald k] - en[f, k] = 2k—y aibi + Xopsq b (p)=h;(q) @be- The sccond
term has expectation

Z Pr [hj (p) = hj(Q]] apbq S Z(E/e)apbq

p#q p#q

<D _(e/e)aphq

< (¢/e)lally[Ibll,-

As in the point-query case, we get probability at most 1/e that a single j
gives a value that is too high by more than €|al|,[|b||;, so the probability
that the minimum value is too high is at most e ¢ < 4.

7.6.6.3 Finding heavy hitters

Here we want to find the heaviest elements in the set: those indices i for
which a; exceeds ¢||al|; for some constant threshold 0 < ¢ < 1.

The easy case is when increments are non-negative (for the general case,
see the paper), and uses a method from a previous paper by Charikar et
al. [CCEC04|. Because ||al|; = Y°; ai, we know that there will be at most
1/¢ heavy hitters. But the tricky part is figuring out which elements they
are.

Instead of trying to find the elements after the fact, we extend the data
structure and update procedure to track all the heavy elements found so far
(stored in a heap), as well as [la||; = 3 ¢. When a new increment (3, c)
comes in, we first update the count-min structure and then do a point query
on a;; if a; > ¢||al|;, we insert 7 into the heap, and if not, we delete i along
with any other value whose stored point-query estimate has dropped below
threshold.

The trick here is that the threshold ¢|/a||; only increases over time (re-
member that we are assuming non-negative increments). So if some element

i is below threshold at time t, it can only go above threshold if it shows up
again, and we have a probability of at least 1 — ¢ of including it then. This
means that every heavy hitter appears in the heap with probability at least
1-4.

The total space cost for this data structure is the cost of the count-min
structure plus the cost of the heap; this last part will be O((1 + €)/¢) with
reasonably high probability, since this is the maximum number of elements
that have weight at least ¢||al|,/(1 + €), the minimum needed to get an
apparent weight of ¢||al|; even after taking into account the error in the
count-min structure.

