VI
Ramsey Theory

in a party of six people there is always a group of three who either all know each
other or are all strangers to each other, If the edges of the complete graph on
an infinite set N are coloured red or blue then for some infinite set M C N all
the edges joining vertices of M get the same colour. Both of these assertions arc
special cases of a theorem published by Ramsey in 1930. The original theorems of
Ramsey have been extended in many directions, resulting in what has come to be
called Ramsey theory: a rich theory expressing the deep mathematical principle,
vastly extending the pigeon-hole principle, that no matter how we partition the
objects of a ‘large” structure into a ‘few’ classes, one of these classes contains
a ‘large’ subsystem. While Dirichlet’s pigeon-hole principie guarantees that we
have ‘'many’ objects in the same class, without any condition on their relationship
to each other, in Ramsey theory we look for a large substructure in the same class:
we do not only want infinitely many red edges, say, but we want all the edges
joining vertices of an infinite set to be red. Or, in the first example, we do not only
want three pairs of acquaintances, but we want these three acquaintances to ‘form
a triangle’, to be the three pairs of acquaintances belonging to three people.

The quintessential result of Ramsey theory dealing with richer mathematical
structures than graphs is van der Waerden’s theorem, predating the theorems of
Ramsey, which states that given k and p, if W is a large enough integer and we
partition the set of the first W natural numbers into k classes, then one of the
classes contains an arithmetic progression with p terms.

Ramsey theory is a large and beautiful area of combinatorics, in which a great
variety of techniques are used from many branches of mathematics, and whose
results are important not only in graph theory and combinatorics, but in set theory,
logic, analysis, algebra, and geometry as well. In order 10 demonstrate this, we
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shall go well beyond graph theory to present several striking and deep resuits, in-
cluding the Erdés—Rado canonical theorem, extending Ramsey’s ortginal theorem
to infinitely many colours; Shelah’s theorem, extending the Hales-Jewett theorem
(which itself extends van der Waerden’s theorem); and the theorems of Galvin,
Prikry, and Hindman about Ramsey properties of infinite sequences. Nevertheless,
we shall hardly do more than scratch the surface of modern Ramsey theory.

VI.1 The Fundamental Ramsey Theorems

We shall consider partitions of the edges of graphs and hypergraphs. For the sake
of convenience a partition will be called a colouring, but one should bear in mind
that a colouring in this sense has nothing to do with the edge colourings considered
in Chapter V. Adjacent edges may have the same colour and, indeed, our aim is
to show that there are large subgraphs all of whose edges have the same colour.
In a 2-colouring we shall often choose red and blue as colours; a subgraph is red
(blue) if all its edges are red (blue).

As we shall see, given a natural number s, there 1s an integer R(s) such that
if n > R(s) then every colouring of the edges of K, with red and blue contains
either a red K; or a blue K. The assertion about a party of six people claims
precisely that R(3) = 6 will do. In order to show the existence of R{s) in general,
for any 5 and 1, we define the Ramsey number R(s, t) as the smallest value of n for
which every red-blue colouring of K, yields a red X or a blue X,. In particular,
R(s, 1t} = oo if there is no such n such that in every red-blue colouring of X,
there is ared K, or a blue X,. It is obvious that

R(s, ) = Rz, 5)
for every s, ¢t > 2 and
R(s, 2) = R(2, s) =5,

since in a red-blue colouring of K> either there is a blue edge or else every edge is
red. The following result, due to ErdSs and Szekeres, states that R(s, ¢) is finite
for every s and ¢, and at the same time it gives a bound on R(s, 7). Although
qualitatively it is a special case of Ramsey’s original theorem, the bound it gives
is considerably better than that given by Ramsey.

Theorem 1 The function R(s,?) is finite for all 5, 1 .3 2.Ifs > 2andt > 2 then

_ R, ) <SR- 1, )+ R(s,1—1) (1)
and
RGs, 1) < ("’“ “2)‘ @)
s—1

Proof. As we shall prove (1) and (2), it will follow that R(s, ) is finite.
(i) When proving (1) we may assume that R(s — 1, ¢) and R(s, 7 - |) are finite,
Letn = R(s — 1, t) + R(s, r — 1) and consider a colouring of the edges of K,
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with red and blue. We have to show that in this colouring there is either a red
K; or a blue X,. To this end, let x be a vertex of K,,. Since d{(x) = n—1 =
R(s — 1, 1)+ R(s, ¢t ~ 1) — 1, either there are at least n; = R(s — 1, ¢) red edges
incident with x or there are at least n; = R(s, ¢t — 1) blue edges incident with x.
By symmetry we may assume that the first case holds. Consider a subgraph Ky,
of K. spanned by n| vertices joined to x by red edges. If K,, has a blue K, we
are done. Otherwise, by the definition of R(s — 1, ), the graph K, contains a red
K1 which forms a red K; with x.

(11) Inequality (2) holds if s = 2 or ¢t = 2 (in fact, we have equality since
R(s, 2) = R(2, 5) = 5). Assume now thats > 2, t > 2 and (2) holds for every
pair (s, ') with 2 < 5" + ¢/ < 5 + ¢. Then by (1) we have

Ris, ) <R(s~1, 1)+ R(s, t—1)
5(S+I"3)+(s+r_3)=(:+‘_2). .
§—2 s—1 s—1

It is customary to distinguish diagonal Ramsey numbers R(s) = R(s, s) and
off-diagonal Ramsey numbers R(s, t), s # t. It is not surprising that the diagonal
Ramsey numbers are of greatest interest, and they are also the hardest to estimate.
Re calling that a graph is trivial if it is either complete or empty, the diagonal
Ramsey number R(s) is the minimal integer n such that every graph of order n
has a trivial subgraph of order s.

We see from Theorem 1 that

(3)

2s — 2) u=2
<
s—1/]

R(s)s( 7

Although the proof above is very simple, the bound (3) was hardly improved for
over 50 years. The best improvement is due to Thomason, who in 1988 proved
that

221‘
R(s) =< 'y (4)

if 5 is Targe. Although the improvement over (3) is small, this is a hard resuit,
and we shall not prove it. In Chapter VII we shall show that R(s) does grow
exponentially: R(s) > 2%/2. It is widely believed that there is a constant ¢, perhaps

even ¢ = 1, such that
R‘(.TJ P 2(C+OUDS‘

but this is very far from being proved.

The result easily extends to colourings with any finite number of colours: given
k and s1,52. ..., 5, if n is sufficiently large, then every colouring of K, with
k colours is such that for some i, 1 < i < k, there is a K, coloured with the
i th colour. {The minimal value of # for which this holds is usually denoted by
Ry (51, - .., 5).) Indeed, if we know this for & — 1 colours, then in a k-colouning
of K, we replace the first two colours by a new colour. If n is sufficiently large
(dependingon sy, 52, . . ., 5 ) then either there is a K, coloured with the / th colour
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forsome i, 3 <i < k, orelse form = R{sy, 53) there is a K, coloured with the
new celour. In other words, in the original colouring this X, is coloured with the
first two (original) colours. In the first case we are home, and in the second, for
i = 1or2wecan find a K;; tn K,y coloured with the i th colour. This shows that

Re(si, ..., 5%) < R 1(R(5,52), 53, ..., %)

In fact, Theorem | also extends (o hypergraphs, that is, to colourings of the set
X of all r-tuples of a finite set X with & colours. This is one of the theorems
proved by Ramsey. We now turn our attention to this.

Denote by R (s, ¢) the minimal value of  for which every red—blue colouring
of X yields a red s-set or a blue ¢-set, provided that {X| = n. Of course, a set
Y C X is called red (blue) if every element of Y) is red (blue). Note that
R(s, t) = R@(s, 1). As in the case of Theorem 1, the next result not only
guarantees that RU}(s, ¢) is finite for all values of the parameters (which is
certainly not at all obvious at first), but also gives an upper bound on R(s, 7).
The proof i1s an almost exact replica of the proof of Theorem 1. Note that if
r > min{s, t} then R (s, 1) = min{s, ¢}, and if r = 5 < t then RV(s, 1) =1,

Theorem 2 Let | < r < min{s, t}. Then R")(s, 1) is finite and
RO, 1) < RV (RO (s =1, 1), RO(s, 1 - 1)) 31,

Proof. Both assertions follow immediately if we prove the inequality under the
assumption that R~V (x, v) is finite for all «, v, and both R)(s — 1, ¢) and
R (s, t — 1) are also finite.

Let X be aset with RV-D(RM) (s — 1, 1), R (s, £ — 1)) + 1 elements. Given
any red—blue colouring ¢ of X", pick an x € X and define a red-blue colouring
¢’ of the (r — I)-sets of ¥ = X — {x} by colouring 0 € Y“~U the colour of
o U{x} € X By the definition of the function R“~V(u, v) we may assume
that Y has a red subset Z (for ¢’} with R} (s — 1, ¢) elements.

Now let us look at the restriction of ¢ to Z{), If it has a blue f-set, we are done,
since ZU} ¢ X, s0 a blue #-set of Z is certainly also a blue z-set of X. On the
other hand, if there is no blue r-set of Z then there is ared (5 — 1}-set. The union
of this red (5 - 1)-set with [x)} is then a red s-set of X, because {x} U o is red for
everyo € 21, 0

It is easily seen that Theorem 2 and the colour-grouping argument described
after Theorem 1 imply the following assertion. Given r and 5y, 53, . . ., 5, then for
large enough | X| every colouring of X" with k colours is such that for some #,
| <i <k thereisasetS; C X, |S;] = s, all of whose r-sets have colour i. The
smallest value of | X| for which this is true 1s denoted by Rf) (51,52, ..., 5); thus

RUNs, 1) = R.J_(,'}(s, 1) and Ri(51,%52,...,5%) = Rf}(sl.sz. ..+, 5k ). The upper

bound for Ré'} (51, 52, ..., 5¢) implied (via colour-grouping) by Theorem 2 is not
very good. Imitating the proof of Theorem 1 one arrives at a better upper bound
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(cf. Exercise 8):

Rf)(.l‘],n, TS B R};r—n(RE)(J] — 1,52, . s Sk)seens

Rj((r}(slr vess Sk—1, 5k — 1)) + 1.

Very few of the nontrivial Ramsey numbers are known, even in the case r =
2. It is easily seen that R(3, 3) = 6, and with some work one can show that
R(3,4) =9, R3,5 =14, R3,6)= 18, R(3, 7) = 23 and R(4, 4) = 18.
Considerably morc effort is needed to prove that R(3, 8) = 28 and R(3, 9) = 36.
Furthermore, McKay and Radziszowski proved in 1995 that R(4, 5) = 25. These
are the only known two-colour Ramsey numbers. For the other ones, all that is
known are bounds, as shown in Tahle V1. 1. The proofs of many of these bounds
needed a surprising amount of ingenuity, work and computing time.

At first sight, the paucity of exact Ramsey numbers may well seem surprising.
However, there are many reasons why it 1s unlikely that a large Ramsey number,
like R(6,6), will ever be determined. The two-colourings of K, without large
monochromatic complete subgraphs lack order: they look as if they had been
chosen at random. This apparent disorder makes it highly unlikely that a simple
induction argument will give a tight upper bound for R(s, t). On the other hand,
a head-on attack by computers is also doomed to failure, even for R(5, 5). For
example, if all we want to prove is that 48 is an upper bound for R(S5, 5), we
have to examine over 2% graphs of order 48: a task well beyond the power of
computers.

It is not too easy to prove general lower bounds for Ramsey numbers either. As
the colourings without large complete monochromatic subgraphs are ‘disorderly’,
it is not surprising that random methods can be used to give fairly good lower
bounds. In Chapter VII we shall show some beautiful examples of this.

As it is very difficult to find good estimates for R(s, f) as 5,1 — 00, it is not
surprising that very few fast-growing Ramsey functions have been determined
exactly. In fact, Erdés and Szekeres proved that the right-hand side of (2) is
exactly 1 smaller than the value of a natural Ramsey function. In order to present
this result, we introduce some terminology. Call a sct § ¢ R? non-degenerate if
any two points of it have different x coordinates. A k-cup, or a convex k-set, is a

non-degenerate set of & points of the form {(x;, A(x;}) : i = 1,..., %}, where h
is a convex function. Writing s(p, p’) = (y — ¥)/(x — x’) for the slope of the
line through the points p = (x,y) and p' = (X', '), if K = {p;,.... px} with

pi = (xi, yih X1 < - < xy, then K isak-cupiff s(pr, p2) <s(p2,. p3) <+ <
s(px—1. px). An £-cap, or a concave {-set, is defined analogously.

Here is then the beautiful result of ErdGs and Szekeres about x-cups and £-caps.
The first part was published in 19335, the second in 1960.

Theorem 3 Fork, £ > 2, every non-degenerate set of (kﬁ?) =+ | points contains

a k-cup or an €-cap. Also, for all k, £ > 2, there is a non-degenerate set Sy ¢ of

(kﬁ?‘) points that contains neither a k-cup nor an £-cap.
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Proof. Let us wnte ¢ (k, £) for the binomial coefficient k':f';).

(1) We shall prove by induction on k + £ that every non-degenerate set of
Pk, £) + I poinis contains a k-cup or an £-cap. Since a non-degenerate set
of 2 points is both a 2-cup and a 2-cap, this is clear if min{k, £} = 2, since
Pk, 2) = ¢(2,¢€) = 1forallk, £ > 2. Suppose thenthatk, £ > 3 and the assertion
holds for smaller values of k+£. Let § be anon-degenerateset of ¢ (k, £)-+1 points
and suppose that, contrary to the assertion, S contains neither a k-cup nor an £-cap.
Let L C S be the set of last points of (kK — 1)-cups. Then S\ L has neithera (k — 1)-
cup nor an £-cap so, by the induction hypothesis, |S\L| < ¢k — 1, £). Therefore
|L] > ¢k, &)+ | — p(k — 1,£) = ¢p(k, £ — 1) + | s0, again by the induction
hypothesis, L contains an (£ — [)-cap, say {q1, ..., ge—_1}, with first point our set

Scontains g). Since gy € L,a(k—1)-cup{pi, ..., pi—1 ), whose last point, p;_1,
is precisely q1. Now, if s{px-2, pi—1) < s(pe-1,42) then {py, ..., pi-1. g2} is
a k-cup. Otherwise, s{px—12,41) > s{(q1,92), 50 {pi—2,41t, ..., qe—| 1S an £-cup.

This contradiction completes the proof of the induction step, and we are done,

(11) We shall construct S ¢ also be induction on £ + £. In fact, we shall construct
Se.einthe form {(i,y;): 1 <1 < ¢(k, £)}.

If min{k, £} = 2 then ¢(k, £) = | and we may take S; ; = {{l, })}. Suppose
then that k, £ > 3 and we have constructed Sy ; for smaller values of & + £.
Set Y = Sg~1¢. £ = Sgt-1.m =Pk~ 1,€) and n = ¢k, € — 1), so that
Y = {(i,y) : 1 £i £ m)} contains neither a (kK — 1)-cup nor an £-cap, and
Z = {(i, z;) : 1 £i < n} contains neither a k-cup nor an (¢ — 1)-cup.

Fore > 0,set YO = {({,ey)): 1 <i <m)and Z¥ = ((m + i, m + e2;);
1 £i £ n}. Now, if & > 0 is small enough then every line through twe points of
Y'®) goes below the entire set Z{*7, and every line through two points of Z* goes
above the entire set ¥¢). Hence, in this case, every cup meeting Z® in at least
two points is entirely in Z, and every cup meeting Y in at least two points is
entirely in Y@ But then Y& U Z©) will do for Sk ¢z since it continues neither a
k-cup nor an £-cup. &

As an easy consequence of Theorem 3, we see that every set of 2:__24 )+ 1
points in the plane in general position contains the vertices of some convex &-
gon. In 1935, Erdés and Szekeres conjectured that, in fact, every set of 2872 + |
points in general position contains a convex k-gon. [t does not seem likely that
the conjecture will be proved in the near future, but it is known that, if true, the
conjecture is best possible (see Exercise 23).

After this brief diversion, let us return to hypergraphs. Theorem 2 implies that
every red—blue colouring of the r-tuples of the natural numbers contains arbitrarily
large monochromatic subsets; a subset is monochromatic if its r-tuples have the
same colour. Ramsey proved that, in fact, we can find an infinite monochromatic
set.

Theorem 4 Let | <r < ooand letc : AT — [k] = {1,2,...,k} be a k-
colouring of the r-tuples of an infinite set A. Then A contains a monochromatic
infinite set.
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TABLE VI.1. Some values and bounds for two colour Ramsey numbers.

Proof We apply induction on r. Note that the result is trivial for r = 1, s¢ we
may assume that r > | and the theorem holds for smaller values of r.

Put Ag = A and pick an element x; € Ap. As in the proof of Theorem 2,
define a a colouring ¢ : B{r“” — [k] of the (r — 1)-tuples of B; = Ag — {x;}
by putting ¢(z) = c(r U {x1}), T € B]("”. By the induction hypothesis B
contains an infinite set A all of whose (r — 1)-tuples have the same colour, say
d;, where dy € {1,...,k}. Let now x7 € Ay, B3 = Aj — {x2} and define a
k-colouring ¢3 : B;”U —» [k] by putting c2(r) = c(r U {x2}). T € Bg_l). Then
B, has an infinite set Ay all of whose (r — 1)-tuples have the same colour, say
d>. Continuing in this way we obtain an infinite sequence of elements: x, x2, .. .,
an infinite sequence of colours: d(,ds, ..., and an infinite nested sequence of
sets: Ag D Ay D A3 D --,suchthatx; € A;_(,and fori = 0,1,..., all -
tuples whose only element outside A; is x; have the same colour d;. The infinite

sequence {d,){° must take at least one of the  values 1, 2, ..., k infinitely often,
say d = dn—{ = ds, = . ... Then, by the construction, each r-tuple of the infinite
set [X,,, Xpny, . ..} has colour d. O

In some cases it is more convenient to apply the following version of Theorem 4.
As usual, the set of natural numbers is denoted by N.

Theorem 5 For eachr € N, colour the set N of r-tuples of N with k, colours,
where k, € N, Then there is an infinite set M C N such that for every r any two
r-tuples of M have the same colour, provided their minimal elements are not less

than the r'™ element of M.

Proof. Put Mp = N. Having chosen infinite sets My D --- D M,_,, let M, be
an infinite subset of M, such that all the r-tuples of M, have the same colour.
This way we obtain an infinite nested scquence of infinite sets: Mg D My D .-,
Pick aj € My, a2 € My - (1,....ay}, a3 € M3 — {l,..., a3}, etc. Clearly,
M = {ay, az, ...} has the required properties. 1
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It is interesting to note that Ramsey’s thcorem for infinite sets, Theorem 3,
easily implies the corresponding result for finite sets, although it fails to give
hounds on the numbers R (51, 52, . .., 5¢). To sce this, all one needs is a simple
compactness argument, a special case of Tychonov’s theorem that the product of

compact spaces Is compacl.
We have already formulated this (see Exercise I11.30) but here we spell it out

again in a convenient form.

Theorem 6 Let r and k be natural numbers, and for every n > |, let C, be
a non-empty set of k-colourings of in}'") such that if n < m and cm € Cn
then the restriction ¢ of cm 10 (1] belongs to Cp. Then there is a colouring
¢ N s (k] such that, for every n, the restriction ¢ of ¢ 1o [n]") belongs to
Ch-

Proof. For m > n, write Cp,» for the set of colourings [n]") — |k] that
are restrictions of colourings in Cpm. Then Cpmyy C Cam C Cp and so
C, = Mirwns1 Cnm # @ for every n, since each Cypm is finite. Let ¢, € &,
and pick ¢,41 € Crils Cra3 € 3,+2, and so on, such that each is in the preimage
of the previous one: ¢, = ,E':_)] . Finally, define ¢ : N) — (k] by setting, for

p € NO,
c(p) = ¢alp) = ns1(p) = - -,
where n = max p. This colouring ¢ is as required. 0O

[Let us see then that Theorem 5 implies that R® (51,57, ..., 5k) exists, Indeed,
otherwise for every n there is a colouring [n)*? — [k] such that, for each i, there
is no s;-set all of whose r-sets have colour i. Writing C, for the set of all such
colourings, we see that C, % @ and C, n C C, forall n < m, where C, y; 1s as
in the proof of Theorem 5. But then there is a colouring ¢ : N — (4] such
that every monochromatic set has fewer than s = maxs; elements, contradicting

Theorem 4.
To conclude this section, we point out a fascinating phenomenon. First, let us

see an extension of the fact that R,{t') (81, ..., 5%) EXISts.

Theorem7 Letr, k ands > 2. If n is sufficiently large then for every k-colouring
of [n]'") there is a monochromatic set S C [n] such that

|§] > max{s, min S}.

Proof. Suppose that there is no such n, that is, for every » there is a colouring
[n]®) — [k] without an appropriate monochromatic set. Let C, be the set of all
such colourings. Then C, # B and, in the earlier notation, Cp m C C, foralin < m,
But then there is a colouring ¢ : N> — [k} such that its restriction " 1o [n]\"?
belongs to C,;. Now, by Theorem 4, there is an infinite monochromatic set M C N.
Set m = min M, f = max{m, s}, and let S consist of the first 7 elements of M.
Then, with n = max S, the colouring ¢ does have an appropriate monochromatic
set, namely $, contradicting ¢ € C,. 1]
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This is a beautiful result but it 1s not 100 unexpected. What is surprising and
deep is that, as proved by Paris and Harrington in 1977, although Theorem 8
is a (fairly simple) assertion concerning finite sets, it cannot be deduced from
the Peano axioms, that is, it cannot be proved within the theory of finile sets.
In other words, we actually need the notion of a finite set to prove Theorem 7.
This theorem of Paris and Harrington became the starting point of an active area
connecting combinatorics and logic.

As this is a book on graph theory, we cannot digress toe far into logic, so let
us return to graphs. Let R*(5) be the minimal integer n such that for every two-
colouring of [n]® there is a monochromatic set § C {n] with |S| > max{s, |5]}.
Thus R*(s) is the minimal value of # such that for every graph G with vertex set
|n] there is a set § C [n] with S| = max{s, [S[} such that G[S] is trivial, that is,
either complete or empty. We know from Theorem 7 that R*(s) exists. Clearly,
R*(s} = R(s) but, not surprisingly, R*(s) is of a greater order of magnitude
than R(s): it turns out that there are positive constants ¢ and d such that 22° <

R*(s) <« 22".

VI.2 Canonical Ramsey Theorems

Can anything significant be said about colourings of N with infinitely many
colours? Can we guarantee that there i1s an infinite set M C N such that on
M) our colouring is particularly ‘nice’? In 1950, ErdSs and Rado proved that,
unexpectedly, this is precisely the case.

In what follows, M, N, M, N1, ... denote countable infinite sets, and 7, 5, . ..
are natural numbers.

We call two colourings g : Nf'} — Crandcy . N;” — C; equivalent if there
is a 1-to-1 map ¢ of Ny onto N7 such thatfor p, p’ € NI(') we have ¢;(p) = c1(p")
if and only if c2(¢ (p)) = c2(@(p")).

In an ideal world, for every colouring of N} (with any number of colours)
there would be an infinite set M C N on which the colouring is equivalent to one
of finitely many colourings. Surprisingly, even more is true.

Call a colouring ¢ : N — C irreducibie if for every infinite subset Ny of
N, the restriction of ¢ 10 Nl(') is equivalent to ¢. Also, call a set C of colourings
N{) — N unavoidable if for every colouring ¢ of N7 there is an infinite set
M ¢ N such that the restriction of ¢ to M‘" is equivalent to a member of C. Erds
and Rado proved that for every r there is a finite unavoidable family of irreducible
colourings.

What are examples of irreducible colourings of N?? Two constructions spring
to mind: a monochromatic colouring, in which all r-sets get the same colour,
and an all-distinct colouring, in which no two sets get the same colour. After a
moment’s thought, we ¢an construct more irreducible colourings. Given ¥ C N,
o=1{ay,--,a)eN a <...<a,andSClrl=|1,...,r}, IS =5, set
ws == {a; : i € S}. Define the S-canonical colouring cs : N) — N9, by setting



