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Building Block Hypothesis

Recall “Royal Roads” problem from September 21 class

Definition
Building blocks are short groups of alleles that tend to
endow chromosomes with higher fitness and are close to each
other on the chromosome

Theorem (Building Block Hypothesis)

Crossover benefits a GA by combining ever-larger
hierarchical assemblages of building blocks.

Small BBs combine to create larger BB combinations,
hopefully with high fitness. This is done in parallel.
Recall that Random Mutation Hill Climber beat GA.
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Questions

1 What laws describe the macroscopic behavior of GAs?
2 What predictions can be made about change in fitness

over time?
3 How do selection, xover, and mutation affect this?
4 What performance criteria are appropriate for GAs?
5 When will a GA outperform hill climbers?

For simplicity assume a population of binary strings with
one-point crossover and bit mutation.
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Schema

Definition
A schema is a string s from the alphabet {0, 1, ∗}

s defines a hyperplane H = {t | ti = si or si = ∗}, also called
a schema. H consists of length-l bit strings in the search
space matching the s template
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Idealized GA

On Royal Roads, IGA keeps one string with the best parts
of all schemata and crosses it with new schema strings as
they are found. It has indep. sampling in each schema

The IGA assumes prior knowledge of all schemata, which is
not realistic. IGA works in parallel among schemata.

For N blocks of K ones each, IGA expected time is
O(2K lnN) whereas RMHC is O(2KN lnN), proving GAs
can beat RMHC. This is because doesn’t need to do
function evaluation, and IGA has no hitchhiking

GAs which approximate IGA can beat RMHC. They need:
1 Independent samples and slow convergence
2 Sequestering desired schemata
3 Fast xover with sequestered schemata
4 Large N so the factor in speed matters
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Schema Theorem Idea

GAs should identify, test, and incorporate structural
properties hypothesized to give better performance

Schema formalize these structural properties
We can’t see schemata in population, only strings

Definition
The fitness of H is the average fitness of all strings in H.

Estimate this with chromosomes in population matching s

Want: higher fitness schema get more chances to reproduce
and GA balances exploration vs. exploitation
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Two-Armed Bandit

How much sampling should above-average schemata get?

On-line performance criterion: payoff at every trial
counts in final evaluation. Need to find best option while
maximizing overall payoff.

Gambler has N coins and a 2-armed slot machine with arm
A1 giving mean payoff µ1 with variance σ2

1, and same for A2

Payoff processes are stationary and independent.

What strategy maximizes total payoff for µ1 ≥ µ2?

Al(N,n) is arm with lower observed payoff (n trials)

Ah(N,N − n) has higher observed payoff (N − n trials)
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Two-Armed Bandit Solution

q = Pr(Al(N,n) = A1), L(N − n, n) = losses over N trials

L(N − n, n) = q · (N − n) · (µ1 − µ2) + (1− q) · n · (µ1 − µ2)
(Probability of case) * (number of runs) * (payoff of case)

Maximize: dL
dn = (µ1 − µ2)

(
1− 2q + (N − 2n) dqdn

)
= 0

S = Σ(payoffs of A1-trials), T = Σ(payoffs of A2-trials)

q = P
(
S
n <

T
N−n

)
Central Limit Theorem/Theory of Large Derivations:

n∗ ≈ c1 ln
(

c2N2

ln(c3N2)

)
⇒ N − n∗ ≈ ecn∗

Do exponentially many more trials on current best arm
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Two-Armed Bandit Interpretation

Similarly, schema theorem says instances of H in pop grow
exponentially for high fitness, low length schemata H.

Direct analogy (GA schema are arms) fails because schema
are not independent. Fix by partitioning search space into
2k competing schema and running 2k-armed bandit.

Best observed schema within a partition gets exponentially
more samples than the next best.

Need uniform distribution of fitnesses for this argument.

Biases introduced by selection mean static average fitness
need not be correlated with observed average fitness.

Solution generalizes for 2k-armed bandit
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Hyperplane Partitions via Hashing

Fitness vs. one variable as a K = 4-bit number
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Order and Defining Length

Definition
The order of a schema s is o(s) = o(H) = the number of
fixed positions (non-∗) in s.

Definition
The defining length of a schema H is d(H) = distance
between the first and last fixed positions. Number of places
where 1-point xover can distrupt s.

O(10 ∗ ∗0) = 3, d(1 ∗ ∗0 ∗ 1) = 5, d(∗1 ∗ 00) = 3

A schema H matches 2l−o(H) strings.
A string of length l is an instance of 2l different schemata.

e.g. 11 is instance of ∗∗, ∗1, 1∗, 11
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Extended Example

Problem encoded with 3 bits has search space of size 8.
Think of this as a cube:

Corners - order 3, edges - order 2, faces - order 1
Hence the term “Hyperplane”
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Implicit Parallelism

Not every subset of length l-bit strings can be described as a
schema: only 3l possible schemata

but 2l strings of length l ⇒ 22l
subsets of strings

Pop. of n strings has instances of between 2l and n · 2l diff.
schemata. Each string gives info. on all schemata it matches.

Implicit parallelism: When GA evaluates fitness of pop.
it implicitly evaluates fitness of many schema,

i.e. many hyperplanes are sampled and evaluated in an
implicitly parallel fashion. We have parallelized our search
of solution space.
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Implicit Parallelism

Proposition (Implicit Parallelism)

A pop. of size n can process O(n3) schemata per generation.

i.e. these schemata are not disrupted by xover and
mutation. Holds whenever 64 ≤ n ≤ 220 and l ≥ 64

φ = number of instances needed to process H. θ = highest
order H-string in pop. Number of schema of order θ is
2θ ·

(
l
θ

)
≥ n3 because θ = log(n/φ) and n = 2θφ

Note that small d(H) schema are less likely to be disrupted
by xover. A compact representation keeps alleles/loci
together.

Sc(H) = P (H survives under xover)
Sm(H) = P (H survives under mutation)
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Basic Schema Theorem

Assume fitness-proportional selection.
f̄(t) = average fitness of population at time t.
Expected number of offspring of string x is f(x)/f̄(t)

m(H, t) = the number of instances of H at time t

û(H, t) =
∑

x∈H f(x)

m(H,t) = observed ave. fitness at time t

Ignoring the effects of crossover and mutation:

E(m(H, t+ 1)) =
∑
x∈H

f(x)
f(t)

=
û(H, t)m(H, t)

f̄(t)

If û(H, t) = f̄(t)(1 + c) then m(H, t) = m(H, 0)(1 + c)t

That is, above-average schemata grow exponentially
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Factoring in xover and mutation

Each of the o(H) fixed bits changes with probability pm,
All stay unchanged with probability Sm(H) = (1− pm)o(H)

To get a lower bound on P (H destroyed by xover), assume
xover within d(H) is always disruptive.
P (H destroyed) ≤ P (xover occurs within d(H)) = pc

(
d(H)
l−1

)
Thus, ignoring xover gains: Sc(H) ≥ 1− pc

(
d(H)
l−1

)
xover’s reproduction helps schemata with higher fitness
values. Both xover and mutation can create new instances of
schema but it’s unlikely. Both hurt long schemata more
than short. Mutation gives diversity insurance

Inequalities assume independence of mutation b/t bits.
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Schema Theorem

Theorem (Schema Theorem)

E(m(H, t+ 1)) ≥ û(H,t)

f̄(t)
m(H, t)

(
1− pc d(H)

l−1

)
(1− pm)o(H)

i.e. short, low-order schemata with above average fitness
(building blocks) will have exponentially many instances
evaluated. Theorem doesn’t state how schema found

Parallels the Breeders Equation from quantitative genetics:
R = sh where R is the response to selection, s is the
selection coefficient, and h is the heritability coefficient

Classical Version of Schema Theorem (less accurate):
E(m(H, t+ 1)) ≥ û(H,t)

f̄(t)
m(H, t)

(
1− pc d(H)

l−1 − pm · o(H)
)

Comes from Sm(H) ≥ (1− o(H)pm) when pm << 1
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BBH Revisited

BBH states that good GAs combine building blocks to form
better solutions. BBH is unproven and criticized because it
lacks theoretical justification. Evidence against:

1 Uniform outperformed one-point in Syswerda, but is
very distruptive of short schemata.

2 Royal Roads
3 BBH is logically equivalent to some STRONG things

Some citing BBH are really assuming SBBH (Static BBH):
Given any schema partition, a GA is expected to converge
to the class with the best static average fitness

SBBH fails after convergence makes schemata samples not
uniform (collateral convergence). It also fails when static
average fitness has high variance.
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Principle of Minimal Alphabets

Holland argued for the optimality of binary encoding, using
schema theory.

Implicit parallelism suggests we should try to maximize the
number of schemata processed simultaneously

The number of possible schemata for alphabet A is |A+ 1|l
Maximized when l is maximized. Amount of information
needing to be stored is fixed, so l maximized when |A|
minimized

The smallest possible value of |A| is 2, i.e. binary encoding

Counter-argument says |A| > 2 gives MORE hyperplane
partitions, but independence may be lost. Issue is still
unresolved.
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Deception!

Deception occurs when low-order partitions contain
misleading information about higher-order partitions.
e.g. strings of length < L are winners iff they are all 1’s but
only the all 0 string is a winner of length L.

Fully deceptive: average schemata fitness indicate
complement of global optimum is global optimum
Study of deception is concerned with function optimization

One solution if you have prior knowledge of the fitness
function is to avoid deception via the encoding.

Some say deception is not a problem because the GA is a
satisficer so it’ll maximize cumulative payout regardless of
deception or hidden fitness peaks

Examples show deception is neither necessary nor sufficient
to cause GA difficulties
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Is any of this useful?

Schema Theorem (ST) deals with expectation only and gives
only a lower bound. P - problem, F - fix

P: Lower bound means it’s impossible to use ST recursively
to predict behavior over multiple generations

P: We can’t say one presentation is better than another
F: Formulate Exact ST (EST) as on the coming slides. This
gives one criteria for comparing performance

P: ST fails in the presence of noise/stochastic effects.

F: Poli reinterpreted EST as a conditional statement about
random variables (Conditional ST = CST) which estimates
the expected proportion of a schema.
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Schema Theorems without Expectation

α = P (H survives or is created after variation),
k > 0 any constant, µ = nα, σ2 = nα(1− α)

Theorem (Two-sided probabilistic Schema Theorem)

P (|m(H, t+ 1)− nα| ≤ k
√
nα(1− α)) ≥ 1− 1/k2

This is Chebychev’s Inequality: P (|X − µ| < kσ) ≥ 1− 1/k2

Theorem (Probabilistic Schema Theorem)

P (m(H, t+ 1) > nα− k
√
nα(1− α)) ≥ 1− 1/k2

This theorem lets you predict the past from the future.
Also, discovering one bit of the solution per generation lets
us recursively apply CST to find conditions on the inital
population under which the GA will converge
This assumes we know BBs and fitnesses in pop.
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Is any of this useful?

P: ST assumed bit-string representation, 1-pt xover, etc
F: MANY papers generalize ST and EST to other GAs,
context-free grammars, and GP (many versions)

P: EST expresses E(m(H, t+ 1)) as a function of
microscopic quantities (properties of individuals) rather
than macroscopic quantities (properties of schemata).

F: Riccardo Poli reformulated EST to fix this

Schema Theory gives a theoretical basis for why GAs work,
tells us about GA convergence, and applies to EC broadly

EST needs infinite population for true accuracy, but
approximations to finite populations exist.
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Exact Model

Assume FPS, bit mutation, and 1-pt xover creating only one
child per generation. So n recombinations needed per gen.

pi(t) = proportion of pop. in gen. t matching string i.
si(t) = prob. that an instance of string i will be selected as
a parent. In generation t, p(t) is composition of pop. and
s(t) is selection probabilities

We define an operator G s.t. Gs(t) = s(t+ 1) = Gt+1s(0)
Fitness matrix F = diagonal matrix with Fi,i = f(i)
M covers xover and mutation, with Mi,j = ri,j(0)
ri,j(k) = P (k produced from recombination of i and j)

From M define T to cover ri,j(k)’s and then G = F ◦ T
Define Gp(x) = T (Fx/|Fx|) where |v| = Σ(components)
Gs = ks(t+ 1), Gp(p(t)) = p(t+ 1) as n→∞
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Proof Sketch

ri,j(0) = rmi,j(0) · rCi,j(0) for mut. and xover factors

P (i mutated to all 0s) = p
|i|
m(1− pm)l−|i| so

rmi,j(0) = 1
2(1− pc)[p|i|m(1− pm)l−|i| + p

|j|
m (1− pm)l−|j|]

P (xover at c) = 1/(l − 1); h, k are offspring.

rCi,j(0) =
1
2
pc
l − 1

l−1∑
c=1

[p|h|m (1− pm)l−|h| + p|k|m (1− pm)l−|k|]

i1 =substring(i, 0, l − c− 1), i2 =substring(i, l − c− 1, c)
Clever Trick: |i2| = |(2c − 1) ∧ i| for ∧ = “and”

Use logical operators and permutations to get T from M
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Dynamics

Iterating G forms a dynamical system on {s-vectors}

F (s(t)) = s(t) iff s = maximally fit limit of pop.

M(s(t)) = s(t) iff si constant over all i

F focusing vs. M diffusing explains punctuated
equilibria - long stability then quick rises in fitness

Problem: this needs infinite population, and expected
proportions are not always met due to sampling error

Solution: Markov Chains - stochastic processes where
P (state j at time t) depends only time t− 1 state
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Finite Population Model

State of GA is population at time t. Set of all states is set of
possible populations of size n (matrix Z).

Zy,i = # occurrences of string y in i-th population φi

N =
(
n+2l−1

2l−1

)
possible populations of size n

n!
Z0,j !Z1,j !···Z

2l−1,j
! ways to form pop. Pj

Markov Transition Matrix has Qi,j = n!
2l−1∏
y=0

pi(y)Zy,j

Zy,j !

Substitute in pi(y) =
[
T

(
Fφi
|Fφi|

)]
y
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Final Results

As n→∞, Markov trajectories converge to iterates of G (or
Gp) with probability arb. close to 1.
For large n infinite model mimics finite model. As n→∞
the time GA spends away from Gp fixed points goes to 0

Conjecture (Vose’s Conjecture)

Short-term GA behavior is determined by initial pop. but
long-term behavior is determined only by “GA surface”
where population trajectories occur.

Supported by some simulation evidence, but it suggests
every simple GA converges to a unique steady state
distribution. Suzuki (1995) found a counter-example.

Problem: The matrix Z is HUGE. Solution is to use
statistical mechanics to get at GA behavior using
macroscopic statistics. Poli’s work applies



Schema
Theory

David
White

Wesleyan
University

References

1 www.cse.unr.edu/ sushil/class/gas/notes/
schemaTheoremSushil.ppt

2 www.cs.utk.edu/ mclennan/Classes/420/
handouts/Part-5A.ppt

3 www.egr.msu.edu/ goodman/
PradeepClassGoodmanGATutorial.ppt

4 http://www.cs.bris.ac.uk/Teaching/Resources/
COMSM0302/lectures/schema theory08.p.pdf

5 Mitchell, M. An Introduction to Genetic Algorithms
6 Syswerda, G. “Uniform crossover in genetic algorithms”

in Proceedings of the Third International Conference on
GA.

7 Burjorjee, K. “The Fundamental Problem with the
Building Block Hypothesis”

For papers, see
http://cswww.essex.ac.uk/staff/poli/papers/publications.html


