
LOCALIZATIONS IN TRIANGULATED CATEGORIES AND MODEL CATEGORIES

DAVID WHITE

1. Review of Definitions

Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is
coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor)
and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of
objects X such that LX = 0. If T is closed under coproducts, it’s a localizing subcategory because L is a
left adjoint.

An object t is called L-local if T (s, t) = 0 for all s ∈ ker(L). If L is inverting S, denote by ⊥S the full
subcategory of S-local objects. The image of L is contained in the L-local objects. Call a map f an L-
local equivalence if T ( f , X) is a bijection for all L-local X. These are the maps which are turned into
isomorphisms by L. The universal property of killing ker(L) is equivalent to the universal property of
inverting the L-local equivalences. Even in general category theory a morphism f : X → Y and an object
Z in C are called orthogonal if the induced map C( f ,Z) : C(Y,Z) → C(X,Z) is a bijection. We introduce
this notion because it will be needed when we do localization unstably (and we can’t say a map f is an
isomorphism iff co f ( f ) vanishes).

Definition 9.1.1 (Neeman book): Let S be thick. A Bousfield localization exists for S ⊂ T if there is a
right adjoint to the natural functor T → T /S. Indeed, this occurs iff S ↪→ T has a right adjoint (as we’ll
see below). If Bousfield localization exists then ⊥S is equivalent to T /S (this is Theorem 9.1.16). To see
this, use the functor ⊥S ⊂ T → T /S. It’s fully faithful. Morphisms between S-local objects are the same
in T and T /S because T (x, y) = T /S(x, y) for x ∈ T , y ∈ (⊥S).

Theorem 9.1.18 shows that Bousfield localization exists iff the inclusion I : S → T has a right adjoint.
We have seen the (⇒) direction already, because map T → T /(⊥S) has a left adjoint which allows us to
see the embedding of T /(⊥S) as S = (⊥S)⊥. So the embedding has a right adjoint T → T /(⊥S) which we
can write explicitly. Conversely, given a right adjoint J : T → S to the embedding I : S → T we can use
the unit of the adjunction IJt → t → z → ΣIJt. Adjointness gives T (Ix, t) = S(x, Jt) = T (Ix, IJt) (using
that I is fully faithful). The long exact sequence of this triangle gives that T (Ix, z) = 0 for all x ∈ S. This
means z ∈ (⊥S) so we have a triangle IJt → t → z with IJt ∈ S and z ∈ (⊥S) both depending on t. So
there is a Bousfield localization, because the map t → z is in MorS and hence becomes an isomorphism in
the quotient so T /S(x, z) = T /S(x, t). But z ∈ (⊥S), so T /S(x, t) = T (x, z). Together this gives a natural
isomorphism T /S(−, t) = T (−,Gt) for Gt = z. So Gt is unique up to canonical isomorphism and G extends
to a functor, adjoint to F : T → T /S. Defining G this way is a useful trick. We will see something similar
later when we connect localization to Brown representability.

Definition. An object t is called L-colocal ifT (t, s) = 0 for all s ∈ ker(L). Denote byS⊥ the full subcategory
of S-colocal objects. If T is closed under products, it’s a colocalizing subcategory. A map f is a L-colocal
equivalence if T (X, f ) is a bijection for all L-colocal X. We say Bousfield colocalization exists when there
is a left adjoint to the natural functor T → T /S. This occurs iff S ↪→ T has a left adjoint.
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If the maps to be inverted take the form W → ∗ for some object W then we give the localization a special
name and call it W-nullification (it’s equivalent to localization at the map ∗ → W). We often denote this
localization PW by analogy to the Postnikov section. For all t ∈ T , the coaugmentation of a localization
t → Lt can be extended to form a triangle At → t → Lt. The object Lt is S-local and the object At is
(⊥S)-colocal (it is the acyclization of t; note that it’s colocal but not with respect to the same L). Similarly,
the augmentation of a colocalization Ct → t can be extended to a triangle Ct → t → Pt where Pt is local (it
is the nullification of t).

Example: Work p-locally. In the stable homotopy category, the category of rational spectra is both local-
izing and colocalizing. It’s localizing because it’s a colocalization with respect to the rationalization of the
sphere. It’s colocalizing because it’s the image of a localization, namely the map which kills the mod p
Moore space. Here we have A(X) → X → L0(X) and also have Cell(X) → X → P(X). The categories
im(L0) and im(Cell) are the same, but for an individual X, L0(X) is far from equaling Cell(X).

Remark: The most general form of localization, which we will call categorical localization, is an idempo-
tent coaugmented functors (not necessarily on a triangulated category). Indeed, the data of a localization
functor is equivalent to the data of an idempotent monad (T, η, µ) and both are equivalent to the data of an

orthogonal pair. Given an idempotent functor T , one can form a monad C
T
→ D(T )

K
→ C whereD(T ) is the

Eilenberg-Moore category of T and K is defined by realizing thatD(T ) is equivalent to the Kleisli category
of T . Next, given an idempotent monad T , let S be the class of morphisms which T sends to isomorphisms.
By construction, (S(T ),D(T )) is an orthogonal pair (using that T is idempotent), andD(T ) is the full image
of T (i.e. the objects Y such that Y � TY). Finally, given an orthogonal system, define a localization to kill
the S-local objects. So we see that the theory of orthogonal pairs is intimately linked with that of Bousfield
localization. This will come back later.

Localizations are characterized by each of two universal properties:
(i) ηX : X → LX is initial among morphisms from X to an L-local object
(ii) ηX : X → LX is terminal among L-equivalences going out of X.

A map is an L-equivalence if and only if it is orthogonal to all L-local objects, and an object is L-local if
and only if it is orthogonal to all L-equivalences. Of course the same holds for S-equivalences and S-local
objects (it’s just different notation for the same thing).

2. Not all localizing subcategories give a Bousfield localization

Is every localizing subcategory the kernel of a localization? (A similar question, but in the special case
where T is a stable homotopy category, was asked in HPS page 35)

The following demonstrates that the answer is no for a general T . From Casacuberta-Neeman: Brown
Representability Does Not Come For Free.

Example: Freyd’s book Abelian Categories, Exercise A, Chapter 6 constructs the following abelian cate-
gory. Let I be the class of all small ordinals and let R = Z[I]. It’s a large ring. LetA be the abelian category
of all small R-modules (i.e. small abelian groups with compatible endomorphisms indexed by I). For any
M,N inA we have an inclusionA(M,N) ⊂ HomAb(M,N) so this category has small hom sets. For any ring,
R-mod has exact products and coproducts, and filtered colimits are exact. This is a property of Grothendieck
abelian categories generally. This category fails to have a small generator, and also cannot have enough
injectives/projectives.

Consider K(A) and let A(A) be the full subcategory of acyclic complexes. Both are triangulated categories
with small Hom-sets (morphisms are homotopy equivalence classes of chain maps), because K(A) is always
triangulated for A abelian, and complexes of acyclics are always triangulated subcategories (exactness is
easy to verify via the 5-lemma and maps to the all zero triangle).
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Looking at the proof of Verdier’s Theorem, we find a construction of the thick subcategory Ĉ generated by
C ⊂ T . We see in particular that Ĉ is the full subcategory consisting of direct summands of objects of C. I
want to show that A(A) is thick. The proof in Neeman is the next paragraph and holds in more generality
(i.e. whenever idempotents split), but a simpler proof is to observe that if a direct sum is in A(A) then
H∗(X ⊕ Y) = 0 so H∗(X) ⊕ H∗(Y) = 0 and this proves X and Y are in A(A).

Lemma 1.6.8 (Neeman): if all idempotents in C split, then Ĉ = C. Note that if C is closed under coproducts
then all idempotents split. This takes Neeman some hard work to prove. I’ll sketch the proof. He uses
homotopy colimits of the “all e” and “all (1 − e)” telescopes of X’s, takes the direct sum, and uses that(

e 1 − e
1 − e e

)
is its own inverse on X ⊕ X. Then one can decompose the telescope of the X ⊕ X’s (which

converges to Y ⊕ Z) into the direct sum of “all 1” and “all 0” sequences. Thus, Y ⊕ Z � X ⊕ 0 and we get
Y → X. Composition along the chain gives X → Y and one can show g ◦ f = e and f ◦ g = 1Y . Similarly,
get the same for Z and 1 − e.

Because A(A) is thick (hence localizing and colocalizing, and clearly an ideal) we can form the Verdier
quotient D(A) = K(A)/A(A). We will show it cannot be a Bousfield localization because it does not have
small hom-sets. In particular, D(A)(Z,ΣZ) � Ext1

A
(Z,Z) is a proper class, because we have a proper class

of non-isomorphic Mi which satisfy 0 → Z → Mi → Z → 0. They are all isomorphic to Z ⊕ Z as abelian

groups, but the different endomorphisms φi are determined by
(

0 1
0 0

)
. Thus, all are non-isomorphic as

modules because the element for which the endomorphism is non-zero changes as we change i.

Finally, note that D(A) is a Bousfield (co)localization iff i : A(A) → K(A) has a right (resp left) adjoint,
by Prop 9.1.18. In our case this means that if Bousfield localization existed then D(A) would be equivalent
to a full subcategory ⊥A(A) ⊂ K(A), namely the X such that K(A)(A, X) = 0 for all A ∈ A(A). But this
cannot be the case because we have just shown D(A) does not have small hom sets. Dually, there cannot be
a Bousfield colocalization.

Corollary: Neither A(A) nor its dual satisfy Brown representability. If it did, then i : A(A)→ K(A) would
have a right adjoint G, defined by representability with respect to the functor T (i(−), t) = A(A)(−,Gt).
Given a map t → t′, do representability for both and get S (−,Gt) → S (−,Gt′). Apply Yoneda’s lemma to
get a unique map Gt → Gt′ making G a functor. Similarly, if Brown representability held for the dual then
there would be a left adjoint.

Note: if you think this example is cheating by making the difficulty be with the difference between a set
and a class, go check out Christiensen-Keller-Neeman to see Brown representability fail because of a spec-
tral sequence Ext computation. Technically, I’d say Adams representability fails, or perhaps Brown repre-
sentability for homology, just to be precise.

3. Bousfield localization of model categories

Let’s focus on the specific case where T is the stable homotopy category, i.e. the homotopy category
of the model category S of spectra. The motivating example of a Bousfield localization is homological
localization. Let E be a generalized homology theory and consider the maps f such that E∗( f ) is an
isomorphism. Call these maps E-equivalences and say an object Z is E-local if f ∗ : [Y,Z] → [X,Z] is
an isomorphism for all E-equivalences f : X → Y . Bousfield proved that there is a model structure LES
with weak equivalences the E∗-isomorphisms and cofibrations the same as in S . This works if we replace
S by spaces too (and in fact Bousfield proved this version earlier). To see why we changed from testing
orthogonalityM(Y,Z) → M(X,Z) note that we’re doing homotopy theory now so we need to know about
homotopy-orthogonality and not strict orthgonality.
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A more subtle question is whether or not cohomological localizations exist. This question is open, though
it has been resolved by Casacuberta and Chorny under the assumption of Vopenka’s Principle, which is a
statement about supercompact cardinals. Vopenka is equivalent to the statement that for C a locally pre-
sentable category, every full subcategoryD which is closed under colimits is a coreflective subcategory. It’s
also equivalent to the statement that every cofibrantly generated M is Quillen equivalent to some combi-
natorial M. Vopenka’s principle lets you get from a class worth of maps to a set-worth (and then to just
one, via coproduct). The reason to introduce these axioms outside ZFC is to eventually prove that the exis-
tence of cohomological localization is outside the power of ZFC to prove (i.e. to show that the question is
set-theoretical).

3.1. A punchline due to Bousfield. . Let J be a set of primes and let Z(J) be the subring of Q where p
is invertible iff p < J. Let X(J) = X ∧ M(Z(J)) for the Moore spectrum. This is arithmetic localization of
spectra. Let X∧p be the p-adic completion of X, i.e. the inverse limit limn(X∧M(Z/pn)). Let X∧J =

∏
p∈J X∧p .

This is completion of spectra. We now show that both arithmetic localization and completion are special
cases of Bousfield localization and indeed get a number theoretic characterization for LE(X) if both X and
E are connective.

Theorem 1. Let E∗ be a connective homology theory and X a connective spectrum. Let J be complementary
to the set of primes where Ei is uniquely p-divisible for each i. Then LEX = X∧J if each element of E∗ has
finite order, and LEX = X(J) otherwise.

In the same vein, the times pn map on some X has cofiber X∧M(pn). The homotopical version of completion
is the inverse holimn(X∧M(pn)). This turns out to equal LM(p)X. The fact that completion is a special case
of localization is one of the few places where algebraic topology is simpler than homological algebra.

3.2. Bousfield Localization more generally. . As localization is such a handy tool, it’s natural to ask
whether it can be generalized to model categories other than sS et and Spectra. The answer is yes. A full
treatment can be found in Hirschhorn’s book. Briefly, the key trick is that it’s no longer enough to test
isomorphism of homotopy classes of maps [Y,Z]→ [X,Z] because it’s not true that f is a weak equivalence
iff [ f ] is an isomorphism in Ho(M). This is only true for maps between cofibrant-fibrant objects. So
orthogonality must be defined via homotopy function complexes, e.g. simplicial mapping spaces (which
Hovey proved to exist in every model categoryM in the chapter on framings in his book). This is because
we need to test homotopy orthogonality on the model category level and we need function complexes that
keep track of homotopies, homotopies between homotopies, etc. Orthogonality with respect to homotopy
function complexes is a much stronger notion than orthogonality defined in terms of homotopy classes of
maps. An equivalent approach is the Hammock localization of Dwyer and Kan.

The idea of framings is to assign to any objects X,Y a fibrant simplicial set map(X,Y) that is homotopy
equivalent to M(X∗,Y∗) in the category of simplicial sets, where X∗ → X is a cosimplicial resolution of
X and Y → Y∗ is a simplicial resolution of Y . The point is that the homotopy type of map(X,Y) does
not change if we replace X or Y by weakly equivalent objects, that the assignment of map(X,Y) to X,Y is
functorial, and that π0map(X,Y) � [X,Y] as sets. If M is a simplicial model category, then you can use
Map(QX, FY) for map(X,Y), where Map(, ) is the simplicial enrichment.

Given a class of maps S in a model category M, an object Z is S-local if map(s,Z) : map(B,Z) →
map(A,Z) is a weak equivalence of simplicial sets for all s : A → B in S. A map f : X → Y is an
S-equivalence if map( f ,Z) is a weak equivalence for all S-local Z (this condition implies Bousfield’s via
taking π0). An object W is S-acyclic if map(W,Z) ' ∗ for all S-local Z. A left Bousfield localization of a
model categoryM with respect to S has weak equivalences being the S-local equivalences and cofibrations
the same as inM. Hirschhorn proves that if your model categoryM is left proper and either combinatorial
or cellular, and if S is a set, then left Bousfield localization exists. The fibrant objects in this new model
category are the L-local objects.
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Definition. If K is a class of objects, say f is a K-colocal equivalence if map(X, f ) is a weak equivalence
for all X ∈ K . Say Z is K-colocal if map(Z, F) is a weak equivalence for all f as above. Say A is K-
coacyclic if map(W, A) ' ∗ for all K-colocal W. A right Bousfield localization has weak equivalences
being K-colocal equivalences and fibrations the maps which are fibrations inM. The cofibrant objects are
the K-colocal objects.

Analogously to Bousfield localization and colocalization of triangulated categories we have left Bousfield
localization and right Bousfield localization of model categories. The right Bousfield localization is some-
times called cellularization because it gives rise to a triangle CWT (X)→ X → PT (X) where CWT (X) is an
approximation to X built from T via homotopy colimits, while PT is nullification with respect to T .

There is a type of localization which is weaker than Bousfield localization but which has all the categorical
properties of a Bousfield localization (the difference being that the definition makes no mention of a set of
maps to be inverted).

Definition. A homotopical localization on a model category M with homotopy function complexes
map(−,−) is a functor L : M → M that preserves weak equivalences and takes fibrant values, together
with a natural transformation η : IdM → L s.t. for all X:

(1) LηX : LX → LLX is a weak equivalence

(2) ηLX and LηX are equal in Ho(M)

(3) ηX : X → LX is a cofibration s.t. map(ηX , LY) :map(LX, LY) → map(X, LY) is a weak equivalence
of simplicial sets for all Y

When passing to Ho(M), homotopical localizations are sent to idempotent functors, since π0map(X,Y) �
[X,Y]. In addition to orthogonality in Ho(M), L-local objects and L-equivalences are orthogonal with
respect to simplicial mapping spaces. The correct notion of orthogonality to use in order to characterize
local objects in terms of weak equivalences and vice versa is the latter. A fibrant object is L-local if and only
if it is simplicially orthogonal to all L-equivalences; a map is an L-equivalence if and only if it is simplicially
orthogonal to all L-local objects.

4. Lifting localizations to the model category level

Farjoun’s Conjecture: is every homotopy idempotent functor on sS et equivalent to some homotopical
localization on the model category level?

Casacuberta-Scevenels-Smith: Yes, under Vopenka’s principle. Reason: every idempotent functor gives
rise to an orthogonal pair. Proving it’s a localization comes down to finding an adjoint. This is called the
Orthogonal Subcategory Problem, and it’s exactly why Vopenka’s principle gets involved.

Casacuberta and Chorny generalized this work. They show that if we are given a homotopy idempotent func-
tor L in a simplicial model category M and L is continuous, then L is equivalent to Bousfield localization
with respect to some class of maps (which can be replaced by a set of maps under Vopenka).

A functor F in a simplicial model category is called continuous if it is equipped with natural continuous
maps of simplicial sets map(X,Y) → map(FX, FY) preserving composition and identity. Without this
assumption, homotopy idempotent functors cannot be lifted, as the next example shows.

Example (due to Casacuberta, private communication). Consider S , the model category of spectra. It
is well-known that rational spectra sit inside the subcategory of GEMs (wedges of Eilenberg-Mac Lane
spectra). Projecting onto a sub-wedge in a certain range is a localization on Ho(S ) (e.g. it lands in truncated
rational spectra). Certainly the functor is idempotent and coaugmented (because you can take rationalization
and truncate any spectrum). It cannot be a Bousfield localization L f because if L comes from an L f then
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im(L) is closed under homotopy colimits (since im(L f ) sits above it). But this example is not closed under
homotopy colimits, e.g. a telescope can take you out of the range you’re supposed to be truncated in.

5. Localization in a monoidal setting

So far we’ve tested orthogonality with respect to C(−,−), [−,−], and map(−,−). In a closed monoidal model
category we also have an internal hom object. Can we test orthogonality with respect to this? What do we
get?

Definition. We say that a localization (L, η) on a closed symmetric monoidal category E is a closed localiza-
tion if, for every L-equivalence f : X → Y and every L-local object Z, the map HomE( f ,Z) : HomE(Y,Z)→
HomE(X,Z) is an isomorphism in E.

For the category of spectra, a localization is closed iff LΣ ' ΣL. This follows if the class of L-local
equivalences is closed under the monoidal product. A slightly more general definition can be made in
the setting of enriched model categories, i.e. when D is a model category and M is a D-model category
(see chapter 4 of Hovey’s book)

Definition. An enriched homotopical localization is a weak-equivalence preserving functor L : M→M
that lands in the fibrant objects, with a natural transformation η : IdM → L such that, for all X ∈ M:
(i) LηX : LX → LLX is a weak equivalence inM.
(ii) ηLX and LηX are equal in the homotopy category Ho(M).
(iii) ηX : X → LX is a cofibration and the induced map hom(LX, LY) → hom(X, LY) is a weak equivalence
inD for all Y ∈ M.

Clark Barwick has proven that ifM is cotensored overD, left proper, and bothM andD are combinatorial
then the enriched left Bousfield localization with respect to a set of morphisms exists.

Example (Non-closed localizations can behave poorly): The nth Postnikov section functor Pn is a homo-
topical localization for all n but is not a closed localization. Furthermore, if R is nonconnective, then P1R
does not admit a ring spectrum structure (not even the structure of a ring in the homotopy category). The
reason is that if it were a ring then multiplication by the unit S would need to be a homotopy equivalence.
But the unit map ν : S → P1R is null since π0(P1R) = 0. The real issue here is that suspension and
localization do not commute, and nonconnective ring spectra can feel the difference.

Mike Hill’s example. It’s a localization in the equivariant world which is not stable with respect to certain
representation spheres. It fails to preserve E∞ structure. For equivariant spectra this tells us that closed is
not the same as ΣL ' LΣ, but rather has to do with ΣV for all the indexing spaces V . I suspect it’s a difference
between the monogenic and non-monogenic stories, similar to what we observe in the next example.

Example (joint with Carles Casacuberta): Sometimes the difference between closed and non-closed lo-
calizations can also be exploited. If M is the model category of motivic symmetric spectra and T is the
projective line S 1

s ∧ S 1
t then we’ve proved that the localization LS ∗∗ exists. So for a given X we can form

a triangle AS ∗∗(X) → X → LS ∗∗(X) and we’ve proven that PT (X) � AS ∗∗(X). Current work in progress
attempts to understand whether or not the difference between these two types of localization is really the
difference between enriched localization and Hirschhorn-style localization with respect to simplicial map-
ping objects.

6. Chorny’s Example

Not every localization LT with respect to a set of maps T can be replaced by one with respect to a single
map f . Quoting directly:
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“Consider the model category which is a product of two copies of the category of simplicial sets, i.e.,
the category of diagrams of simplicial sets over the discrete category with two objects, equipped with the
projective model structure (where fibrations and weak equivalences are objectwise). Take S = { f , g} for
f : (∅,∅)→ (∗,∅) and g : (∅, ∗)→ (∅, ∗

∐
∗)

An object (X,Y) is S -local if and only if X and Y are fibrant, X is contractible and Y is either contractible
or empty.

Suppose that there exists a map h : (A, B) → (C,D) such that any S-local object is also h-local, and vice
versa. The object (X,∅) is h-local if and only if X is contractible. This condition implies that both B and
D are empty; otherwise, for any simplicial set Z, either contractible or not, the object (Z,∅) would be h-
local. But in this case any object (X,Y) with contractible X becomes h-local, hence the contradiction. Note
however that, in order to ensure that every set of maps yields the same localization as their coproduct, it is
enough to assume that the set of maps X → Y is nonempty for all X and Y in the model category under
consideration.”

7. Why does a Bousfield localization of model categories give a triangulated Bousfield localization?

Answer taken directly from Fernando Muro on MathOverflow:

“Let C̃ be the left Bousfield localization of C. As categories C = C̃, but C̃ has more weak equivalences. In
particular, the identity functor induces a functor ϕ : Ho(C) → Ho(C̃). Let L = kerϕ, i.e. L ⊂ Ho(C) is
the full subcategory spanned by the objects which become trivial in Ho(C̃). If C̃ is stable and ϕ preserves
homotopy colimits then ϕ is an exact functor between triangulated categories, so L is a thick subcategory
of Ho(C) and ϕ induces a functor from the Verdier quotient ϕ : Ho(C)/L → Ho(C̃). Let us show that ϕ is
an equivalence of categories. It is enough to prove that the canonical composition of ’projection’ functors
C̃ = C → Ho(C) → Ho(C)/L satisfies the universal property of C̃ → Ho(C̃). Suppose ψ : C → D is a
functor which sends all weak equivalences in C̃ to isomorphisms. Since weak equivalences in C are weak
equivalences in C̃, ψ factors through C → Ho(C) in an essentially unique way. Let ψ : Ho(C) → D be the
factorizaton. Recall that Ho(C)/L is the localization of Ho(C) inverting those maps whose mapping cone is
inL. Any such map is represented by a zig-zag of weak equivalences in C̃. Since ψ sends weak equivalences
in C̃ to isomorphisms then ψ factors through Ho(C)→ Ho(C)/L in an essentially unique way. In particular
ψ factors through the composite C̃ → Ho(C)/L. The essential uniqueness of this factorization follows from
the aforementioned essential uniqueness of the two intermediate steps.”


	1. Review of Definitions
	2. Not all localizing subcategories give a Bousfield localization
	3. Bousfield localization of model categories
	3.1. A punchline due to Bousfield
	3.2. Bousfield Localization more generally

	4. Lifting localizations to the model category level
	5. Localization in a monoidal setting
	6. Chorny's Example
	7. Why does a Bousfield localization of model categories give a triangulated Bousfield localization?

