
TRAVERSALS OF INFINITE GRAPHS WITH RANDOM LOCAL

ORIENTATIONS

DAVID WHITE

Thank Danny, then committee, also Michel Dekking.

1. Background on random walks

Let G be a finite connected graph, but you can think of G as Z2 for what follows. A random walk
on G is a sequence of vertices X0, X1, X2, . . . where each Xn+1 is chosen uniformly at random from
the neighbors of Xn (i.e. each option with probability 1/d(Xn) or 1/4 in Z2). It is recurrent if it
always returns to the starting vertex. This forces it to returns infinitely many times: the walk after
the n-th visit is again a random walk, so an (n + 1)-st visit is guaranteed. Equivalently: for each
vertex v, Pr(Xn = v for infinitely many n) = 1, since there is a constant probability of walking
from the origin to any vertex and given infinitely many tries this will occur with probability 1. The
walk is transient if it is not recurrent. Equivalently: with probability 1 every vertex is visited
only finitely often. If it doesn’t return then we say the walk has escaped to infinity. All walks on
a connected graph are either recurrent or transient.

Polya studied this question for graphs of the form Zd. In his formulation, Z2 was a city and the
edges were city blocks. The particle undergoing the random walk was a drunkard, and the walk
was called the “drunkard’s walk.” Polya proved the following amazing theorem:

Theorem 1. A simple random walk on Zd is recurrent if d = 1 or d = 2 and is transient for all
d > 2.

Shizuo Kakutani described this result as follows: “A drunk man will always find his way home, but
a drunk bird may not.”

2. Basic Walk

A problem computer scientists are interested in is graph exploration by a mobile entity using
only constant memory. Useful if it’s software moving on a network, searching for pages on the
internet, or for a robot exploring an unfamiliar terrain. Simplest case: the graph is [n]× [n], or Z2

if you want to approximate letting the agent move continuously (i.e. any direction).

One option is to give the agent no memory. At a given vertex it picks a direction uniformly at
random, i.e. with probability 1/4 on the internal nodes, 1/3 on the sides, and 1/2 in the corners.
The path of the robot is then a simple random walk. The problem is that we have no control over
where it goes, how long it takes to cover all the ground, or how many times it re-vacuums the same
spot. It turns out that this method will explore all n2 vertices, but will take O(|V | log2 |V |) time
on average.

Leszek Gasieniec from Liverpool (Go-She-Nietz) considered another way to explore, where we give
the agent 2 bits of memory and help it out by labeling the edges in the graph. From each

Date: May 8, 2012.

1

2 DAVID WHITE

vertex, label the outgoing edges by 0, 1, 2, 3 in such a way that each label is used once. Note that
this means an edge can have two different labels; one from each direction. The agent only has to
remember the label it just walked on and it can decide it’s next label. When the agent enters a
vertex by label i ∈ {0, 1, 2, 3}, it should exit following label i mod 4 + 1. Practically, this means
the agent can distinguish between the edges at any given vertex, i.e. has a local orientation. It
is possible to assign a labeling s.t. the agent explores the whole graph in O(|V |) time, but
it requires the nodes to have a large memory and do a lot of work updating their labelings, so it
might be infeasible from the point of view of applications.

Let’s try to reduce the amount of memory we’re requiring and make the labeling scheme easier.
We’ll just assign the labels randomly, all at once, and see what happens. This process is called the
Random Basic Walk. Note that all the randomness is in the initial labeling. Once that’s
fixed and the starting vertex is chosen it’s deterministic. Examples:

BOX GRAPH, STAR GRAPH

Note that with an arbitrary labeling a agent can become trapped. DRAW THE SQUIGGLY
LINE AND CYCLE. Must replace “recurrence” with “gets trapped with probability 1” or “cycles.”
Then transient means it doesn’t cycle. Do Z case, i.e. any random basic walk cycles. To avoid
the trap on the line, the labels must alternate 1, 2, 1, 2, 1, 2, This occurs with probability
0 = limn→∞(1/2)n.

Example 2. A labeling in Z2 where any basic walk escapes to infinity:
...

•
2

1

3

4 •

1

3

2 •

1

3

4 •

1

3

2 •
3

1

4

•
2

1

4 •
1

2 •
1

4 •
1

2 •
1

4

. . . •
2

3

4 •
3

2 • 4

3

• 2

3

• 4

3

. . .

•
2

1

4 •
1

2 •
1

4 •
1

2 •
1

4

•
2

4

3

• 2

3

• 4

3

• 2

3

• 4

3

...

The reader can easily verify that every starting vertex and port number leads to an infinite staircase
which moves in the directions specified by the first two steps and which gets further away from the
starting location with every step. It is clear how this generalizes to Zd with a staircase consisting of
a sequence of moves, one in each of the d directions. This example generalizes to create an infinite
family of examples where the basic walk escapes to infinity from any starting vertex and any initial
label. We simply add in blocks of 4 columns which act like plateaus for the agent to move east or
west for 4n steps between a given north-south step on the staircase.

TRAVERSALS OF INFINITE GRAPHS WITH RANDOM LOCAL ORIENTATIONS 3

3. Quasirandom and Self-Avoiding

Obviously, a big property of the Basic Walk is that it’s all defined locally. There is another
model you may have heard of which is similarly defined locally. It’s the Rotor Router model of
Jim Propp. It’s deterministic (mention random rotor router) and it doesn’t matter where
you enter v from–you will leave by the direction the rotor points. You can’t trap in any way.
Also, there is a theorem which says it behaves like the simple random walk enough that it’ll have
the same recurrence/transience behavior.

Another big property of the Basic Walk is its ability to get trapped. The random basic walk acts
like SRW at vertices which have never been visited before, but appears to act like a self-avoiding
random walk at vertices which have been visited before. This is because if the walk previously
left a vertex by label 2 and if it comes in by a label other than 1, then it must avoid the edge
previously traveled. As soon as the agent uses the same edge in the same direction it’s in
a cycle. Self avoiding random walks can also get trapped. What’s known is that for d ≤ 2 the walk
is expected to get trapped and for d ≥ 5 there’s enough space and it’s expected to escape.

DRAW TABLE WITH RECURRENCE/TRANSIENCE, state conjecture

4. New Results for exploration with memory

Polya didn’t have the option for his walk to get trapped in a small space. This option exists for
the agent and it’s exactly what we want to study. On the grid a trap configuration is where center
vertex is entered from below by label i and the path goes left on i + 1, back to center on i + 2,
right by i+ 3, and back to center by i, so the trap bounces the agent back and forth forever among
these three vertices. Because these traps are small and local (they don’t depend on how far you’ve
come on the random walk), they occur with constant, nonzero probability. We’ll use these traps to
prove the following theorem:

Theorem 3. In Z2, the random basic walk cycles with probability 1.

Shells Method. The trap with 3 vertices occurs with constant probability c > 0. Draw concentric
squares Sn (shells) of side length 2n centered at the origin. Let En be the event that the walk
reaches Sn and the first time it does so is not a trapping configuration. Note that this “first vertex
hit” cannot be a corner because corners are not adjacent to interior vertices. Because the trap
exists entirely on the shell, it is independent of the walk up to that point.

Let E be the event that the walk escapes to infinity. It’s not hard to see E =
⋂
En because to

escape to infinity you must never trap and you must pass each Sn. These En are not independent,
but because E1 ⊂ E2 ⊂ E3 . . . , we can still write P (E) =

∏
P (En|En−1). The probability of a

path from Sn−1 to Sn existing is ≤ 1. The probability that the first vertex on Sn hit is not a
trap is 1 − c. Thus, P (En|En−1) ≤ 1 ∗ (1 − c) and so P (E) ≤

∏
1− c = 0 because c > 0 implies

1− c < 1. �

This is not so surprising, since it’s the same for Polya and for self-avoiding random walks. Much
more surprising is that the method of proof generalizes to show:

Theorem 4. For any d, the random basic walk on Zd cycles with probability 1.

Proof. For d = 3 each vertex is degree 6 and a trap can be found using only 3 neighbors (i.e. a
trap can be found on a cubical shell around the origin). The trap occurs with constant probability
c′ > 0 and so the probability of escape is ≤ (1 − c′) ∗ (1 − c′) ∗ · · · = 0. The same idea works for

4 DAVID WHITE

d > 3 as you can always find a trap on the surface of the hypercube and this means independence
of the previous steps is no problem. This is because a vertex on Sn will have 2d− 2 neighbors on
the shell and only needs d to make a trap.

Also worth noting: this proves that the probability of escape from the origin is zero. By symmetric,
the probability of escape from any fixed vertex is zero. Pr(∃ vertex which the walk can escape to
infinity from) = 0 because it’s a countable union of events, each of probability zero. �

5. Other locally finite graphs

To generalize this proof to other graphs you’d need them to have shells, and this comes down to
expander properties. A graph which fails to have shells is the hexagonal lattice (think chicken-wire
or honeycomb). We found a proof there for trapping and it generalizes to show that any regular
graph has trapping basic walk. The trick is to use spires of length d where d is the degree. What
about graphs which are not regular? Well, a third proof works in that case:

Theorem 5. On any locally finite graph G with all vertex degrees bounded by a constant D, the
basic walk cycles with probability 1.

Star Method. Idea: Trap at v is a star, with i − 1 pointing back at v−1 and for all neighbors
w, if the arc from v to w is labeled by j, then the arc from w to v must be labeled by j′ = (j
mod d(w)) + 1. Need d(v−1) ≤ d(v), which occurs infinitely often if the agent is to escape, using
the hypothesis of bounded degree. Whenever the basic walk takes such a step, we consider the
event E that the configuration Cv is achieved. Let N denote the set of neighbors of v which are
not v−1. Because d(v) < D, |N | < D. Furthermore, d(w) < D for all w ∈ N , so

P (E) =
1

d(v)
∗
∏

w∈N(v)

1

d(w)
> c =

1

D
∗
(

1

D

)D

> 0

�

The final question I will consider is whether or not this hypothesis of bounded degree is necessary.
It’s clear that finite degree is necessary to even define the process.

Example 6. Let T be the tree where every vertex in level n has 2n children. As usual, the root is
in level 0.

•

•

• •

...
...

...
...

...
...

...
...

Then the random basic walk on T is transient, i.e. has nonzero probability of escaping to ∞.

Proof. Sketch: E ⊃ P so Pr(E) ≥ Pr(P) =
∏

Pr(Pn | Pn−1). Note that Pr(Pm | Pm−1) ≥ 1− 1
2m−1 .

Thus:

TRAVERSALS OF INFINITE GRAPHS WITH RANDOM LOCAL ORIENTATIONS 5

Pr(P) ≥
∞∏

m=2

1− 1

2m−1

=

∞∏
n=1

1− 1

2n
and taking logs yields ln(Pr(P)) ≥

∞∑
n=1

ln

(
1− 1

2n

)

Recall the Taylor Series expansion of ln(1− x) around 0:

ln(1− x) = −x− x2

2
− x3

3
− . . . for − 1 ≤ x < 1

ln(Pr(P)) ≥
∞∑
k=1

∞∑
n=1

−1

2kn
≥
∞∑
k=1

−1

2k−1
= −2

To show 2−k/(1 − 2−k) ≤ 2−k+1 as needed in the last inequality, note that 1 − 2−k ≥ 1/2 so that
2−k/(1− 2−k) ≤ 2−k/(2−1) = 2−k+1.

Undoing the log shows that Pr(escape)≥ Pr(P) ≥ eln(Pr(P)) ≥ e−2 > 0. This proves there is a
positive chance that the agent escapes, i.e. the random basic walk is transient. �

6. Finite Graphs

The original problem was seeking a supersize tour on Gk,n, i.e. proving the expected
maximum number of vertices visited is c ∗ |V |. From the theorems we can get upper bounds
on expected average number of vertices visited as k, n → ∞. Also, we cannot get bounds on
the expected max number because:

Proposition 1. Let G be a locally finite, d-regular graph with port orientations selected uniformly
at random. Then the following statement holds with probability 1: for all n ∈ N there are infinitely
many pairs (v, `) such that a random basic walk starting at v with initial port ` will visit n vertices.

Proposition 2. Let G be a locally finite, d-regular graph with d > 2 and with port orientations
selected uniformly at random. Then the following statement holds with probability 1: for all n ∈ N
there is some vertex v which is contained in a cycle of length greater than n. Indeed, there are
infinitely many such v.

Proof idea: pick infinitely many spaced out vertices. Each has a probability of a labeled path going
out of length n, which could also be a spire. With infinitely many tries you’ll achieve this event.
Indeed, you’ll get it infinitely many times. Note, it’s unlikely the agent will hit one of these, so the
question on Gk,n is still open.

Theorem 7. As n→∞, a basic walk on Kn is expected to visit at least (1− 1/e) ∗ n nodes

Conjecture 8. The expected number of arcs traversed by a basic walk on Kn is 1.8 ∗ n as n→∞.

6 DAVID WHITE

7. Future Directions

• In Z2, what is the expected length of time (i.e. the expected number of steps taken) before
the random basic walk hits a cycle? What is the expected size of a cycle? What about
these three questions on Gk,n?

• Study the constrained random basic walk where the constraint means there are no vertices
which have two different incoming arcs with the same label.

• Create and study an analogue of the hitting time, mixing time, and load balancing for the
random basic walk.

• Study random rotor routers and determine if they bear any resemblance to the random
basic walk.

8. Proofs

Obviously, a big property of the Basic Walk is that it’s all defined locally. There is another model
you may have heard of which is similarly defined locally. It’s the Rotor Router model of Jim
Propp. It’s deterministic and designed to give the same limiting behavior but with faster
convergence. Place a rotor at each v, like what balls come out of at the batting cages. Next, fix a
rotor pattern e1, e2, . . . , ed(v) running through all edges out of v and point the rotor via e1. When v
is first visited, the particle exits by e1 and then the rotor rotates to e2. When v is next visited, the
particle exits by e2 and we repeat this process. These rotor routers have been studied quite a bit
in the past 10 years, and have found numerous applications, e.g. load balancing. It’s supposed to
be “better than random” because the central limit theorem behavior is achieved immediately,
e.g. on [n] it will have exactly half the particles (every other particle) leave by the left as by the
right, which the CLT predicts but only with an error depending on the number of trials.

Differences from Basic Walk: It doesn’t matter where you enter v from, you will leave by the
direction the rotor points. The scheduling policy is purely local and deterministic–there is no
randomness at all. You can’t trap in any way. Also, there is a theorem which says it behaves like
the simple random walk enough that it’ll have the same recurrence/transience behavior (in terms
of number of times the origin is visited if you start a large number of particles at once) so it’s
recurrent in Z2 and transient in Zd for d > 2.

Another big property of the Basic Walk is its ability to get trapped. The random basic walk acts
like SRW at vertices which have never been visited before, but appears to act like a self-avoiding
random walk at vertices which have been visited before. This is because if the walk previously
left a vertex by label 2 and if it comes in by a label other than 1, then it must avoid the edge
previously traveled. As soon as the agent uses the same edge in the same direction it’s in a cycle.
Self avoiding random walks can also get trapped. What’s known is that for d ≤ 2 the walk is
expected to get trapped and for d ≥ 5 there’s enough space and it’s expected to escape. Based on
this and the example above, the problem group conjectured that the agent would get trapped (this
is the analog of recurrence) in Z2 but would escape in sufficiently high dimension.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Before progressing, we wish to note that for any graph G, the way in which labels are placed on
arcs may be changed. Rather than labeling every arc simultaneously at the start, we may define
just one new label at each step. Suppose the robot enters vertex v by port i (for the starting vertex
an initial port is provided, which we will assume is 1 in our examples). If v has an outgoing arc
labeled by (i mod d(v))+1 already then the robot will follow this arc and no labeling will be done.

TRAVERSALS OF INFINITE GRAPHS WITH RANDOM LOCAL ORIENTATIONS 7

If v does not have such an arc, then there must be a non-empty set of arcs leaving v with no label.
Choose one of these arcs uniformly at random and assign it the label (i mod d(v)) + 1.

We sketch an argument that the formulations above are equivalent. If all port numbers at v are
assigned simultaneously, then each outgoing arc has probability 1/d(v) of receiving a fixed port
number i. We claim that if the port numbers are assigned one at a time, only as needed by
the robot, then the same probabilities are achieved. For the first outgoing arc, the probability
of receiving any given port number i1 is obviously 1/d(v). For the second arc to be labeled, the

probability is d(v)−1
d(v) ∗

1
d(v)−1 = 1

d(v) because we must first know that the port number chosen is

not i1, and then we have d(v) − 1 choices for which i2 will be chosen of the d(v) − 1 possibilities
remaining. For the k-th arc to be labeled, we must first know that i1, i2, . . . , ik−1 are not chosen

and then there are d(v) − k possibilities remaining. So the probability is d(v)−k
d(v) ∗

1
d(v)−k = 1

d(v) .

This proves the two random processes are the same, so we are free to think of the assignment of
port numbers as occurring one assignment per step of the robot.

Star Method. The pigeonhole principle guarantees us that there are infinitely many vertices v
with a neighbor w of degree d(w) ≥ d(v). This is because every time a vertex v only has neighbors
of smaller degree, all those neighbors have a neighbor (v) with larger degree. If the basic walk is
to have any chance of escaping to infinity, then it must be the case that infinitely often the agent
moves from a vertex v to a vertex w such that d(v) ≥ d(w). Here we are using the hypothesis of
bounded degree, which means the agent cannot move from a vertex of degree 1 to one of degree 2,
then one of degree 3, etc. Such a chain would eventually hit a vertex of degree D and then need
to move to one of degree ≤ D. We label these steps of the agent (from larger degree to smaller
degree) by w1 → v1, w2 → v2, . . . , where we do not assume wi 6= wj for i 6= j but we do assume
vi 6= vj by simply removing the pairs (wi, vi) where vi has appeared in the list before. Clearly this
will not change the fact that there are infinitely many such pairs.

Whenever the basic walk takes a step wi → vi from the list above, we consider the event Ei that the
configuration Cvi is achieved. Let N denote the set of neighbors of vi which are not wi. Because
d(vi) < D, |N | < D. Furthermore, d(x) < D for all x ∈ N , so

P (Ei) =
1

d(v)
∗
∏

x∈N(v)

1

d(x)
> c =

1

D
∗
(

1

D

)D

> 0

In order for the basic walk to escape to infinity, this event must be avoided for infinitely many vi.
So the probability p that the basic walk escapes to infinity satisfies p ≤ (1− c) ∗ (1− c) ∗ · · · = 0,
proving that the basic walk cycles with probability 1. �

xxx

Example. A random basic walk on T will always have a higher probability of going downwards than
of going upwards. It is clear that the random basic walk starting at the root will be more likely
to cycle than a random basic walk starting at a vertex lower down on T , since the probability of
returning will always be higher near the root. Thus, we will focus on the case where the initial
vertex is the root. From the root, the initial step is determined because the root has degree 1.

Define an event P to be “for each i, the agent is distance i away from the root at step i” i.e. “all
steps are away from the root.” Note that Pr(escape) ≥ Pr(P) since P is a way for the agent to
escape. Define events Pi to be “at step i the agent is distance i from the root.” Clearly, P0 ⊃ P1 ⊃
P2 ⊃ · · · ⊃ P =

⋂
Pi, so Pr(P) =

∏
Pr(Pn | Pn−1). Because each vertex has only one arc pointing

8 DAVID WHITE

back at the root, Pr(P0) = Pr(P1) = 1,Pr(P2 | P1) = 1− 1
3 ≥ 1− 1

2 ,Pr(P3 | P2) = 1− 1
5 ≥ 1− 1

4 ,
and in general

Pr(Pm | Pm−1) = 1− 1

2m−1 + 1
≥ 1− 1

2m−1
. Thus: Pr(P) ≥

∞∏
m=2

1− 1

2m−1

=
∞∏
n=1

1− 1

2n
and taking logs yields ln(Pr(P)) ≥

∞∑
n=1

ln

(
1− 1

2n

)

Note that the inequality is preserved after applying ln because ln is an increasing function. Proving
Pr(P) > 0 is equivalent to proving this sum is greater than −∞. Recall the Taylor Series expansion
of ln(1− x) around 0:

ln(1− x) = −x− x2

2
− x3

3
− . . . for − 1 ≤ x < 1

Because −1 ≤ 1/2n ≤ 1 for n ≥ 1, this equality holds. Thus:

ln(Pr(P)) ≥ −
∞∑
n=1

1

2n
− 1

2

∞∑
n=1

1

22n
− 1

3

∞∑
n=1

1

23n
− · · · − 1

k

∞∑
n=1

1

2kn
− · · · ≥

∞∑
n=1

−1

2n
+

∞∑
n=1

−1

22n
+

∞∑
n=1

−1

23n
· · · = −1/2

1− 1/2
+
−1/22

1− 1/22
+
−1/23

1− 1/23
· · · ≥

∞∑
n=0

−1

2n
= −2

To show 2−k/(1 − 2−k) ≤ 2−k+1 as needed in the last inequality, note that 1 − 2−k ≥ 1/2 so that
2−k/(1− 2−k) ≤ 2−k/(2−1) = 2−k+1.

Undoing the log shows that Pr(escape)≥ Pr(P) ≥ eln(Pr(P)) ≥ e−2 > 0. This proves there is a
positive chance that the agent escapes, i.e. the random basic walk is transient. �

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Prop1. Fix n and let v be an arbitrary vertex. Because G is infinite, there must be some path in
G of length n which always moves away from v in the graph metric. Let Pn,v be the event that one
such path has the appropriate labels so that a random basic walk starting at v with initial port ` will
move directly away from v along the path for n steps. The probability of Pn,v is a constant, non-zero
number cn = (1/d)n which does not depend on v. Select a sequence of vertices (v1, v2, . . .) which
are all distance at least 2n away from each other, so the events Pn,vi are independent from each
other. Then the probability that none of the events Pn,vi occur is (1−cn)∗(1−cn)∗(1−cn)∗· · · = 0.
This proves there is some vj which has a path of length n going out.

Let w1 = vj . Removing vj from the list (v1, v2, . . .), one can repeat the same argument and conclude
that some other vk must have a path of length n going out, since the probability of not having such
a vk is (1− cn) ∗ (1− cn) ∗ · · · = 0. Set w2 = vk. Repeating this ad infinitum proves that there is
an infinite sequence (w1, w2, . . .) each of which has a path of length n going out. �

TRAVERSALS OF INFINITE GRAPHS WITH RANDOM LOCAL ORIENTATIONS 9

Prop2. Fix n ∈ N and let M denote the first multiple of d which is greater than n. By Proposition
above, there is an infinite sequence of vertices (w1, w2, . . .) each having a path of length M going
out. For each wi there is a constant, nonzero probability kn that this path is actually a spire, i.e.
that the random basic walk will move out to the end of this path, then turn around and return to
wi. Because d divides the length of the path, this spire will be a cycle using M vertices, i.e. the
random basic walk will traverse it back and forth forever. Note that d > 2 is needed in order for
the random basic walk to return along the spire rather than getting trapped in a cycle on the final
two vertices of the spire.

The probability that none of the paths from Proposition above are spires is (1−kn)∗(1−kn)∗· · · = 0.
Thus, there must be some wi which is the first vertex in a cycle of length greater than n. Set z1 = wi

and remove wi from the sequence (w1, w2, . . .). Repeating the argument above proves that there is
some z2 = wj 6= wi which is the first vertex in a cycle of length greater than n. Continuing forever
gives an infinite sequence (z1, z2, . . .) where each zi is the first vertex in a cycle of length greater
than n. �

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Complete. We prove a stronger statement, namely that (1−1/e)∗n of the nodes are expected to be
visited within just the first n−1 steps. Restricting to the first n−1 steps guarantees that cycles are
impossible, since any cycle in a d-regular graph a cycle requires at least d arcs. Label the vertices
0, 1, 2, . . . , n − 1 and assume that the starting vertex v0 is labeled by 0. Consider the sequence of
vertex numbers (v0, v1, v2, . . .) visited by the agent. This sequence cannot have adjacent numbers
equal, since Kn has no loops. Furthermore, this sequence cannot have a pair of adjacent numbers
occur twice, since acyclicity implies no arc is traversed twice.

Let v 6= v0 be a vertex chosen at random. We will prove that the probability that v is visited is
≥ 1− 1/e. The probability that v is visited on step 1 of the agent is Pr(v = v1) = 1/(n− 1), since
there are n − 1 possible steps the agent could take after v0. If v is not visited in step 1, then the
probability that v is visited on step 2 of the agent is Pr(v = v2 | v 6= v1) = 1/(n − 1). Step 3 is
more complicated, because it is possible that v2 = v0, in which case the arc v2 → v1 already has a
label. So there are two ways to get v = v3 given that v has not been visited previously:

Pr(v = v3) = Pr(v = v3 | v2 = v0) ∗ Pr(v2 = v0) + Pr(v = v3 | v2 6= v0) ∗ Pr(v2 6= v0)

=
1

n− 1
∗ 1

n− 2
+

1

n− 1
∗ n− 2

n− 1
>

1

n− 1
∗ 1

n− 1
+

n− 2

n− 1
∗ 1

n− 1
=

1

n− 1

The cases for v4, v5, . . . get even more complicated, but the point remains that 1/(n− 1) is always
a lower bound on the probability that v is first visited in step i + 1. This is because if vi has been
visited k times before, then the existence of these previous visits rules out more of the possible
arcs the agent could follow. This can only increase the probability that the next vertex to be
visited is one the agent has not visited before (e.g. v), and this makes the messy computations
summations which factor in the entire path of the agent unnecessary. Formally, the probability
that v is first visited on the i + 1-st step given that vi has been visited k times previously will be
1/(n − k) ≥ 1/(n − 1). This proves that Pr(v not visited on i-th step) ≤ 1 − 1/(n − 1) for all i,
which implies

Pr(v not visited in first n− 1 steps) =
n−1∏
i=1

Pr(vi 6= v) ≤
(

1− 1

n− 1

)n−1

10 DAVID WHITE

As n → ∞, this bound tends to 1/e, so the probability that v is visited in the first n − 1 steps is
at least 1− 1/e. Thus, the expected number of vertices missed is ≤ n/e and the expected number
of vertices visited is ≥ (1− 1/e) ∗ n. �

xx

Applications: Network routing, rumor routing, searching, query processing, load balancing on
distributed networks, self-stabilization of such networks as a way to counteract transmission failure,
energy savings on large networks, image processing, exploration of unknown terrain, and clustering.
There is an increasing number of monitoring applications which make use of a large network of
small, smart sensors. Many of these applications discussed above rely on simple random walks
because of their simplicity of implementation, savings on time and memory, and local nature. The
random basic walk shares many of these features.

Rumor routing is a compromise between flooding queries and flooding event notifications on a
network. Rumor routing works by creating paths which lead to each event, so queries move on
the network via a simple random walk to find the event path to the correct event. Peer-to-peer
networks are more general than sensor networks or the internet network. Another type of network
is an ad-hoc network, which relies on wireless links between entities rather than infrastructure such
as telephone lines. Due to partial transmission failure, failure of communication links, and noisy
transmission, this is a field where algorithms which can stabilize themselves after a failure are highly
valued.

As many of these applications make use of facts about cover time and load balancing from the
theory of simple random walks, the analogous notions for the random basic walk would need to
be developed. One application of random walks to sensor networks is [6], which focuses on robust
query processing. This paper suggests an application of the random basic walk because only a
constant fraction of the sensor network needs to be visited. Another application is to allow nodes
to switch from active to inactive and vice versa at random times (e.g. to save energy). You can
study routing in this context via constrained random walks on dynamic graphs. You’d need to
develop constrained random basic walks.

One famous algorithm for searching the internet is PageRank. Another is topic-sensitive PageRank,
which computes the stationary probability distribution coming from a simple random walk on
websites.

	1. Background on random walks
	2. Basic Walk
	3. Quasirandom and Self-Avoiding
	4. New Results for exploration with memory
	5. Other locally finite graphs
	6. Finite Graphs
	7. Future Directions
	8. Proofs

