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1. Definitions

Given a set X, an ultrafilter on X is a collection U of subsets of X such that

(1) The empty set is not an element of U

(2) If A,B ⊂ X, A ⊂ B, and A ∈ U , then B ∈ U .

(3) If A,B ∈ U , then A ∩B ∈ U .

(4) If A ⊂ X, then either A ∈ U or (X \A) ∈ U .

Note that axioms 1 and 3 imply that A and X \ A cannot both be elements of U . Also, the first
three axioms tell us that U is a filter on X. A filter U on a set X is an ultrafilter if one of the
following conditions is true.

(1) There is no filter F finer than U , i.e. U ⊂ F ⇒ U = F .

(2) (A ∪B) ∈ U ⇒ A ∈ U or B ∈ U .

(3) For all A ⊂ X, either A ∈ U or X \A ∈ U .

A principal ultrafilter has a least element. A free ultrafilter is a non-principal ultrafilter. Almost
all ultrafilters on an infinite set are free.

2. In Logic

In light of (1) above, ultrafilters on a Boolean algebra can be identified with prime ideals, maximal
ideals, and homomorphisms to the 2-element Boolean algebra {true, false}. This is because maximal
ideals of a Boolean algebra are the same as prime ideals and because given a homomorphism of
a Boolean algebra onto {true, false}, the inverse image of “true” is an ultrafilter, and the inverse
image of “false” is a maximal ideal. Also, if you have a maximal ideal, then its complement is an
ultrafilter and there is a unique surjective homomorphism taking the maximal ideal to “false.” If
you have an ultrafilter, then its complement is a maximal ideal and there is a unique surjective
homomorphism taking it to true. A filter on a Boolean algebra is an ultrafilter iff for all a, b ∈ B,
if a ∧ b ∈ F then a ∈ F or b ∈ F .

Ultrafilters are used to define ultraproducts. An ultraproduct is a quotient of the direct product
of a family of structures by an ultraproduct, i.e.

∏
i∈I Mi/U . The equivalence relation is a b iff

{i ∈ I | ai = bi} ∈ U . An ultrapower is an ultraproduct in which all of the factors Mi are equal.
The hyperreal numbers are an ultraproduct of the real numbers where you get a copy of R for each
n ∈ N with regard to a cofinite ultrafilter over N.
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These appear in model theory, for example to prove that the condition of 3-colorability in a graph is
not finitely axiomatizable. To do this proof, construct graphs that are not 3-colorable but whose ul-
traproduct is. They also give very elegant proofs of the compactness theorem and the completeness
theorem. Keisler’s ultrapower theorem gives an algebraic characterization of the semantic notion of
elementary equivalence. The Robinson-Zakon presentation of the use of superstructures and their
monomorphisms to construct nonstandard models of analysis is also simplified with ultraproducts.
Los’s Theorem (pronounced “Wash”) states that any first-order formula is true in the ultraproduct
iff {i | the formula is true in Mi} ∈ U .

3. In Set Theory

Ultrafilters and finitely additive (0,1)-measures (i.e. a content mapping into [0, 1]) are in 1-1
correspondence: any ultrafilter corresponds to µ−1(1) for a unique µ. Define µ(A) = 1 if A ∈ U
and 0 otherwise.

Every infinite set has a non-trivial ultrafilter. To show this, we first show that any filter on an
infinite set extends to an ultrafilter (indeed, every collection with the finite intersection property
extends to an ultrafilter). This is accomplished using Zorn’s Lemma to get a maximal proper filter
containing F . Applying maximality, we can easily prove this is an ultrafilter. Next, every infinite
set has a (0,1)-measure. The proof notes that the set of cofinite subsets is a filter, which we can
extend to an ultrafilter U . This gives a slick proof of the DeBruijn-Erdos theorem that a graph is
k-colorable iff every finite subgraph is k-colorable (for k ∈ N).

U is an ultrafilter on S iff P (S) \ U is an ideal (i.e. A ⊂ B,B ∈ I ⇒ A ∈ I and I closed under
finite unions). It is possible to put a pre-order on the class of ultrafilters of a set X. This is called
the Rudin-Keisler ordering.

4. In topology

A filter is a generalization of a net, which is a generalization of a sequence. They are used to define
convergence in messy spaces. Sequences require the space to be first countable. Nets allow more
index sets, but still require them to be directed sets. Filters can be thought of as sets build from
several nets. To say that filter base B converges to x, means that for every neighbourhood U of
x, there is a B0 ∈ B such that B0 ⊂ U . To say that x is a cluster point for a filter base B on X
means that for each B0 ∈ B and for each neighborhood U of x in X, B0 ∩ U 6= ∅.

* X is a Hausdorff space if and only if every filter base on X has at most one limit.

* X is compact if and only if every filter base on X clusters.

* X is compact if and only if every filter base on X is a subset of a convergent filter base.

* X is compact if and only if every ultrafilter on X converges.

Thus, every ultrafilter on a compact Hausdorff space converges to exactly one point. Note also that
continuous and onto maps preserve ultrafilters.

The set G of all ultrafilters of a poset P can be topologized: for all a ∈ P , let Da = {U ∈ G | a ∈ U}.
When P is a Boolean algebra the set of all Da is a base for a compact Hausdorff topology on G.
When P is the power set of a set S, the resulting topological space is the StoneCech compactification
of a discrete space of cardinality |S|. Thus, points of the Stone-Cech compactification can be thought
of as ultrafilters.
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5. Extra Section

A non-empty subset F of a partially ordered set (P,≤) is a filter if the following conditions
hold:

(1) For every x, y ∈ F , there is some element z ∈ F , such that z ≤ x and z ≤ y. (F is a filter
base)

(2) For every x ∈ F and y ∈ P , x ≤ y implies that y ∈ F . (F is an upper set)

(3) A filter is proper if it is not equal to the whole set P . This is often taken as part of the
definition of a filter.

Because of the second axiom, the third is equivalent to ∅ /∈ F . Note that these axioms also imply
that filters have the finite intersection property.

In the special case of a filter on a set S, non-emptiness is equivalent to S ∈ F and property 1 is
equivalent to closure under intersections. Thus, the only difference between a filter and an ultrafilter
on a set is the fourth axiom of ultrafilters regarding A or Ac ∈ U .
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