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1. Motivation from Equivariant Homotopy Theory

A big goal of algebraic topology is to understand how homotopy theory interacts with algebraic structure.
For today we use model categories as our language for homotopy theory and operads as our language for
algebra. We’ll work on the subgoal of understanding when Bousfield localization preserves the structure of
algebras over an operad.

This project was motivated by a step in the proof of the Kervaire Invariant One Theorem. The authors needed
a 256-periodic Ω = D−1MU(4) for some D. They were working with MU considered as a commutative
equivariant spectrum and needed Ω to be commutative, i.e. have multiplicative norms, i.e. to have π?
forming a Tambara functor. This was needed for reasons related to the spectral sequence computations
which occupy the technical details of the proof.

Let G be a finite group and let S G be the model category of G-spectra. Recall that for every family of
subgroups F of G there is a model structure on TopG where weak equivalences and fibrations are maps
such that (−)H is again such a map in Top for all H ∈ F . For each family there is a universal F -space EF
which is a G-CW complex such that (EF)H is contractible for H ∈ F and empty otherwise. The family
model structure on Top has generating cofibrations (G/H×S n−1)+ → (G/H×Dn)+ for all n and all H ∈ F ,
and the analogous generating trivial cofibrations. These family model structures are also present in S G, and
can be defined by similarly changing the generating (trivial) cofibrations. We will make use of these family
model structures at the end of the talk.

Sadly, not every localization of an equivariant commutative ring spectrum is commutative.

Example (Hill, Oberwolfach). Let G be a (non-trivial) finite group.

Consider the reduced real regular representation ρ = R[G]/R[e], i.e. ρG = ρG − 1 where 1 means the trivial
representation R[e]. Now, ρG takes any subgroup H to [G : H] many copies of H so ρG |H = [G : H]ρH .
Putting these facts together, we see that ρG |H = [G : H]ρH + ([G : H]1 − 1).

Now consider the representation sphere S ρ and the inclusion aρ : S 0 → S ρ. Thinking of S 0 as {0,∞} we
see that the only fixed points of this map are 0 and∞, so it’s not equivariantly trivial. Consider the spectrum
E = S 0[a−1

ρ
]. We will show that this spectrum does not admit maps from the norms of its restrictions, and

hence cannot be commutative. The reason is that for all proper H < G, resH(E) is contractible.

The reason resH(E) is contractible as an H-spectrum is our computation above regarding ρG |H . Because
[G : H] − 1 is a number k greater than 0 we have resHS ρG = (S ρH )#[G:H] ∧ S k. This means that as an
H-spectrum it is contractible, because there is enough space in the S k part to deform it to a point.

Now, a key property of commutative equivariant ring spectra is the existence of multiplicative norms. These
functors NG

H : S H → S G are left adjoint to the restriction resH on the category of commutative ring
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spectra. Thus, if E were commutative we would have a ring homomorphism ∗ ' NG
HresHE → E. This is

not a ring map unless E to be contractible, and we know E is not contractible because aρ fixes 0 and∞.

Here is an equivalent approach, which Hill presented at Oberwolfach. Let F be the family of proper
subgroups of G and let ẼF be the cofiber of the natural map from the classifying space EF+ to S 0. This
ẼF is a localization of S 0 obtained by killing all maps from induced cells. If G is finite then it is our E. It’s
not contractible because EF+ is not homotopy equivalent to S 0, because F doesn’t contain G. So while any
restriction to a proper subgroup views them to be homotopy equivalent, they are not homotopy equivalent in
S G.

In this second approach it becomes clear that this example generalizes to other families of subgroups, prov-
ing that in any family model structures (other than F = {e}, which recovers naive spectra) one can similarly
disprove the preservation of commutativity by localization.

�

The take-away message from this example is that we need a hypothesis on the maps being localized so
that equivariant commutativity is preserved. Viewed a certain way, what is failing above is the ability
of the localization functor to commute with equivariant suspension with respect to certain representation
spheres (namely, those which don’t see all the information in G, but only see subgroup information). When
localizations kill representation spheres bad things happen. A similar example, due to Carles Casacuberta,
proves that not all localizations of spectra preserve ring structure. This is the example of the Postnikov
Section:

The nth Postnikov section functor Pn is a homotopical localization for all n but does not commute with
suspension. Furthermore, if R is nonconnective, then P1R does not admit a ring spectrum structure (not even
the structure of a ring in the homotopy category). The reason is that if it were a ring then multiplication by the
unit S would need to be a homotopy equivalence. But the unit map ν : S → P1R is null since π0(P1R) = 0.
The real issue here is that suspension and localization do not commute, and nonconnective ring spectra can
feel the difference. We’ve chopped off the dimension where the unit is supposed to live.

Casacuberta gets around this by placing hypotheses on the localization (he calls the well-behaved local-
izations “closed”) and similarly Hill and Hopkins get around Hill’s example by placing hypotheses on the
maps:

Theorem 1 (Hill-Hopkins). If for all acyclics Z for a localization L and for all subgroups H, NG
HZ is acyclic,

then for all commutative G-ring spectra R, L(R) is a commutative G-ring spectrum.

Let R be a monoid in the genuine model structure for G-spectra. If the norm functor NG
H(−) preserves

R-acyclicity then the Bousfield localization with respect to R-equivalences preserves commutativity.

Here commutativity can mean either strict commutativity (algebras over the operad Com) or E∞-structure
where E∞ is the linear isometries operad (a model can be taken with E∞[n] = EGΣn), because in S G there is
rectification between these operads, as recently proven by Blumberg and Hill in the appendix of their 2013
paper.

This example and theorem open a more general question: find conditions on a general model categoryM
and on a set of maps C so that the Bousfield localization LC preserves commutativity. We will answer this
question, and when we specialize our machinery toM = S G we’ll in fact characterize localizations which
preserve commutative structure. This will show us yet another reason why Hill’s example is failing. In
particular, it will fail because for the set of maps being inverted we have that C ⊗ (G/H)+ is not contained
in the C-local equivalences (because it contains the zero map, because proper H sees C to be trivial even
though it is not). This makes it easy to see the correct condition on C so that LC viewed in the family model
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structures preserves commutativity. The condition will be that C ⊗ (G/H)+ ⊂ C-local equivalences for all
H ∈ F .

2. Background: monoidal model categories, operads, Bousfield localization

Recall that we care about model categoriesM because the passage to Ho(M) works (this functor inverts the
weak equivalences W ) and we have some control over the resulting maps because of cofibrant and fibrant
replacement. Let Q and F be the cofibrations and fibrations. If we’re going to talk about commutative
monoids then we need to have a monoidal structure on M. It turns out that we also need a compatibility
hypothesis betweenM and the monoidal structure, as explained in chapter 4 of Hovey’s book. Let ⊗ denote
the monoidal product.

Given f : A→ B and g : X → Y , define the pushout product f � g to be the corner map in
A ⊗ X //

�� u

A ⊗ Y

��

��

B ⊗ X //

..

Q2

$$
B ⊗ Y

A monoidal model category is a model category which is also a monoidal category and satisfies:

Pushout product axiom: if f , g ∈ Q then f � g ∈ Q. Additionally, if either is in W then f � g ∈ W .

Unit Axiom: If Z is cofibrant then QS ⊗ Z → S × Z � Z is a weak equivalence.

These axioms assure you that Ho(M) is a monoidal category. We’ll be studying objects inM which carry
the additional algebraic structure encoded by an operad, e.g. monoids, commutative monoids, A∞ or E∞
algebras, Lie algebras, etc. Recall that an operad inM is a symmetric sequence P = (P(n))n∈N of objects
in M (i.e. each P(n) has an action of the symmetric group Σn) satisfying some axioms. The object P(n)
can be thought of as parameterizing maps of arity n. There is a notion for cofibrancy of an operad which
comes down to requiring the left lifting property of ∅→ P with respect to maps which are levelwise trivial
cofibrations in

∏
n∈NM

Σn whereMΣn is the model category of objects inM with a Σn action.

A common strengthening of the unit axiom is the Resolution Axiom, which states that cofibrant objects are
flat, i.e. whenever f ∈ W and X is cofibrant, then X ⊗ f ∈ W .

What if I want to invert some maps C 1 W ? Because the homotopy category is nice (admits a calculus of
fractions), we can do:
M

��

// ?????

��
Ho(M) // Ho(M)[C−1]

We’d like a model category LCMwhich actually sits above Ho(M)[C−1]. Because all three categories above
have the same objects, its objects are determined. It’s morphisms will be the same as those inM, but we
want maps in C to become isomorphisms in Ho(M)[C−1] so we need them to be weak equivalences in
LCM. So this category must have a different model structure, whereW′ = 〈C ∪W〉 and clearlyW ⊂W′.
You can’t change onlyW because it’ll screw up the axioms. We want to keep the cofibrations fixed so we
can build things out of them and have the two model structures related, so we have to shrink the fibrations:
F ⊃ F ′. Bousfield’s Theorem (1978) says you can do this and you still get a model structure, but you have
to be careful with how you generateW′ from C. Details are in Hirschhorn’s book.
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The identity mapsM
→
← L fM are a Quillen adjoint pair and prove that LCM satisfies a universal property

as the ”closest” model category toM in which C is contained in the weak equivalences. The fibrant objects
in LCM are the C-local objects, and local equivalences between local objects are weak equivalences in the
original model category. Bousfield localization gives a Quillen pair (LC ,UC), which are both the identity
functors on objects and morphisms, and these induce (LH

C ,U
H
C ) on the homotopy level.

Our goal is to find conditions onM and C under which Bousfield localization preserves P-algebra structure,
i.e. if [E] ∈ Ho(M) has a representative E ∈ P-alg then we’re asking for (UH

f ◦ LH
f )([E]) to have a represen-

tative in P-alg. Because we know that Bousfield localization works via the derived functors of the identity,
this is asking for some P-algebra Ẽ which is weakly equivalent to RCQE

3. Results

Theorem 2. LetM be a monoidal model category and let P be an operad valued inM. If P-algebras in
M and in LC(M) inherit model structures such that the forgetful functors back toM and LC(M) are right
Quillen functors, then LC preserves P-algebras up to weak equivalence. For well-behaved P there is a list
of easy to check conditions onM and C guaranteeing these hypotheses hold.

Proof. Here “inherit” means that a map of P-algebras f is a weak equivalence (resp fibration) iff f is a weak
equivalence (resp fibration) in M. Preservation of strict commutative monoids means that there is some
P-algebra Ẽ which is homotopy equivalent in M to LC(E). A similar problem is addressed in [?] and there
the authors required the map E → Ẽ to be a map of P-algebras. This worked because they assumed E to be
cofibrant as a P-algebra, and we do not. We remark below that if we add this assumption then we can add
their conclusion as well.

Let RC be fibrant replacement in LC(M), RC,m be fibrant replacement in P−alg(LC(M)), and Qm be cofibrant
replacement in P − alg(M). In our proof, Ẽ will be RC,mQm(E). Because Q is the left derived functor of the
identity adjunction between M and LC(M), and RC is the right derived functor of the identity, we know that
LC(E) ' RCQ(E). We must therefore show RCQ(E) ' RC,mQm(E).

The map QmE → E is a weak equivalence in P − alg(M), hence inM. The map QE → E is also a weak
equivalence inM and lifting gives a map from QE → QmE (necessarily a weak equivalence inM by the 2
out of 3 property).

Since QmE is a P-algebra inM it must also be a P-algebra in LCM, since the monoidal structure of the two
categories is the same. We may therefore construct a lift:

QmE� _

��

// RC,mQmE

����
RCQmE //

88

∗

In this diagram the left vertical map is a weak equivalence in LCM and the top map is a weak equivalence
in P − alg(LCM). Because this model category P − alg(LCM) inherits weak equivalences from LCM this
map is a weak equivalence in LCM. Therefore, by the 2 out of 3 property, the lift is a weak equivalence in
LCM. Using this lift we can draw the following diagram:
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QE //

��

QmE

��

xx
RCQmE

&&
RCQE //

99

RC,mQmE

We showed above that QE → QmE is a weak equivalence in M. Thus, RCQE → RCQmE is a weak
equivalence in LCM. We then proved RCQmE → RC,mQmE is a weak equivalence in LCM. Thus, by the
2 out of 3 property, RCQE → RC,mQmE is a weak equivalence in LCM. All the objects in the triangle are
fibrant in LCM so these C-local equivalences are actually weak equivalences inM.

The triangle commutes because the bottom map is defined as the composite. The square commutes in HoM
and demonstrates that RCQE is isomorphic in HoM to the P-algebra RC,mQmE. �

This proof also holds if P-algebras only form a semi-model category. In a semi-model category all ob-
jects admit cofibrant replacement, but only cofibrant objects admit fibrant replacement. Lifting of a trivial
cofibration against a fibration only holds if the domain is cofibrant. Everywhere we’ve applied fibrant re-
placement it’s been to an object which is cofibrant in the underlying category, so that’s no problem. The
lifting argument is for a map which has cofibrant domain, so that’s fine too. Thus, even if the monoid axiom
is not preserved we can still say P-alg is a semi-model category.

It’s a bit unfair to just assume P-algebras form a model category. After all, it can be very difficult to get your
hands on LCM. We’d rather have hypotheses onM and C to make sure this situation happens. For cofibrant
operads P we can use the following theorem due to Spitzweck:

Theorem 3. Suppose P is a Σ-cofibrant operad and M is a monoidal model category. Then P-alg is a
semi-model category which is a model category if P is cofibrant andM satisfies the monoid axiom.

We see then that if we only care about preserving structure over a cofibrant operad P then we only need to
know when LC(M) is a monoidal model category. We can characterize when this occurs.

Theorem 4. AssumeM is a left proper, monoidal model category satisfying the resolution axiom. Then

LC(M) satisfies the resolution axiom and pushout product axiom if and only if for all cofibrant K, the maps
C ⊗ idK are weak equivalences in LC(M)

If M is tractable then it suffices to check this on K running through the domains and codomains of the
generating (trivial) cofibrations

Thus, we have characterized monoidal localizations and there are examples of localizations which fail to be
monoidal, e.g. in Ch(R[G]) when a localization kills a representation sphere.

Corollary 5. If S G a Bousfield localization preserves genuine commutativity iff C ⊗ (G/H)+ is a C-local
equivalence for all H.

We see where our opening example failed: applying C ⊗ − killed all G/H and we would have ended up
inverting the zero map if the condition of the corollary was satisfied.

What if you don’t care about all the norms, but rather only some of them?

Recall that non-equivariantly an operad P is said to be E∞ if P(n) is contractible and Σn acts freely. So the
linear isometries operad and little cubes operad are both E∞. Note that this does not mean the operad is
cofibrant as an operad, only Σ-cofibrant. The conventional wisdom that E∞ means cofibrant replacement for
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Com is only true in the model category of collections, not the model category of operads. If you want an E∞
operad which is honestly cofibrant you need to use the Fulton-MacPherson operad. Thanks to Spitzweck’s
result, we don’t need to be overly careful about the difference between cofibrant and Σ-cofibrant in order
to conclude preservation of algebra structure by localization, so we’ll choose the E∞ operad with E∞[n] =

EΣn.

Equivariantly, this operad encodes naive E∞ structure. Genuine E∞ structure is encoded by any operad P
where P(n) is an EGΣn, i.e. a space with a G×Σn-action which is characterized up to G×Σn-weak equivalence
by the property that for H < G × Σn, we have (EGΣn)H = ∅ if H ∩ Σn , {e} and (EGΣn)H ' ∗ otherwise.
This space EGΣn can be defined as the total space of the universal G-equivariant principle Σn-bundle. The
following result is joint with Javier Gutierrez, but may have been known previously:

Theorem 6. The category of simplicial (resp. topological) G-operads can be given a model structure via
transfer from the category of collections on G-spaces. Neither Com nor the naive E∞ operads are cofibrant.
Their Σ-cofibrant replacement EG

∞ can be described by EG
∞[n] = EGΣn.

Returning to the question of handling only some of the norms, the recent paper of Blumberg-Hill proves
that this type of algebraic structure is captured by the class of N∞ operads. Independently, Javier and I
were studying operads based on families. There is a collection EF Σn whose nth space is the total space
of a universal F -equivariant principle Σn-bundle. When using the family model structure on G-spaces this
becomes a cofibrant collection, and it’s equivalent as a collection to an Blumberg-Hill N∞ operad because
of the universal property of the nth space.

Thus, the general preservation theorem specializes to tell us that Bousfield localization preserves this N∞
structure iff C ⊗ (G/H)+ is a C-local equivalence for all H ∈ F . The proof is to work in the family model
structure on spaces and the corresponding semi-model structure on Op(TopF ). Mike’s example can be
generalized to a collection of examples demonstrating necessity of this hypothesis at each level in the tower
of EF

∞ ’s interpolating between E∞ and EG
∞. His original example is maximally bad, i.e. drops from any

norm structure all the way down to E∞, but there are examples which make any drop you like, e.g. from
some EF

∞ to some other EF ′

∞ .

4. Strict Commutativity

For a general model category M it’s not true that Com and E∞ encode the same algebras. That fact is
special to spectra or other situations where rectification occurs. Checking the hypotheses of Theorem 2
for the operad Com = (∗)n∈N requires a general theorem for when commutative monoids inherit a model
structure. For monoids this is done by Schwede-Shipley and the hypothesis needed on M is the monoid
axiom, which says that for all objects X, (idX ⊗ (Q ∩ W )) − cell ⊂ W . Here applying cell to a class of
maps means taking its closure under transfinite compositions and pushouts. For commutative monoids the
correct hypothesis is the commutative monoid axiom: If g is a (trivial) cofibration then g�n/Σn is a (trivial)
cofibration.

Theorem 7. If a monoidal model category satisfies the monoid axiom and the commutative monoid axiom
then commutative monoids form a model category and the forgetful functor is right Quillen.

This result generalizes a theorem of Lurie’s from DAGIII, i.e. my hypothesis is weaker.

Examples:

(1) Ch(k) where char(k) = 0. Lurie had this too. More generally, can get any Q-algebra

(2) sSet - this fails Lurie’s hypothesis. My proof uses the fact that cofibrations are monomorphisms
to get the bit about cofibrations. For the weak equivalences part we rely on a clever trick of Dror
Farjoun.
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(3) Positive (Flat) model structure on symmetric spectra. Lurie doesn’t apply here. He acknowledges
his error in DAGIII 4.3.25 in Math Overflow post 146438. My proof needed a technical lemma that
it was sufficient to check the commutative monoid axiom on the generators. Luis Pereira proved the
same for Lurie’s hypothesis

(4) Top - this fails for Lurie. It works for me because the proof of Farjoun generalizes to any Cartesian
concrete category, and with a bit more care we don’t need cofibrations to be monomorphisms either,
because we have our hands on the generators.

(5) Positive orthogonal (equivariant) spectra - using again that it’s sufficient to check it on the generators

(6) Positive motivic symmetric spectra - I’m developing this category with Markus Spitzweck.

If we drop the monoid axiom we only get a semi-model structure on Com-alg, but that is enough for preser-
vation by localization. I have a theorem about when localization preserves the monoid axiom but it’s unnec-
essary here for this reason. Anyway, in a combinatorial model category this this result adds no hypotheses at
all to the maps being inverted. It simply needs thatM is h-monoidal and satisfies a compactness hypothesis
on the generating cofibrations I. This hypothesis holds in all the examples.

Turning now to when localization preserves the commutative monoid axiom, recall that commutative monoids
are built via the functor S ym(X) = S ∧ X ∧ X2/Σ2 ∧ . . . . For monoidal structure we needed localization to
play well with tensoring. Now we’ll need it to work with Sym:

Theorem 8. SupposeM satisfies the commutative monoid axiom. If Sym(−) preserves weak equivalences
in LC(M) then LC(M) satisfies the commutative monoid axiom.

Combining this with our general preservation result gives:

Corollary 9. Truncations in sSet, Top, and Ch(k) all preserve strict commutative monoids. Via Farjoun’s
trick, any monoidal localization in sSet will also preserve, e.g. LE for a homology theory E.

I hope to investigate these LE further and recover classical theorems of Bousfield using this general machin-
ery.

Remark: the commutative monoid axiom generalizes to other non-cofibrant P. We saw already that if P
is cofibrant then basically no hypotheses are needed onM to get admissibility. Harper has a result that if
all symmetric sequences in M are projectively cofibrant then all operads are admissible. This is a strong
hypothesis. I don’t know of any examples other than Ch(k) which satisfy it. My result shows that you can
pay the cofibrancy price partially on M and partially on P, e.g. to get levelwise cofibrant P you need for
all X ∈ MΣn which are cofibrant inM one has X ⊗Σn f �n is a trivial cofibration. There is also a generalizes
version of the regular monoid axiom, which requires that applying cell to a certain class of maps results in
a weak equivalence. For details see my research statement. In the future I hope to study when localization
preserves these axioms.
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