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1. Abstract

We give conditions on a monoidal model category M and on a set of maps S so that the Bousfield localization
of M with respect to S preserves the structure of algebras over various operads. This problem was motivated
by an example due to Mike Hill which demonstrates that for the model category of equivariant spectra, even
very nice localizations can fail to preserve commutativity. As a special case of our general machinery we
characterize which localizations preserve genuine equivariant commutativity. Our results are general enough
to hold for non-cofibrant operads as well, and we will demonstrate this via a treatment of when localization
preserve strict commutative monoids. En route we will introduce the commutative monoid axiom, which
guarantees us that commutative monoids inherit a model structure. If there is time we will say a word about
the generalizations of this axiom to other non-cofibrant operads, and about how these generalized axioms
interact with Bousfield localization.

2. Pre-Talk: Motivation from Equivariant Homotopy Theory

A big goal of algebraic topology is to understand how homotopy theory interacts with algebraic structure.
For today we use model categories as our language for homotopy theory and operads as our language for
algebra. We’ll work on the subgoal of understanding when Bousfield localization preserves the structure of
algebras over an operad.

Many proofs in recent years have demonstrated the value of working on the point-set level rather than in the
homotopy category, so that’s why we use model categories. Because we need to be doing algebra, we need a
monoidal structure. It was already seen in EKMM that there would need to be a compatibility between this
monoidal structure and the homotopy theory. This compatibility is encoded in the definition of a monoidal
model categories (explored in Hovey’s book). We’ll be investigating how Bousfield localization (explored
by Hirschhorn’s book) interacts with algebras over various operads in that context.

This project was motivated by a step in the proof of the Kervaire Invariant One Theorem. The authors needed
a 256-periodic Ω = D−1MU(4) for some D. They were working with MU considered as a commutative
equivariant spectrum and needed Ω to be commutative, i.e. have multiplicative norms, i.e. to have π?
forming a Tambara functor. This was needed for reasons related to the spectral sequence computations
which occupy the technical details of the proof.

Let G be a finite group and let S G be the model category of G-spectra. Recall that for every family of
subgroups F of G there is a model structure on TopG where weak equivalences and fibrations are maps
such that (−)H is again such a map in Top for all H ∈ F . For each family there is a universal F -space EF
which is a G-CW complex such that (EF)H is contractible for H ∈ F and empty otherwise. The family
model structure on Top has generating cofibrations (G/H×S n−1)+ → (G/H×Dn)+ for all n and all H ∈ F ,
and the analogous generating trivial cofibrations. These family model structures are also present in S G, and

Date: January 7, 2014.
1



2 DAVID WHITE

can be defined by similarly changing the generating (trivial) cofibrations. We will make use of these family
model structures at the end of the talk.

Sadly, not every localization of an equivariant commutative ring spectrum is commutative.

Example (Hill, Oberwolfach). Let G be a (non-trivial) finite group.

Consider the reduced real regular representation ρ = R[G]/R[e], i.e. ρG = ρG − 1 where 1 means the trivial
representation R[e]. Now, ρG takes any subgroup H to [G : H] many copies of H so ρG |H = [G : H]ρH .
Putting these facts together, we see that ρG |H = [G : H]ρH + ([G : H]1 − 1).

Now consider the representation sphere S ρ and the inclusion aρ : S 0 → S ρ. Thinking of S 0 as {0,∞} we
see that the only fixed points of this map are 0 and∞, so it’s not equivariantly trivial. Consider the spectrum
E = S 0[a−1

ρ
]. We will show that this spectrum does not admit maps from the norms of its restrictions, and

hence cannot be commutative. The reason is that for all proper H < G, resH(E) is contractible.

The reason resH(E) is contractible as an H-spectrum is our computation above regarding ρG |H . Because
[G : H] − 1 is a number k greater than 0 we have resHS ρG = (S ρH )#[G:H] ∧ S k. This means that as an
H-spectrum it is contractible, because there is enough space in the S k part to deform it to a point.

Now, a key property of commutative equivariant ring spectra is the existence of multiplicative norms. These
functors NG

H : S H → S G are left adjoint to the restriction resH on the category of commutative ring
spectra. Thus, if E were commutative we would have a ring homomorphism ∗ ' NG

HresHE → E. This is
not a ring map unless E to be contractible, and we know E is not contractible because aρ fixes 0 and∞.

Here is an equivalent approach, which Hill presented at Oberwolfach. Let F be the family of proper
subgroups of G and let ẼF be the cofiber of the natural map from the classifying space EF+ to S 0. This
ẼF is a localization of S 0 obtained by killing all maps from induced cells. If G is finite then it is our E. It’s
not contractible because EF+ is not homotopy equivalent to S 0, because F doesn’t contain G. So while any
restriction to a proper subgroup views them to be homotopy equivalent, they are not homotopy equivalent in
S G.

In this second approach it becomes clear that this example generalizes to other families of subgroups, prov-
ing that in any family model structures (other than F = {e}, which recovers naive spectra) one can similarly
disprove the preservation of commutativity by localization.

�

The take-away message from this example is that we need a hypothesis on the maps being localized so
that equivariant commutativity is preserved. Viewed a certain way, what is failing above is the ability
of the localization functor to commute with equivariant suspension with respect to certain representation
spheres (namely, those which don’t see all the information in G, but only see subgroup information). When
localizations kill representation spheres bad things happen. A similar example, due to Carles Casacuberta,
proves that not all localizations of spectra preserve ring structure. This is the example of the Postnikov
Section:

The nth Postnikov section functor Pn is a homotopical localization for all n but does not commute with
suspension. Furthermore, if R is nonconnective, then P1R does not admit a ring spectrum structure (not even
the structure of a ring in the homotopy category). The reason is that if it were a ring then multiplication by the
unit S would need to be a homotopy equivalence. But the unit map ν : S → P1R is null since π0(P1R) = 0.
The real issue here is that suspension and localization do not commute, and nonconnective ring spectra can
feel the difference. We’ve chopped off the dimension where the unit is supposed to live.
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Casacuberta gets around this by placing hypotheses on the localization (he calls the well-behaved local-
izations “closed”) and similarly Hill and Hopkins get around Hill’s example by placing hypotheses on the
maps:

Theorem 1 (Hill-Hopkins). If for all acyclics Z for a localization L and for all subgroups H, NG
HZ is acyclic,

then for all commutative G-ring spectra R, L(R) is a commutative G-ring spectrum.

Here commutativity can mean either strict commutativity (algebras over the operad Com) or E∞-structure
where E∞ is the linear isometries operad (a model can be taken with E∞[n] = EGΣn), because in S G there is
rectification between these operads, as recently proven by Blumberg and Hill in the appendix of their 2013
paper. The hypothesis in the theorem is precisely what is needed to make the EKMM proof (via the skeletal
filtration) go through.

This example and theorem open a more general question: find conditions on a general model categoryM
and on a set of maps C so that the Bousfield localization LC preserves commutativity. We will answer this
question, and when we specialize our machinery toM = S G we’ll in fact characterize localizations which
preserve commutative structure. This will show us yet another reason why Hill’s example is failing. In
particular, it will fail because for the set of maps being inverted we have that C ⊗ (G/H)+ is not contained
in the C-local equivalences (because it contains the zero map, because proper H sees C to be trivial even
though it is not). This makes it easy to see the correct condition on C so that LC viewed in the family model
structures preserves commutativity. The condition will be that C ⊗ (G/H)+ ⊂ C-local equivalences for all
H ∈ F .

3. Background: monoidal model categories, operads, Bousfield localization

Recall that we care about model categoriesM because the passage to Ho(M) works (this functor inverts the
weak equivalences W ) and we have some control over the resulting maps because of cofibrant and fibrant
replacement. Let Q and F be the cofibrations and fibrations. If we’re going to talk about commutative
monoids then we need to have a monoidal structure on M. It turns out that we also need a compatibility
hypothesis betweenM and the monoidal structure, as explained in chapter 4 of Hovey’s book. Let ⊗ denote
the monoidal product.

Given f : A→ B and g : X → Y , define the pushout product f � g to be the corner map in
A ⊗ X //

�� u

A ⊗ Y

��

��

B ⊗ X //

..

Q2

$$
B ⊗ Y

A monoidal model category is a model category which is also a monoidal category and satisfies:

Pushout product axiom: if f , g ∈ Q then f � g ∈ Q. Additionally, if either is in W then f � g ∈ W .

Unit Axiom: If Z is cofibrant then QS ⊗ Z → S ⊗ Z � Z is a weak equivalence.

These axioms assure you that Ho(M) is a monoidal category. We’ll be studying objects inM which carry
the additional algebraic structure encoded by a symmetric operad, e.g. monoids, commutative monoids, A∞
or E∞ algebras, Lie algebras, etc. All operads today are symmetric.

Recall that an operad in M is a symmetric sequence P = (P(n))n∈N of objects in M (i.e. each P(n) is in
MΣn i.e. has an action of the symmetric group Σn) satisfying some axioms. The object P(n) can be thought
of as parameterizing maps of arity n. There is a notion for cofibrancy of an operad which comes down to
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requiring the left lifting property of ∅ → P with respect to maps which are levelwise trivial fibrations in∏
n∈NM

Σn whereMΣn is the model category of objects inM with a Σn action.

Formally...

A symmetric operad is a sequence (P(n))n∈N, with a right action ∗ of the symmetric group Σn on P(n), an
identity element 1 ∈ P(1) and compositions maps ◦ satisfying the above associative and identity axioms, as
well as equivariance, i.e. given si ∈ Σki and t ∈ Σn:

(θ ∗ t) ◦ (θt1, . . . , θtn) = (θ ◦ (θ1, . . . , θn)) ∗ t;
θ ◦ (θ1 ∗ s1, . . . , θn ∗ sn) = (θ ◦ (θ1, . . . , θn)) ∗ (s1, ..., sn)

A morphism of symmetric operads f : P → Q consists of a sequence ( fn : P(n) → Q(n))n∈N such that
f (1) = 1, f (θ ◦ (θ1, . . . , θn)) = f (θ) ◦ ( f (θ1), . . . , f (θn)), and f (x ∗ s) = f (x) ∗ s.

From now on we use the word operad to refer to symmetric operads. Both types of operad come with maps
◦i : P(m)×P(n)→ P(m−1 + n) which take ( f , g) to a function where g is plugged into the i-th spot of f , i.e.
evaluate f on the first i − 1 variables, fi ◦ g on the next n variables, and f on the rest of the variables.

Examples:

(1) Ass is the operad encoding associativity. Ass[n] = Σn

(2) Com is the operad encoding strict commutativity. Com[n] = ∗

(3) L is the linear isometries operad. If we fix a universe U then the nth space of L is L (Un,U), the
space of linear isometries from Un to U.

(4) An E∞ operad has P(n) contractible and Σn acts freely. So the linear isometries operad and little
cubes operad are both E∞.

I mostly care about operads for the categories of algebras they encode. An algebra over an operad is an
object A ∈ C equipped with coherent maps P(n) × An → A. More compactly, an algebra over an operad
is a map of operads from P → EndA = (C(An, A))n∈N. Even more compactly, these objects come with
morphisms P ◦ A → A, but I don’t want to get into the circle product. These objects form a category, with
morphisms P-algebra homomorphisms (maps which respect this structure).

If I want to do homotopy theory with P-algebras then I’ll want them to inherit a model structure. Thankfully,
algebras over an operad are encoded by a certain monad:

P :M↔ P − alg(M) : U where P(X) =
∐

n(P(n) ⊗ X⊗n)

Here U is the forgetful functor and P is the free algebra functor. If we wish to place a model structure on
P-alg we will want it to be compatible with the model structure onM. In particular, we want the forgetful
functor to be right Quillen. So we need the model structure on P-alg to have weak equivalences and fibrations
maps which are such as maps inM. Cofibrations are therefore determined by the lifting property.

It’s not always true that the model structure onM can be passed across this adjunction. Sometimes it can.
At the bare minimum we needM to be cofibrantly generated, and if the generating maps are I and J then the
generators for P-alg are P(I) and P(J). Let’s work through an example to see what kind of hypotheses are
needed onM and P for this to work. Consider the following general lemma from Schwede-Shipley:

Lemma 2 (Lemma 2.3). SupposeM is cofibrantly generated and T is a monad which commutes with filtered
direct limits. If the domains of T (I) and T (J) are small relative to T (I)-cell and T (J)-cell respectively and
EITHER

(1) T (J)−cell⊂ W , or
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(2) All objects are fibrant and every T-algebra has a path object (factoring δ : X → X ⊗ X into
'
↪→�)

then T-alg inherits a cofibrantly generated model structure with fibrations and weak equivalences created
by the forgetful functor toM.

One half of lifting comes for free, 2 out of 3 and retracts are inherited fromM, so only factorization must be
proven. If P preserves smallness then the small object argument is used to get the generators above and to
get cofibration-trivial fibration factorization. For the other factorization axiom we need to know that when
every homomorphism p which is a transfinite composition of pushouts of coproducts of maps of the form
P( f ) where f is a trivial cofibration in M has p being a weak equivalence in M (hence in P − alg(M)).
Once you have this you get the other half of lifting by the retract argument.

Schwede-Shipley prove that this extra condition can be deduced if every object ofM is fibrant and if every
P-algebra has a path object (using the retract argument). They also generalize Crans’s result to algebras over
a monad. A great deal of this theory has been worked out in the case where all objects are fibrant by Berger
and Moerdijk. Of course, this fails in sSet and all the categories of spectra so I’m more interested in the
other approach. Let’s work out an example:

The simplest P is Ass. In that case the free algebra functor is T (X) = S ∧ X ∧ X2 ∧ . . . . If we have a trivial
cofibration f : K → L then applying this functor gives T (K) → T (L) and we need to look at pushouts of
this map in the category of monoids: X ← T (K)→ T (L). Call the pushout P

The trick is to factor X → P as X = P0 → P1 → . . . . Because of the structure of T we can define each
map Pn−1 → Pn inductively. Let Qn denote the colimit of the punctured n-dimensional cube with vertices
X ∧ K ∧ X ∧ K ∧ . . . X and with varying numbers and placements of L’s. Then we have

Qn //

��

(X ∧ L)n ∧ X

��
Pn−1 // Pn

We can then shuffle the X’s to the side and we see that exactly the condition needed onM for this argument
to work is the following: (M∧TrCo f )− cell ⊂ W . The elements in this collection of maps are Z ∧ f where
Z is an object of M and f is a trivial cofibration. Applying cell means taking transfinite compositions of
pushouts. Indeed, only countable transfinite compositions are necessary.

A recurring theme in this talk will be that there is a cofibrancy price to pay in order to pass this model
structure across this adjunction. For example, consider the following theorem of Spitzweck:

Theorem 3. Suppose P is a Σ-cofibrant operad and M is a monoidal model category. Then P-alg is a
semi-model category which is a model category if P is cofibrant andM satisfies the monoid axiom.

In a semi-model category lifting of a trivial cofibration against a fibration only holds if the domain is cofi-
brant. Everywhere we’ve applied fibrant replacement it’s been to an object which is cofibrant in the un-
derlying category, so that’s no problem. The lifting argument is for a map which has cofibrant domain, so
that’s fine too. Thus, even if the monoid axiom is not preserved we can still say P-alg is a semi-model
category. So all objects admit cofibrant replacement, but only cofibrant objects admit fibrant replacement.
These semi-model structures arise when you can’t check all the hypotheses of a model category because
Crans’s condition fails.

The model structure on the category of operads is obtained via the transfer principle applied to the adjunction
F : Coll(M) ↔ Op(M) : U where Coll(M) = ΠMΣn is the category of collections. This transfer doesn’t
always work, but even if operads don’t form a model category you can still talk about Σ-cofibrant operads
as operads which are cofibrant as collections. Even more generally you can talk about operads whose
underlying collection is cofibrant. Even more generally there are levelwise cofibrant operads.



6 DAVID WHITE

Examples:

Ass is Σ-cofibrant, A∞ is cofibrant

Com is levelwise cofibrant but not Σ-cofibrant. Any E∞ operad is a Σ-cofibrant replacement. Morally this is
good enough to be a “cofibrant replacement” for Com. If you want an honestly cofibrant operad you need
to use the Fulton MacPherson operad. The algebras over all E∞ operads are Quillen equivalent because any
two homotopy equivalent Σ-cofibrant operads have Quillen equivalent categories of algebras.

Thanks to Spitzweck’s result, we don’t need to be overly careful about the difference between cofibrant and
Σ-cofibrant in order to conclude preservation of algebra structure by localization, so we’ll choose the E∞
operad with E∞[n] = EΣn.

When two operads O and P have the property that their categories of algebras are Quillen equivalent then
rectification is said to occur (e.g. P rectifies to O). When we move away from associative operads to
commutative this notion becomes important, because homotopy coherent commutativity is encoded by the
cofibrant replacement for the Com operad in the model category of operads (also obtained by the transfer
principle).

Example: In any modern category of spectra where both Com-algebras and E∞-algebras form model cate-
gories, these two admit rectification. In S -modules this is built into the product. In fact, I don’t know how to
discuss strictly commutative S -algebras at all. For orthogonal and symmetric spectra, strictly commutative
monoids do not form a model category, due to the well-known obstruction of Gaunce Lewis.

Moore proved that: Connected commutative topological monoids are product of Eilenberg-Mac Lane spaces.

Lewis: if commutative monoids formed a model category then taking the zeroth space of the cofibrant
replacement of the sphere in that category would give such a space, but this implies there are no homotopy
operations present in the stable homotopy groups of spheres, contradiction.

Moving to the positive model structure fixes this (by breaking the cofibrancy of the unit) and rectification
occurs because symmetric powers are weakly equivalent to homotopy symmetric powers, i.e. the smash
product can’t see the difference between the free algebra functors over these two operads. Different choices
for E∞ make no difference to the resulting algebras.

For equivariant spectra we will see that care has to be taken with the notion of E∞. If one uses the notion
above then the action of G is ignored and the resulting operad is not cofibrant. So rectification with naive
E∞ fails but rectification with genuine E∞ works, as proven by Blumberg-Hill 2013. We’ll get there.

Equivariantly, this operad encodes naive E∞ structure. Genuine E∞ structure is encoded by any operad P
where P(n) is an EGΣn, i.e. a space with a G×Σn-action which is characterized up to G×Σn-weak equivalence
by the property that for H < G × Σn, we have (EGΣn)H = ∅ if H ∩ Σn , {e} and (EGΣn)H ' ∗ otherwise.
This space EGΣn can be defined as the total space of the universal G-equivariant principle Σn-bundle. The
following result is joint with Javier Gutierrez, but may have been known previously:

Theorem 4. The category of simplicial (resp. topological) G-operads can be given a model structure via
transfer from the category of collections on G-spaces. Neither Com nor the naive E∞ operads are cofibrant.
Their Σ-cofibrant replacement EG

∞ can be described by EG
∞[n] = EGΣn.

In model categories other than spectra rectification does not hold, so it becomes important to consider strictly
commutative monoids in their own right. For example, rectification fails for topological spaces or simplicial
sets, for the same reason as in Lewis’s example. Does rectification hold for Ch(k)?

Let’s talk about when commutative monoids inherit a model structure. For monoids this is done by Schwede-
Shipley and the hypothesis needed onM is the monoid axiom, which says that for all objects X, (idX ⊗ (Q∩
W ))−cell ⊂ W . Here applying cell to a class of maps means taking its closure under transfinite compositions
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and pushouts. For commutative monoids the correct hypothesis is the commutative monoid axiom: If g is a
(trivial) cofibration then g�n/Σn is a (trivial) cofibration.

Theorem 5. If a monoidal model category satisfies the monoid axiom and the commutative monoid axiom
then commutative monoids form a model category and the forgetful functor is right Quillen.

Proof. This goes basically the same way as the SS00 result. Now we use the functor S ym(X) = S ∧ X ∧
X2/Σ2 ∧ . . . . Again we take a pushout of S ym(K) → S ym(L) in the category of commutative monoids
and again we factor X → P into a transfinite composition. Letting Symn(L; K) denote the colimit of the
punctured cube defined by n-length products of L and K, we see that the pushout in question is X = P0 →

P1 → · · · → P where Pn−1 → Pn is defined by
X ⊗ Symn(L; K) //

u��

X ⊗ Symn(L)

��
Pn−1 // Pn

The commutative monoid axiom ensures us that the part of this map after the X ⊗ − is a trivial cofibration.
The monoid axiom ensures us that taking transfinite compositions and pushouts do not ruin this. �

This result generalizes a theorem of Lurie’s from DAGIII, i.e. my hypothesis is weaker.

Examples:

(1) Ch(k) where char(k) = 0. Lurie had this too. More generally, can get any Q-algebra

(2) sSet - this fails Lurie’s hypothesis. My proof uses the fact that cofibrations are monomorphisms
to get the bit about cofibrations. For the weak equivalences part we rely on a clever trick of Dror
Farjoun.

(3) Positive (Flat) model structure on symmetric spectra. Lurie doesn’t apply here. He acknowledges
his error in DAGIII 4.3.25 in Math Overflow post 146438. My proof needed a technical lemma that
it was sufficient to check the commutative monoid axiom on the generators. Luis Pereira proved the
same for Lurie’s hypothesis

(4) Top - this fails for Lurie. It works for me because the proof of Farjoun generalizes to any Cartesian
concrete category, and with a bit more care we don’t need cofibrations to be monomorphisms either,
because we have our hands on the generators.

(5) Positive orthogonal (equivariant) spectra - using again that it’s sufficient to check it on the generators

(6) Positive motivic symmetric spectra - I’m developing this category with Markus Spitzweck.

If we drop the monoid axiom we only get a semi-model structure on Com-alg, but that is enough for preser-
vation by localization. I have a theorem about when localization preserves the monoid axiom but it’s unnec-
essary here for this reason. Anyway, in a combinatorial model category this this result adds no hypotheses at
all to the maps being inverted. It simply needs thatM is h-monoidal and satisfies a compactness hypothesis
on the generating cofibrations I. This hypothesis holds in all the examples.

This commutative monoid axiom generalizes to give a family of axioms. We saw already that if P is cofibrant
then basically no hypotheses are needed onM to get admissibility. Harper has a result that if all symmetric
sequences inM are projectively cofibrant then all operads are admissible. This is a strong hypothesis. I don’t
know of any examples other than Ch(k) which satisfy it. My result shows that you can pay the cofibrancy
price partially onM and partially on P, e.g. to get levelwise cofibrant P you need for all X ∈ MΣn which are
cofibrant inM one has X ⊗Σn f �n is a trivial cofibration. There is also a generalizes version of the regular
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monoid axiom, which requires that applying cell to a certain class of maps results in a weak equivalence.
For details see my research statement.

Theorem 6. Let M be a cofibrantly generated monoidal model category. Let f run through the class of
(trivial) cofibrations. In each row of the following table, placing the hypotheses in the first column on M
gives a good homotopy theory of P-algebras for all P satisfying the hypotheses in the second column.

Here ”good homotopy theory” means at least a relative category, but most often a model category or at least
a semi-model category. The differences depend on technicalities in the categorical algebra which are still
being worked out. The hypotheses going down the first column are cumulative, e.g. the last row says that
ifM is cofibrantly generated, monoidal, satisfies the monoid axiom, and has the property that ∀X ∈ MΣn ,
X ⊗Σn f �n is a (trivial) cofibration, then all operads are admissible.

Hypothesis onM Class of operad

∀X ∈ MΣn projectively cofibrant, X ⊗Σn f �n is a (trivial) cofibration Cofibrant
(this follows from the pushout product axiom)

Monoid axiom Σ-cofibrant

∀X ∈ MΣn cofibrant inM, X ⊗Σn f �n is a (trivial) cofibration Levelwise cofibrant

Note: X = ∗ is the commutative monoid axiom Special case: P = Com

∀X ∈ MΣn , X ⊗Σn f �n is a (trivial) cofibration Arbitrary

The proof works the same as what we’ve seen, but now we break the pushout down into steps via OA[n]⊗Σn

Qn → OA[n] ⊗Σn Ln. These extra axioms ensure that this pushout works. They are satisfied by simplicial
sets and Ch(k) at least and likely other places such as the positive flat model structures on spectra.

For the positive flat model structure on symmetric spectra, all operads are admissible (i.e. their algebras
form model categories). In joint work with Markus Spitzweck, I study positive model structures in general
model categories, and we hope to prove a similar result. We are also interested in rectification in these
general positive model structures.

During the talk I’ll give conditions so that the pushout product axiom and unit axiom are preserved by
Bousfield localization. At the end I’ll give a condition so that the commutative monoid axiom is preserved.
In the future I hope to study when these intermediate hypotheses are preserved by Bousfield localization. I
am also interested in the generalization to colored operads.

.

.

.

.
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4. The Talk

Recalling our motivation from the beginning of last talk, let’s return now to the question of when local-
ization preserves structure over operads. We’ll see why we spent so long developing the homotopy theory
of algebras over operads. Let’s first consider the model category theoretic version of localization, which
generalizes the localization in Hill’s example and the Hill-Hopkins theorem. This all goes back to work of
Bousfield on inverting maps f (of spaces or spectra) seen to be weak equivalences by a homology theory
E.

What if I want to invert some maps C 1 W ? Because the homotopy category is nice (admits a calculus of
fractions), we can do:
M

��

// ?????

��
Ho(M) // Ho(M)[C−1]

We’d like a model category LCMwhich actually sits above Ho(M)[C−1]. Because all three categories above
have the same objects, its objects are determined. It’s morphisms will be the same as those inM, but we
want maps in C to become isomorphisms in Ho(M)[C−1] so we need them to be weak equivalences in
LCM. So this category must have a different model structure, whereW′ = 〈C ∪W〉 and clearlyW ⊂W′.
You can’t change onlyW because it’ll screw up the axioms. We want to keep the cofibrations fixed so we
can build things out of them and have the two model structures related, so we have to shrink the fibrations:
F ⊃ F ′. Bousfield’s Theorem (1978) says you can do this and you still get a model structure, but you have
to be careful with how you generateW′ from C. Details are in Hirschhorn’s book.

Formally, define X ∈ M to be C-local if X is fibrant and f ∗ : Map(B, X) → Map(A, X) is a weak equiva-
lence, for all f : A→ B in C. These objects X look trivial to the eyes of C. Define g : D→ E to be a C-local
equivalence if for all C-local X, Map(E, X) → Map(D, X) is a weak equivalence. This follows the idea in
algebra, where a module M is S -local if µs is an isomorphism for all s ∈ S . A map is an S -equivalence if
applying Hom(−,M) gives an isomorphism for all S -local M. It turns out R → R[S −1] is an S -equivalence
to an S -local object. We’d call that fibrant replacement in LC(M). Proving this object exists is the major
technical difficulty faced by Bousfield, and is the reason hypotheses onM are needed.

This story works whenM is left proper and either cellular or combinatorial. Left proper means the pushout
of a weak equivalence by a cofibration is a weak equivalence. It makes the model category act more like
Top. Combinatorial means all objects are small. Cellular means it’s cofibrantly generated, the (co)domains
of I are compact, the domains of J are small relative to I, and the cofibrations are contained in the effective
monomorphisms (i.e. maps f : X → Y such that X → Y ⇒ Y

∐
X Y is an equalizer). We will assume

M is left proper, but we need not assume cellular or combinatorial; only that the Bousfield localization in
question exists.

The identity mapsM
→
← LCM are a Quillen adjoint pair and prove that LCM satisfies a universal property

as the ”closest” model category toM in which C is contained in the weak equivalences. The fibrant objects
in LCM are the C-local objects, and local equivalences between local objects are weak equivalences in the
original model category. Bousfield localization gives a Quillen pair (LC ,UC), which are both the identity
functors on objects and morphisms, and these induce (LH

C ,U
H
C ) on the homotopy level.

Our goal is to find conditions onM and C under which Bousfield localization preserves P-algebra structure,
i.e. if [E] ∈ Ho(M) has a representative E ∈ P-alg then we’re asking for (UH

C ◦ LH
C )([E]) to have a repre-

sentative in P-alg. This means that for all cofibrant E ∈ P−alg, LC(E) ∈ P−alg and E → LC(E) is a P−alg
homomorphism. More generally: given E ∈ P−alg, we need Ẽ ∈ P−alg with LC(E) ' Ẽ. We will use the
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fact that Bousfield localization works via the derived functors of the identity, so LC(E) is RCQE where RC
be fibrant replacement in LC(M).

Theorem 7. LetM be a monoidal model category and let P be an operad valued inM. If P-algebras in
M and in LC(M) inherit model structures such that the forgetful functors back toM and LC(M) are right
Quillen functors, then LC preserves P-algebras up to weak equivalence. For well-behaved P there is a list
of easy to check conditions onM and C guaranteeing these hypotheses hold.

Proof. Here “inherit” means that a map of P-algebras f is a weak equivalence (resp fibration) iff f is a weak
equivalence (resp fibration) inM.

Let RC,m be fibrant replacement in P − alg(LC(M)), and Qm be cofibrant replacement in P − alg(M). In our
proof, Ẽ will be RC,mQm(E). Because Q is the left derived functor of the identity adjunction between M
and LC(M), and RC is the right derived functor of the identity, we know that LC(E) ' RCQ(E). We must
therefore show RCQ(E) ' RC,mQm(E).

The map QmE → E is a weak equivalence in P − alg(M), hence inM. The map QE → E is also a weak
equivalence inM and lifting gives a map from QE → QmE (necessarily a weak equivalence inM by the 2
out of 3 property).

Since QmE is a P-algebra inM it must also be a P-algebra in LCM, since the monoidal structure of the two
categories is the same. We may therefore construct a lift:

QmE� _
'C

��

'C // RC,mQmE

����
RCQmE //

∴'C
88

∗

In this diagram the left vertical map is a weak equivalence in LCM and the top map is a weak equivalence
in P − alg(LCM). Because this model category P − alg(LCM) inherits weak equivalences from LCM this
map is a weak equivalence in LCM. Therefore, by the 2 out of 3 property, the lift is a weak equivalence in
LCM. Using this lift we can draw the following diagram:

QE ' //

��

QmE

��

xx
RCQmE

'C

&&
RCQE

∴'C //

∴'C
99

RC,mQmE

We showed above that QE → QmE is a weak equivalence in M. Thus, RCQE → RCQmE is a weak
equivalence in LCM. We then proved RCQmE → RC,mQmE is a weak equivalence in LCM. Thus, by the
2 out of 3 property, RCQE → RC,mQmE is a weak equivalence in LCM. All the objects in the triangle are
fibrant in LCM so these C-local equivalences are actually weak equivalences inM.

The triangle commutes because the bottom map is defined as the composite. The square commutes in HoM
and demonstrates that RCQE is isomorphic in HoM to the P-algebra RC,mQmE. �

This proof also holds if P-algebras only form a semi-model category. In a semi-model category all ob-
jects admit cofibrant replacement, but only cofibrant objects admit fibrant replacement. Lifting of a trivial
cofibration against a fibration only holds if the domain is cofibrant. Everywhere we’ve applied fibrant re-
placement it’s been to an object which is cofibrant in the underlying category, so that’s no problem. The
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lifting argument is for a map which has cofibrant domain, so that’s fine too. Thus, even if the monoid axiom
is not preserved we can still say P-alg is a semi-model category.

It’s a bit unfair to just assume P-algebras form a model category. After all, it can be very difficult to get your
hands on LCM. We’d rather have hypotheses onM and C to make sure this situation happens. For cofibrant
operads P we can use the theorem due to Spitzweck. We see then that if we only care about preserving
structure over a cofibrant operad P then we only need to know when LC(M) is a monoidal model category.
We can characterize when this occurs. First, we need a new axiom on the model category:

A common strengthening of the unit axiom is the Resolution Axiom, which states that cofibrant objects are
flat, i.e. whenever f ∈ W and X is cofibrant, then X ⊗ f ∈ W .

Theorem 8. AssumeM is a left proper, monoidal model category satisfying the resolution axiom. Then

LC(M) satisfies the resolution axiom and pushout product axiom if and only if for all cofibrant K, the maps
C ⊗ idK are weak equivalences in LC(M)

If M is tractable then it suffices to check this on K running through the domains and codomains of the
generating (trivial) cofibrations

We call such localizations monoidal localizations. As a corollary, we discover how to form the smallest
monoidal Bousfield localization which inverts a given class C. Simply replace C by the class C ⊗ idK . This
notion is used in my recent preprint with Hovey (An Alternative Approach to Equivariant Stable Homo-
topy Theory), and also in a forthcoming preprint with Casacuberta (Localization and Cellularization in the
Motivic Stable Homotopy Category).

To prove this we first take care of the Resolution Axiom, then deduce the Pushout Product Axiom using
tractability. The non-tractable case reduces to this by a standard transfinite induction.

Proposition 9. Under the standing hypotheses on M and under the hypothesis that f ⊗ K is an f -local
equivalence for all domains and codomains K of I ∪ J, localization preserves the property of cofibrant
objects being flat.

Proof. Let X be a cofibrant object in L fM. Let g : A → B be an f -local equivalence. To prove − ⊗ X
preserves f -local equivalences, it suffices to show that it takes L fM trivial cofibrations between cofibrant
objects to weak equivalences. This is because we can always do cofibrant replacement on g to get Qg :
QA → QB. While Qg need not be a cofibration in general, we can always factor it into QA ↪→ Z

'
� QB.

We then abuse notation to treat Z as QB and rename the cofibration QA→ Z as Qg since Z is cofibrant and
maps via a trivial fibration to B. Smashing with X gives:
QA ⊗ X //

��

QB ⊗ X

��
A ⊗ X // B ⊗ X

If we prove that Qg ⊗ X is an f -local equivalence, then g ⊗ X must also be by the 2-out-of-3 property, since
the vertical maps are weak equivalences inM due to X being cofibrant and cofibrant objects being flat in M.
So we assume that g is an L fM trivial cofibration between cofibrant objects. Since X is built as a transfinite
composition of pushouts of maps in I, we proceed by transfinite induction. For the rest of the proof, let
K,K1, and K2 denote domains/codomains of maps in I. These objects are cofibrant inM by hypothesis, so
they are also cofibrant in L fM.

For the base case X = K we appeal to Theorem 3.1.6 in Hirschhorn’s book. Because the functor F = − ⊗ K
is a left-adjoint in a pair of functors fromM to itself, F takes f -local equivalences between cofibrant objects
to f -local equivalences if and only if the total left derived functor LF : Ho(M) → Ho(L fM) takes [ f ] to
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an isomorphism. This occurs because f ⊗ K is an f -local equivalence and so [ f ⊗ K] is an isomorphism in
Ho(L fM). Thus, g ⊗ K is a weak equivalence in L fM.

For the successor case, suppose Xα is built from K as above and is flat in L fM. Suppose Xα+1 is built from
Xα and a map in I via a pushout diagram:

K1
� � i //

�� u

K2

��
Xα // Xα+1

We smash this diagram with g : A → B and note that smashing a pushout square with an object yields a
pushout square.

A ⊗ K1
A⊗i //

��

g⊗K1

%%

A ⊗ K2
g⊗K2

&&

��

B ⊗ K1 //

��

B ⊗ K2

��

A ⊗ Xα
B⊗i //

g⊗Xα %%

A ⊗ Xα+1
g⊗Xα+1

&&
B ⊗ Xα // B ⊗ Xα+1

Because g is a cofibration of cofibrant objects, A and B are cofibrant. Because pushouts of cofibrations are
cofibrations, Xα ↪→ Xα+1 for all α. Because X0 is cofibrant, Xα is cofibrant for all α. So all objects above
are cofibrant. Furthermore, g ⊗ Ki = g�(0 ↪→ Ki). Thus, by the Pushout Product axiom onM and the fact
that cofibrations inM match those in L fM, these maps are cofibrations.

Finally, the maps g ⊗ Ki are weak equivalences in L fM by the base case above, while g ⊗ Xα is a weak
equivalence in L fM by the inductive hypothesis. Thus, by Dan Kan’s Cube Lemma (Lemma 5.2.6 in
Hovey’s book), the map g ⊗ Xα+1 is a weak equivalence in L fM.

For the limit case, suppose we are given a cofibrant object X = colimα<β Xα where each Xα is flat in L fM.
Because each Xα is cofibrant, g ⊗ Xα = g�(0 ↪→ Xα) is still a cofibration. By the inductive hypothesis, each
g⊗Xα is also an f -local equivalence, hence a trivial cofibration in L fM. Since trivial cofibrations are always
closed under transfinite composition, g ⊗ X = g ⊗ colim Xα = colim(g ⊗ Xα) is also a trivial cofibration in
L fM. �

Next we prove the Pushout Product Axiom is preserved.

Lemma 10. If h is a L fM trivial cofibration then h ⊗ K is a L f M trivial cofibration.

Proof. Using Proposition 4, we see that h⊗K is a weak equivalence in L fM. Because h and g are cofibrations
inM, h�g is a cofibration inM by the pushout product axiom onM. Thus, h ⊗ K is both a cofibration and
a weak equivalence in L fM. �

Proposition 11. If h is an L fM trivial cofibration and g is a generating cofibration in L fM then h�g is an
L fM trivial cofibration

Proof. Suppose h : X → Y and g : K → L. By hypothesis, K and L are cofibrant. Because h is a cofibration,
K ⊗ h and L ⊗ h are cofibrations. Because cofibrant objects are flat in L f M, K ⊗ h and L ⊗ h are also weak
equivalences. Consider the following diagram:
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K ⊗ X

u

� � ' //

��

K ⊗ Y

��

��

L ⊗ X ' //

' //

(K ⊗ Y)
∐

K⊗X(L ⊗ X)
h�g

((
L ⊗ Y

The map L⊗X → (K⊗Y)
∐

K⊗X(L⊗X) is a trivial cofibration because it is the pushout of a trivial cofibration.
Thus, by the 2-out-of-3 property for the lower triangle, h�g is a weak equivalence. Since we already knew
it was a cofibration, this means it is a trivial cofibration.

�

Thus, we have characterized monoidal localizations and there are examples of localizations which fail to be
monoidal, e.g. in Ch(R[G]) when a localization kills a representation sphere. For an example, we look to
the Σn-equivariant world, where there are multiple spheres due to the different group actions. In this world
one can suspend by representations of Σn, i.e. copies of F2 on which Σn acts. The 1-point compactification
of such an object is a sphere S n on which Σn acts. This means not all cofibrant objects are built from a single
sphere as they normally would be in R-mod without a group action (which is a monogenic category). This
can cause trouble on homology, since H∗(X ⊗ S n

1) need not equal H∗(X ⊗ S n
2). For instance, if we have two

spheres and localization kills one, then it is possible for the localization functor to go from a category where
all objects are cofibrant to one where this property fails.

For concreteness, let R = F2[Σ3]. Then an R module is simply an F2 vector space with an action of the
symmetric group Σ3. The category R-mod is a stable monoidal model category. Let f be the map f :
F2 → F2 ⊕ F2 ⊕ F2 taking 1 to (1, 1, 1). We’ll show that the Bousfield localization with respect to f
cannot be monoidal. Bousfield localization with respect to f introduces a quotient coker( f ) � F2 ⊕ F2
generated by (1, 0, 0) and (0, 1, 0). In this quotient, (0, 0, 1) = (1, 1, 0). The localized category L f M is not
monoidal because this cokernel cannot be built from the sphere due to the fact that the Σ3 action is more
complicated than it would be if coker( f ) was just F2 ∧ F2. For instance, (123) · (0, 1, 0) = (0, 0, 1) = (1, 1, 0)
but in F2 ∧ F2 it would be (0, 1, 0). Similarly, (12) · (0, 1, 0) = (1, 0, 0), (12) · (1, 0, 0) = (0, 1, 0) and
(123) · (1, 0, 0) = (0, 1, 0).

Corollary 12. If S G a Bousfield localization preserves genuine commutativity iff C ⊗ (G/H)+ is a C-local
equivalence for all H.

We see where our opening example failed: applying C ⊗ − killed all G/H and we would have ended up
inverting the zero map if the condition of the corollary was satisfied.

What if you don’t care about all the norms, but rather only some of them?

The recent paper of Blumberg-Hill proves that this type of algebraic structure is captured by the class of N∞
operads. Independently, Javier and I were studying operads based on families. There is a collection EF Σn
whose nth space is the total space of a universal F -equivariant principle Σn-bundle. When using the family
model structure on G-spaces this becomes a cofibrant collection, and it’s equivalent as a collection to an
Blumberg-Hill N∞ operad because of the universal property of the nth space. We visualize the interpolation
between naive and genuine E∞ as a tower, and notice that localization can drop structure as follows:
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EG
∞

��

��

!!

L // EG
∞

EF
∞

//

��

EF
∞

. . . . . .

EF ′

∞
//

""

EF ′

∞

E∞ // E∞

Thus, the general preservation theorem specializes to tell us that Bousfield localization preserves this N∞
structure iff C⊗ (G/H)+ is a C-local equivalence for all H ∈ F . Such localizations will drop structure down
to EF

∞ . The proof is to work in the family model structure on spaces and the corresponding semi-model
structure on Op(TopF ). Mike’s example can be generalized to a collection of examples demonstrating
necessity of this hypothesis at each level in the tower of EF

∞ ’s interpolating between E∞ and EG
∞. His

original example is maximally bad, i.e. drops from any norm structure all the way down to E∞, but there are
examples which make any drop you like, e.g. from some EF

∞ to some other EF ′

∞ .

5. Strict Commutativity

Turning now to when localization preserves the commutative monoid axiom, recall that commutative monoids
are built via the functor S ym(X) = S ∧ X ∧ X2/Σ2 ∧ . . . . For monoidal structure we needed localization to
play well with tensoring. Now we’ll need it to work with Sym:

Theorem 13. SupposeM satisfies the commutative monoid axiom. If Sym(−) preserves weak equivalences
in LC(M) then LC(M) satisfies the commutative monoid axiom.

Combining this with our general preservation result gives:

Corollary 14. Truncations in sSet, Top, and Ch(k) all preserve strict commutative monoids. Via Farjoun’s
trick, any monoidal localization in sSet will also preserve, e.g. LE for a homology theory E.

I hope to investigate these LE further and recover classical (unstable) theorems of Bousfield using this
general machinery.

In the future I hope to study when localization preserves the generalizations of the commutative monoid
axiom to other non-cofibrant P.
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