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Thanks for your hospitality. I’m here on an NSF-AAS grant and will be here till August 20. I’m happy
to talk to anyone about basically any research topic. My research program can be found on my website:
dwhite03.web.wesleyan.edu

1. Outline

Talk 1:

Big Goal of Alg Top, operads and model categories, fix notation for model categories, remarks about how
difficult it is to verify model category axioms.

Motivation from equivariant spectra, and discussion of Kervaire.

Monoidal model categories, define the inherited model structure on the category of algebras over an op-
erad.

Basic facts about Bousfield localization.

Preservation theorem and proof, a word about semi-model categories.

Talk 2:

Preliminary results about why semi-model categories are not so bad.

General transfer principles for putting (semi) model structures on T-algebras.

Review of Schwede-Shipley proof for monoids. Connection to tame polynomial monads.

Version for commutative monoids. Examples of model categories satisfying all our axioms so far.

Notion of cofibrancy for operads. John Harper’s filtration and resulting axioms to get semi-model structures
on algebras over operads.

Examples of localization preserving structure: truncation in spaces, homological algebra, stable localiza-
tions in spectra, bringing it back to the example of equivariant spectra.

2. Talk 1 Introduction

A big goal of algebraic topology is to understand how homotopy theory interacts with algebraic structure.
For today we use model categories as our language for homotopy theory and operads as our language for
algebra. We’ll work on the subgoal of understanding when Bousfield localization preserves the structure of
algebras over an operad.

Many proofs in recent years have demonstrated the value of working on the point-set level rather than in the
homotopy category, so that’s why we use model categories. Recall that model categories were invented in
1967 by Dan Quillen. It’s often difficult to verify that a given category together with a class of weak equiva-
lences, fibrations, and cofibrations forms a model category, but when you can then you can apply homotopy
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theory in various disciplines. Quillen won the Fields Medal for computations in algebraic K-theory which
made use of homotopical methods in homological algebra (because Ch(R) is a model category). Voevod-
sky won the Fields Medal for resolving the Milnor Conjecture using homotopical methods in the category
of Schemes, again by constructing an appropriate model structure. Steve Lack put a model structure on
2Cat.

Because we need to be doing algebra, we need a monoidal structure. This compatibility is encoded in the
definition of a monoidal model category (explored in Hovey’s book). We’ll be investigating how Bousfield
localization (explored by Hirschhorn’s book) interacts with algebras over various monads in that context
(mostly, monads given by operads).

3. Kervaire Invariant Problem and Equivariant Spectra

This project was motivated by a step in the proof of the Kervaire Invariant One Theorem. For a framed
smooth manifold of dimension 4k + 2, the Kervaire invariant Ker(X) ∈ Z/2 is the Arf invariant? of the
skew-quadratic form on the middle dimensional homology group.

A framing on a manifold M is like a trivialization of the tangent bundle. Formally, it’s a trivialization of the
normal bundle if the manifold is understood embedded in some Cartesian space, along with a trivialization
of the stable tangent bundle. A manifold that admits a framing is also called a parallelizable manifold. A
manifold equipped with a framing is also called a parallelized manifold.

Theorem. The n-spheres that admit a framing are precisely S 0, S 1, S 3, S 7.

Kervaire-Milnor ‘Groups of Homotopy Spheres’ proves: An odd dimensional framed manifold is framed
cobordant to a homotopy sphere (if n > 5). In dimensions 8k + 2, a framed manifold is framed cobordant
to a homotopy sphere precisely when the Kervaire invariant is zero. Kervaire constructed a manifold of
Kervaire invariant 1 in dimension 10, so this manifold cannot admit a smooth structure.

A framing on M induces an isomorphism between the total space of the normal bundle ν and M×Rk, and so a
homeomorphism Th(ν) � Σr(M+). Viewing S n+r as a one-point compactification of Rn+r and collapsing the
boundary of M × S r to a point yields a map S n+r → Σr(M+), so M gives an element of πn+rS r. This induces
a map from the graded ring of framed cobordism classes of framed manifolds to π∗S , which Pontryagin
proved was an isomorphism of graded rings.

Recall that certain spheres can have non-diffeomorphic smooth structures, e.g. Milnor’s famous exam-
ple on S 7. The answer to the question of which dimensions n allow this is contained in the stable homotopy
groups of spheres. The group of diffeomorphism structures can be constructed and understood up to a
quotient term which depends on framed bordism. The monoid of smooth structures on S n is isomorphic
to the group Θn of h-cobordism classes of oriented homotopy n-spheres. This group can be understood via
a quotient and the J-homomorphism. The quotient depends on whether or not there are framed manifolds
of non-zero Kervaire invariant. The connection:

πn+k(S n) � {framed Mk ⊂ Rn+k}/bordism

This can be used to compute the image of Θn/bPn+1 → πnS 0/J, where bPn+1 is the cyclic subgroups of n-
spheres that bound a parallelizable manifold of dimension n+1, and J is the image of the J-homomorphism
J : πr(S O(q)) → πr+q(S q). Note that the order of these cyclic groups is related to the Bernoulli numbers.
So from this point of view the Kervaire Invariant is a possible discrepancy stopping you from understanding
which dimensions have exotic spheres.

In the 60s Browder showed the Kervaire Invariant can be non-zero only occur if n = 2k − 2. They can exist
for k < 7. Hill-Hopkins-Ravenel 2009 showed that they cannot exist for k > 7. Their proof came down
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to a computation in the stable homotopy groups of spheres which relied on extra structure brought in from
equivariant stable homotopy groups (with a Z/2-action).

The authors needed a 256-periodic Ω = D−1MU(4) for some D. They were working with MU considered
as a commutative equivariant spectrum and needed Ω to be commutative, i.e. have multiplicative norms,
i.e. to have π? forming a Tambara functor. This was needed for reasons related to the spectral sequence
computations which occupy the technical details of the proof.

Let G be a compact Lie group and let S G be the model category of G-spectra. Sadly, not every localization
of an equivariant commutative ring spectrum is commutative.

Example (Hill, Oberwolfach). Let G be a (non-trivial) finite group.

Consider the reduced real regular representation ρ obtained by taking the quotient of the real regular rep-
resentation ρ by the trivial representation, which is a summand. We write ρG = ρG − 1 where 1 means
the trivial representation R[e]. Taking the one-point compactification of this representation yields a rep-
resentation sphere S ρ. There is a natural inclusion aρ : S 0 → S ρ induced by the inclusion of the trivial
representation into ρ. Consider the spectrum E = S [a−1

ρ
] obtained from the unit S (certainly a commutative

algebra in S G) by localization with respect to aρ. We will show that this spectrum does not admit maps
from the norms of its restrictions, and hence cannot be commutative.

First, ρG |H = [G : H]ρH , so ρG |H = [G : H]ρH − 1 = [G : H](ρH + 1)− 1 = [G : H]ρH + ([G : H]1− 1). We
will use this to prove that for all proper H < G, resH(E) is contractible. Because [G : H] − 1 is a number
k greater than 0 we have resHS ρG = (S ρH )#[G:H] ∧ S k. This means that as an H-spectrum it is contractible,
because there is enough space in the S k part to deform it to a point. Note, however, that E itself is not locally
trivial. Thinking of S 0 as {0,∞} we see that the only fixed points of aρ are 0 and ∞, so the map aρ is not
equivariantly trivial.

Now, a key property of commutative equivariant ring spectra is the existence of multiplicative norms.
These functors NG

H : S H → S G are left adjoint to the restriction resH on the category of commutative ring
spectra. If E were a commutative algebra in S G then the counit of the norm-restriction adjunction would
provide a ring homomorphism NG

HresH(E) → E. But the domain is contractible for every proper subgroup
H because resH(E) is contractible. This cannot be a ring map unless E to be contractible, and we know E is
not contractible because aρ fixes 0 and∞.

Here is an equivalent approach, which Hill presented at Oberwolfach. Let F be the family of proper
subgroups of G and let ẼF be the cofiber of the natural map from the classifying space EF+ to S 0. This
ẼF is a localization of S 0 obtained by killing all maps from induced cells. If G is finite then it is our E. It’s
not contractible because EF+ is not homotopy equivalent to S 0, because F doesn’t contain G. So while any
restriction to a proper subgroup views them to be homotopy equivalent, they are not homotopy equivalent in
S G.

In this second approach it becomes clear that this example generalizes to other families of subgroups, prov-
ing that in any family model structures (other than F = {e}, which recovers naive spectra) one can similarly
disprove the preservation of commutativity by localization.

�

The take-away message from this example is that we need a hypothesis on the maps being localized so
that equivariant commutativity is preserved. Viewed a certain way, what is failing above is the ability of the
localization functor to commute with equivariant suspension with respect to certain representation spheres
(namely, those which don’t see all the information in G, but only see subgroup information). When local-
izations kill representation spheres bad things happen. A similar example, due to Carles Casacuberta,
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proves that not all localizations of spectra preserve ring structure. This is the example of the Postnikov
Section:

The nth Postnikov section functor Pn is a homotopical localization for all n but does not commute with
suspension. Furthermore, if R is nonconnective, then P1R does not admit a ring spectrum structure (not even
the structure of a ring in the homotopy category). The reason is that if it were a ring then multiplication by the
unit S would need to be a homotopy equivalence. But the unit map ν : S → P1R is null since π0(P1R) = 0.
The real issue here is that suspension and localization do not commute, and nonconnective ring spectra can
feel the difference. We’ve chopped off the dimension where the unit is supposed to live.

Casacuberta gets around this by placing hypotheses on the localization (he calls the well-behaved local-
izations “closed”) and similarly Hill and Hopkins get around Hill’s example by placing hypotheses on the
maps:

Theorem 3.1 (Hill-Hopkins). If for all L-acyclics Z and for all subgroups H, NG
HZ is L-acyclic, then for all

commutative G-ring spectra R, L(R) is a commutative G-ring spectrum.

Here commutativity can mean either strict commutativity (algebras over the operad Com) or E∞-structure
where E∞ is the linear isometries operad (a model can be taken with E∞[n] = EGΣn), because in S G there is
rectification between these operads, as recently proven by Blumberg and Hill in the appendix of their 2013
paper. The hypothesis in the theorem is precisely what is needed to make the EKMM proof (via the skeletal
filtration) go through.

This example and theorem open a more general question: find conditions on a general model categoryM
and on a set of maps C so that the Bousfield localization LC preserves commutativity. We will answer
this question, and when we specialize our machinery to M = S G we’ll in fact characterize localizations
which preserve commutative structure. This will show us yet another reason why Hill’s example is failing.
In particular, it will fail because for the set of maps being inverted we have that C⊗ (G/H)+ is not contained
in the C-local equivalences (because it contains the zero map, because proper H sees C to be trivial even
though it is not). This makes it easy to see the correct condition on C so that LC viewed in the family model
structures preserves commutativity. The condition will be that C ⊗ (G/H)+ ⊂ C-local equivalences for all
H ∈ F .

4. Background: monoidal model categories, Eilenberg-Moore categories, Bousfield localization

Recall that we care about model categoriesM because the passage to Ho(M) works (this functor inverts the
weak equivalences W ) and we have some control over the resulting maps because of cofibrant and fibrant
replacement. Let Q and F be the cofibrations and fibrations. If we’re going to talk about commutative
monoids then we need to have a monoidal structure on M. It turns out that we also need a compatibility
hypothesis betweenM and the monoidal structure, as explained in chapter 4 of Hovey’s book. Let ⊗ denote
the monoidal product.

Given f : A→ B and g : X → Y , define the pushout product f � g to be the corner map in
A ⊗ X //

�� u

A ⊗ Y

��

��

B ⊗ X //

..

Q2

$$
B ⊗ Y

This is simply the Day convolution. A monoidal model category is a model category which is also a
monoidal category and satisfies:
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Pushout product axiom: if f , g ∈ Q then f � g ∈ Q. Additionally, if either is in W then f � g ∈ W .

Unit Axiom: If Z is cofibrant then QS ⊗ Z → S ⊗ Z � Z is a weak equivalence.

These axioms assure you that Ho(M) is a monoidal category. We’ll be studying objects inM which carry
the additional algebraic structure encoded by a monad. Many times this monad will arise from a symmetric
operad, e.g. monoids, commutative monoids, A∞ or E∞ algebras, Lie algebras, etc. All operads today are
symmetric.

For us, an operad inM is a symmetric sequence P = (P(n))n∈N of objects inM (i.e. each P(n) is inMΣn

i.e. has an action of the symmetric group Σn) satisfying some axioms. The object P(n) can be thought of as
parameterizing maps of arity n. There is a notion for cofibrancy of an operad which comes down to requiring
the left lifting property of ∅ → P with respect to maps which are levelwise trivial fibrations in

∏
n∈NM

Σn

whereMΣn is the model category of objects inM with a Σn action.

Examples:

(1) Ass is the operad encoding associativity. Ass[n] = Σn

(2) Com is the operad encoding strict commutativity. Com[n] = ∗

(3) L is the linear isometries operad. If we fix a universe U then the nth space of L is L (Un,U), the
space of linear isometries from Un to U.

(4) An E∞ operad has P(n) contractible and Σn acts freely. So the linear isometries operad and little
cubes operad are both E∞.

An algebra over an operad is an object A ∈ C equipped with coherent maps P(n) × An → A. These objects
form a category, with morphisms P-algebra homomorphisms (maps which respect this structure).

Let T be a monad. If I want to do homotopy theory with T -algebras then I’ll want them to inherit a model
structure. We will transfer it along the adjunction T : M ↔ T − alg(M) : U. Here U is the forgetful
functor and T is the free algebra functor. In the case T = P for an operad P, there is a nice formula:
P(X) =

∐
n(P(n) ⊗ X⊗n).

If we wish to place a model structure on T -alg we will want it to be compatible with the model structure
on M. In particular, we want the forgetful functor to be right Quillen. So we need the model structure
on T -alg to have weak equivalences and fibrations maps which are such as maps in M. Cofibrations are
therefore determined by the lifting property. In the second talk we’ll discuss when this sort of transfer may
be accomplished. For now we turn to the localization question.

5. Bousfield localization and preservation of T-algebra structure

Let’s first consider the model category theoretic version of localization, which generalizes the localization
in Hill’s example and the Hill-Hopkins theorem. This all goes back to work of Bousfield on inverting maps
f (of spaces or spectra) seen to be weak equivalences by a homology theory E.

What if I want to invert some maps C 1 W ? Because the homotopy category is nice (admits a calculus of
fractions), we can do:
M

��

// ?????

��
Ho(M) // Ho(M)[C−1]

We’d like a model category LCMwhich actually sits above Ho(M)[C−1]. Because all three categories above
have the same objects, its objects are determined. It’s morphisms will be the same as those inM, but we
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want maps in C to become isomorphisms in Ho(M)[C−1] so we need them to be weak equivalences in
LCM. So this category must have a different model structure, whereW′ = 〈C ∪W〉 and clearlyW ⊂W′.
You can’t change onlyW because it’ll screw up the axioms. We want to keep the cofibrations fixed so we
can build things out of them and have the two model structures related, so we have to shrink the fibrations:
F ⊃ F ′. Bousfield’s Theorem (1978) says you can do this and you still get a model structure, but you have
to be careful with how you generateW′ from C. Details are in Hirschhorn’s book.

Formally, define X ∈ M to be C-local if X is fibrant and f ∗ : Map(B, X) → Map(A, X) is a weak equiva-
lence, for all f : A→ B in C. These objects X look trivial to the eyes of C. Define g : D→ E to be a C-local
equivalence if for all C-local X, Map(E, X) → Map(D, X) is a weak equivalence. This follows the idea in
algebra, where a module M is S -local if µs is an isomorphism for all s ∈ S . A map is an S -equivalence if
applying Hom(−,M) gives an isomorphism for all S -local M. It turns out R → R[S −1] is an S -equivalence
to an S -local object. We’d call that fibrant replacement in LC(M). Proving this object exists is the major
technical difficulty faced by Bousfield, and is the reason hypotheses onM are needed.

This story works whenM is left proper and either cellular or combinatorial. Left proper means the pushout
of a weak equivalence by a cofibration is a weak equivalence. It makes the model category act more like
Top. Combinatorial means all objects are small. Cellular means it’s cofibrantly generated, the (co)domains
of I are compact, the domains of J are small relative to I, and the cofibrations are contained in the effective
monomorphisms (i.e. maps f : X → Y such that X → Y ⇒ Y

∐
X Y is an equalizer). We will assume

M is left proper, but we need not assume cellular or combinatorial; only that the Bousfield localization in
question exists.

The identity mapsM
→
← LCM are a Quillen adjoint pair and prove that LCM satisfies a universal property

as the ”closest” model category toM in which C is contained in the weak equivalences. The fibrant objects
in LCM are the C-local objects, and local equivalences between local objects are weak equivalences in the
original model category. Bousfield localization gives a Quillen pair (LC ,UC), which are both the identity
functors on objects and morphisms, and these induce (LH

C ,U
H
C ) on the homotopy level.

Our goal is to find conditions onM and C under which Bousfield localization preserves P-algebra structure,
so let’s define this notion. On the model category level the functor the Bousfield localization is the identity
functor. So when we write LC as a functor we shall mean the composition of derived functors Ho(M) →
Ho(LC(M)) → Ho(M), i.e. E → LC(E) is the unit map of the adjunction Ho(M) � Ho(LC(M)). In
particular, for any E inM, LC(E) is weakly equivalent to RCQE where RC is a choice of fibrant replacement
in LC(M) and Q is a cofibrant replacement inM.

Let T be a monad onM. Because the objects of LC(M) are the same as the objects ofM, T is also valued
in LC(M). Thus, we may consider T -algebras in both categories and these classes of objects agree (because
the T -algebra action is independent of the model structure). We denote the categories of T -algebras by
T -alg(M) and T -alg(LC(M)). These are identical as categories, but in a moment they will receive different
model structures.

Definition 5.1. Assume that M and LC(M) are monoidal model categories. Then LC is said to preserve
T-algebras if

(1) When E is a T -algebra there is some T -algebra Ẽ which is weakly equivalent inM to LC(E).

(2) In addition, when E is a cofibrant T -algebra, then there is a choice of Ẽ and a lift of the localization
map E → LC(E) to a T -algebra homomorphism E → Ẽ.

Cofibrancy as a T-algebra means it is constructed via transfinite composition and pushout of cells T (I).

We will use the fact that Bousfield localization works via the derived functors of the identity, so LC(E) is
RCQE where RC be fibrant replacement in LC(M).
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Results related to localization have appeared as arXiv:1404.5197

Theorem 5.2. LetM be a monoidal model category and let T be a monad valued inM. If T -algebras in
M and in LC(M) inherit (semi) model structures fromM and LC(M), then LC preserves T-algebras up to
weak equivalence.

Recall: inherit means weak equivalences and fibrations in T -alg(M) come fromM.

Proof. Fact: LC(E) ' RCQE. We will show RCQE ' RC,T QT E where subscript means replacement in
T -alg. We need a map between them:

QE ' //

��

QT E

��

xx
RCQT E

'C

&&
RCQE

∴'C //

∴'C
99

RC,T QT E

To start, we need QE → QT E. We’ll use lifting:
∅ //� _

��

QT E

'
����

QE

<<

'
// E

The lift is a weak equivalence in M by the 2 out of 3 property. When we apply RC to this map we get a
C-local equivalence. Now we construct the last map:

QT E� _
'C

��

'C // RC,T QT E

����
RCQT E //

∴'C
88

∗

In this diagram the left vertical map is a weak equivalence in LCM and the top map is a weak equivalence
in P − alg(LCM). Because this model category T − alg(LCM) inherits weak equivalences from LCM this
map is a weak equivalence in LCM. Therefore, by the 2 out of 3 property, the lift is a weak equivalence in
LCM.

By the 2 out of 3 property, RCQE → RC,T QT E is a weak equivalence in LCM. All the objects in the triangle
are fibrant in LCM so these C-local equivalences are actually weak equivalences inM. �

This proof also holds if T -algebras only form a semi-model category. In a semi-model category all ob-
jects admit cofibrant replacement, but only cofibrant objects admit fibrant replacement. Lifting of a trivial
cofibration against a fibration only holds if the domain is cofibrant. Everywhere we’ve applied fibrant re-
placement it’s been to an object which is cofibrant in the underlying category, so that’s no problem. The
lifting argument is for a map which has cofibrant domain, so that’s fine too. Thus, even if the monoid axiom
fails to hold in LCM we can still say T -alg is a semi-model category.

We define semi-model categories following Spitzweck’s thesis. Formally, a semi-model category is a bi-
complete category D, an adjunction F : M � D : U whereM is a model category, and subcategories of
weak equivalences, fibrations, and cofibrations inD satisfying the following axioms:

(1) U preserves fibrations and trivial fibrations.

(2) D satisfies the two out of three axiom and the retract axiom.
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(3) Cofibrations in D have the left lifting property with respect to trivial fibrations. Trivial cofibrations
inD whose domain is cofibrant have the left lifting property with respect to fibrations.

(4) Every map inD can be functorially factored into a cofibration followed by a trivial fibration. Every
map in D whose domain is cofibrant can be functorially factored into a trivial cofibration followed
by a fibration.

(5) The initial object inD is cofibrant.

(6) Fibrations and trivial fibrations are closed under pullback.

Note: all objects admit cofibrant replacement, but only cofibrant objects admit fibrant replacement. So that’s
why the proof above works. It’s a bit unfair to just assume P-algebras form a semi model category. After
all, it can be very difficult to get your hands on LCM. We’d rather have hypotheses onM and C to make
sure this situation happens. That’s what we’ll discuss in the next talk, along with applications.

6. Talk 2

We begin with some pre-theorems about Semi-Model Categories (i.e. these are in-progress and should be
taken with a grain of salt).

Theorem 6.1. IfM is locally presentable and has a left properness condition that cofibrations are contained
in the h-cofibrations, then every cofibrantly generated semi-model category is Quillen equivalent to a model
category.

Conjecture: making it work without left properness via Ching-Riehl

Theorem 6.2. IfM is a combinatorial semi-model category then you can do Bousfield localization without
left properness and still get a semi-model category.

Current work: getting the universal property to hold.

Conjecture: making it work for cellular instead of combinatorial.

Current work: re-do Michael’s work relating T-alg(LC M) and LTC(T-alg(M)) in semi-model category fash-
ion, i.e. only assuming these categories carry semi-model structures prove they are Quillen equivalent as
semi-model categories.

7. Putting (semi) model structures on Eilenberg-Moore categories

Recall thatM is a monoidal model category and T is a monad onM. We need a (semi) model structure on
T-alg and we’re going to try to transfer it along T : M � T − alg(M) : U. It’s not always true that the
model structure on M can be passed across this adjunction. Sometimes it can. At the bare minimum we
need M to be cofibrantly generated, and if the generating maps are I and J then the generators for T -alg
are T (I) and T (J). Let’s work through an example to see what kind of hypotheses are needed onM and T
for this to work. Consider the following general lemma from Schwede-Shipley (related of course to Kan’s
principle for recognizing cofibrantly generated model structures, and to Crans’s work on transfer):

Lemma 7.1. Suppose M is cofibrantly generated and T is a monad which commutes with filtered direct
limits. If the domains of T (I) and T (J) are small relative to T (I)-cell and T (J)-cell respectively and EITHER

(1) T (J)−cell⊂ W , or

(2) All objects are fibrant and every T-algebra has a path object (factoring δ : X → X ⊗ X into
'
↪→�)
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then T-alg inherits a cofibrantly generated model structure with fibrations and weak equivalences created
by the forgetful functor toM.

One half of lifting comes for free, 2 out of 3 and retracts are inherited fromM, so only factorization must be
proven. If T preserves smallness then the small object argument is used to get the generators above and to
get cofibration-trivial fibration factorization. For the other factorization axiom we need to know that when
every homomorphism p which is a transfinite composition of pushouts of coproducts of maps of the form
T ( f ) where f is a trivial cofibration in M has p being a weak equivalence in M (hence in T − alg(M)).
Once you have this you get the other half of lifting by the retract argument.

There are also other general transfer principles more recent than Schwede-Shipley’s work:

Theorem 7.2 (Fresse’s Transfer). Suppose we have an adjunction F : X � A : U where A is bicomplete
and X is cofibrantly generated. Suppose

(1) U preserves colimits over non-empty ordinals

(2) Any pushout of A ← F(K) → F(L) for A an X-cofibrant F(co f )-cell complex has U( f ) a trivial
cofibration whenever i is a trivial cofibration.

(3) UF(∅) is cofibrant.

then A inherits a cofibrantly generated semi-model structure.

Theorem 7.3 (Johnson-Yau Transfer). SupposeM is strongly cofibrantly generated and T is a monad such
that

(1) AlgT is bicomplete and U preserves filtered colimits.

(2) M has a fibrant replacement functor which is compatible with T (i.e. there’s a natural transfor-
mation τ : TR → RT compatible with the unit so τ ◦ ηRA = RηA and multiplication so τ ◦ µRA =

QµA ◦ τT A ◦ TτA).

(3) M has a path object functor compatible with T (so s : Id → Path, di : Path → Id, and Path(A)
factors the diagonal).

Then T-alg is cofibrantly generated and the Eilenberg-Moore adjunction is a strong Quillen pair.

We won’t have need of these principles in this talk, but we believe they may be useful to work in the
generality of monads not arising from operads.

Schwede-Shipley prove that the extra condition in their lemma can be deduced if every object ofM is fibrant
and if every T -algebra has a path object (using the retract argument). A great deal of this theory has been
worked out in the case where all objects are fibrant by Berger and Moerdijk. Of course, this fails in sSet and
all the categories of spectra so I’m more interested in the other approach. Let’s work out an example:

The simplest P is Ass. In that case the free algebra functor is T (X) = S ∧ X ∧ X2 ∧ . . . . If we have a trivial
cofibration f : K → L then applying this functor gives T (K) → T (L) and we need to look at pushouts of
this map in the category of monoids: X ← T (K)→ T (L). Call the pushout P

The trick is to factor X → P as X = P0 → P1 → . . . . Because of the structure of T we can define each
map Pn−1 → Pn inductively. Let Qn denote the colimit of the punctured n-dimensional cube with vertices
X ∧ K ∧ X ∧ K ∧ . . . X and with varying numbers and placements of L’s. Then we have

Qn //

��

(X ∧ L)n ∧ X

��
Pn−1 // Pn
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We can then shuffle the X’s to the side and we see that exactly the condition needed onM for this argument
to work is the following: (M∧TrCo f )− cell ⊂ W . The elements in this collection of maps are Z ∧ f where
Z is an object of M and f is a trivial cofibration. Applying cell means taking transfinite compositions of
pushouts. Indeed, only countable transfinite compositions are necessary.

8. The case of commutative monoids

Let’s talk about when commutative monoids inherit a model structure. For monoids this is done by Schwede-
Shipley and the hypothesis needed onM is the monoid axiom, which says that for all objects X, (idX ⊗ (Q∩
W ))−cell ⊂ W . Here applying cell to a class of maps means taking its closure under transfinite compositions
and pushouts. For commutative monoids the correct hypothesis is the commutative monoid axiom: If g is a
(trivial) cofibration then g�n/Σn is a (trivial) cofibration. The results of this and the next section are covered
in my paper on commutative monoids: arXiv 1403.6759.

Theorem 8.1. If a monoidal model category satisfies the monoid axiom and the commutative monoid axiom
then commutative monoids form a model category and the forgetful functor is right Quillen.

Proof. This goes basically the same way as the SS00 result. Now we use the functor S ym(X) = S ∧ X ∧
X2/Σ2 ∧ . . . . Again we take a pushout of S ym(K) → S ym(L) in the category of commutative monoids
and again we factor X → P into a transfinite composition. Letting Symn(L; K) denote the colimit of the
punctured cube defined by n-length products of L and K, we see that the pushout in question is X = P0 →

P1 → · · · → P where Pn−1 → Pn is defined by
X ⊗ Symn(L; K) //

u��

X ⊗ Symn(L)

��
Pn−1 // Pn

The commutative monoid axiom ensures us that the part of this map after the X ⊗ − is a trivial cofibration.
The monoid axiom ensures us that taking transfinite compositions and pushouts do not ruin this. �

This result generalizes a theorem of Lurie’s from DAGIII, i.e. my hypothesis is weaker. Lurie’s hypothesis
is that for all (trivial) cofibrations f , f �n is a (trivial) cofibration in the projective model structure onMΣn ,
i.e. objects and morphisms ofM together with a Σn action.

Examples:

(1) Ch(k) where char(k) = 0. Lurie had this too. More generally, can get any Q-algebra

(2) sSet - this fails Lurie’s hypothesis. My proof uses the fact that cofibrations are monomorphisms
to get the bit about cofibrations. For the weak equivalences part we rely on a clever trick of Dror
Farjoun.

(3) Positive (Flat) model structure on symmetric spectra. Lurie doesn’t apply here. He acknowledges
his error in DAGIII 4.3.25 in Math Overflow post 146438. My proof needed a technical lemma that
it was sufficient to check the commutative monoid axiom on the generators. Luis Pereira proved the
same for Lurie’s hypothesis

(4) Top - this fails for Lurie. It works for me because the proof of Farjoun generalizes to any Cartesian
concrete category, and with a bit more care we don’t need cofibrations to be monomorphisms either,
because we have our hands on the generators.

(5) Positive orthogonal (equivariant) spectra - using again that it’s sufficient to check it on the generators

(6) Positive motivic symmetric spectra - I’m developing this category with Markus Spitzweck.

http://arxiv.org/abs/1403.6759
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If we drop the monoid axiom we only get a semi-model structure on Com-alg, but that is enough for preser-
vation by localization.

9. Generalizing to other operads

The model structure on the category of operads is obtained via the transfer principle applied to the adjunction
F : Coll(M) ↔ Op(M) : U where Coll(M) = ΠMΣn is the category of collections. This transfer doesn’t
always work, but even if operads don’t form a model category you can still talk about Σ-cofibrant operads
as operads which are cofibrant as collections. Even more generally you can talk about operads whose
underlying collection is cofibrant. Even more generally there are levelwise cofibrant operads.

Examples:

Ass is Σ-cofibrant, A∞ is cofibrant

Com is not Σ-cofibrant, though it is levelwise cofibrant if the monoidal unit is cofibrant. Any E∞ operad
is a Σ-cofibrant replacement. Morally this is good enough to be a “cofibrant replacement” for Com. If you
want an honestly cofibrant operad you need to use the Fulton MacPherson operad. The algebras over all
E∞ operads are Quillen equivalent because any two homotopy equivalent Σ-cofibrant operads have Quillen
equivalent categories of algebras.

A recurring theme in this talk will be that there is a cofibrancy price to pay in order to pass this model
structure across this adjunction. For example, consider the following theorem of Spitzweck:

Theorem 9.1. Suppose P is a Σ-cofibrant operad and M is a monoidal model category. Then P-alg is a
semi-model category which is a model category if P is cofibrant andM satisfies the monoid axiom.

This is proven in his thesis, using a certain filtration based on trees which I would love to understand better
(does anyone want to read this paper with me?). As usual, you analyze the pushout X ← P(K) → P(L)
in the category of P-algebras by breaking it down into a transfinite composition X = X0 → X1 → . . . and
observing that the cofibrancy hypothesis on P lets you control the form the maps Xi → Xi+1 take. So if X is
cofibrant to start then each such map is a trivial cofibration and so the composite is as well. Hence, you get
a semi-model structure (not a full model structure because you needed X to be cofibrant).

A (possibly) different filtration may be found in John Harper’s work. The proof proceeds in the same way,
but now the filtration involves a new object (factoring the information of both P and the algebra X) which
we must define.

Proposition 9.2. Let O be a Σ-operad, A ∈ O − alg, and Y ∈ M. Consider any coproduct in O − alg of the
form

A q (O ◦ Y).(9.1)

There exists a symmetric sequence OA and natural isomorphisms

A q (O ◦ Y) � OA ◦ Y =
∐
q≥0

OA[q] ⊗Σq Y⊗q

in the underlying categoryM. If q ≥ 0, then OA[q] is naturally isomorphic to a colimit of the form

OA[q] � colim
( ∐

p≥0 O[p + q] ⊗Σp A⊗p ∐
p≥0 O[p + q] ⊗Σp (O ◦ A)⊗p

d1

oo
d0oo )

,

inM, with d0 induced by operad multiplication and d1 induced by m : O ◦ A→ A.
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It follows that

A q (O ◦ Y) � colim
(

(O ◦ A) q (O ◦ Y) (O ◦ O ◦ A) q (O ◦ Y)
d1

oo
d0oo )

.

With a bit more work, one can prove that the colimit in O-alg:

O ◦ X
f //

id◦i
��

A

j
��

O ◦ Y // A q(O◦X) (O ◦ Y).

(9.2)

is naturally isomorphic to a filtered colimit A0 → A1 → . . . in the underlying category M, with A0 :=
OA[0] � A and At defined inductively by pushout diagrams inM of the form

OA[t] ⊗Σt Qt
t−1

id⊗Σt i∗
��

f∗ // At−1

jt
��

OA[t] ⊗Σt Y⊗t ξt // At

(9.3)

Harper uses this to prove:

Theorem 9.3. Suppose M is a model category such that all symmetric sequences in M are projectively
cofibrant. Assume the requisite smallness for domains of I and J so that the transfer principle can work.
Then for any operad P, P-alg inherits a model structure fromM.

As far as I can tell, only Ch(k) for char(k)=0 satisfies this hypothesis.

A careful reading of his arguments demonstrates the minimum hypothesis needed on M so that a given
operad P is admissible. Let J denote the class of trivial cofibrations ofM and let J �n denote the class of
maps j�n where j ∈J .

M satisfies the P-algebra axiom if for all P-algebras A and for all n, transfinite compositions of pushouts of
maps in PA[n] ⊗Σn J �n are weak equivalences.

An easier condition to check in principle would be the condition that maps in PA[n] ⊗Σn J �n are trivial
cofibrations, and this is what Harper’s hypothesis in the theorem above implies.

We seek conditions to check onMwhich do not require indexing over all P-algebras or using the mysterious
sequence PA. The commutative monoid axiom generalizes to give such a family of axioms. We saw already
that if P is cofibrant then basically no hypotheses are needed onM to get admissibility. Harper’s theorem
shows a strong cofibrancy hypothesis on M can imply that all operads are admissible. My result below
shows that you can pay the cofibrancy price partially onM and partially on P, e.g. to get levelwise cofibrant
P you need for all X ∈ MΣn which are cofibrant inM one has X ⊗Σn f �n is a trivial cofibration. There is
also a generalized version of the regular monoid axiom, which requires that applying cell to a certain class
of maps results in a weak equivalence.

Theorem 9.4. LetM be a cofibrantly generated monoidal model category. Let f run through the class of
(trivial) cofibrations. In each row of the following table, placing the hypotheses in the first column on M
gives a semi-model structure on P-algebras for all P satisfying the hypotheses in the second column.
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The hypotheses going down the first column are cumulative, e.g. the last row says that ifM is cofibrantly
generated, monoidal, satisfies the monoid axiom, and has the property that ∀X ∈ MΣn , X⊗Σn f �n is a (trivial)
cofibration, then all operads are admissible.

Hypothesis onM Class of operad

∀X ∈ MΣn projectively cofibrant, X ⊗Σn f �n is a (trivial) cofibration Σ-Cofibrant
(this follows from the pushout product axiom)

∀X ∈ MΣn cofibrant inM, X ⊗Σn f �n is a (trivial) cofibration Levelwise cofibrant

Note: X = ∗ is the commutative monoid axiom Special case: P = Com

∀X ∈ MΣn , X ⊗Σn f �n is a (trivial) cofibration Arbitrary

The proof works the same as what we’ve seen, but now we break the pushout down into steps via OA[n]⊗Σn

Qn → OA[n] ⊗Σn Ln. These extra axioms ensure that this pushout works. They are satisfied by simplicial
sets and Ch(k) at least and likely other places such as the positive flat model structures on spectra. For the
positive flat model structure on symmetric spectra, all operads are admissible (i.e. their algebras form model
categories).

10. Localization Results

For our applications T will be given by a (one-colored) operad which will be either Com or Σ-cofibrant.
So we know the right axioms onM to ensure T -alg(M) inherits a model structure. We turn now to finding
hypotheses on the maps C so that T -alg(LC(M)) also inherits a model structure.

For Σ-cofibrant operads, Spitzweck’s theorem (applied to LC(M)) implies our preservation result as soon as
the pushout product axiom passes fromM to LC(M). So we make a definition:

Definition 10.1. LC is said to be a monoidal Bousfield localization if LC(M) satisfies the pushout product
axiom, the unit axiom, and the axiom that cofibrant objects are flat.

We can characterize when this occurs. First, we need a new axiom on the model category:

A common strengthening of the unit axiom is the Resolution Axiom, which states that cofibrant objects are
flat, i.e. whenever f ∈ W and X is cofibrant, then X ⊗ f ∈ W .

For simplicity we’ll also assumeM is tractable, meaning the domains of the generators I are cofibrant (and
not meaning thatM is combinatorial). There is also a version of our theorem without this hypothesis. We
characterize monoidal localizations:

Theorem 10.2. SupposeM is a tractable monoidal model category in which the Resolution Axiom holds.
Let I denote the generating cofibrations ofM. Then LC is a monoidal Bousfield localization if and only if
every map of the form f ⊗ idK , where f is in C and K is a domain or codomain of a map in I, is a C-local
equivalence.

Note: given a set of maps C this theorem tells us what we must do to C in order to ensure that LC(M) is
a monoidal model category. We must replace C by C′ = {C⊗K}. This is called the smallest monoidal Bous-
field localization invertingC and was used in my joint paper with Hovey, which is at arXiv:1312.3846.
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Already this is enough to resolve the question we began with for equivariant spectra, since G-equivariant
commutativity is encoded by a cofibrant operad EG

∞. Blumberg-Hill 2013 prove this operad rectifies to
Com, so preservation of EG

∞-algebras implies preservation of Com-algebras too. However, for completeness
(and for applications to categories where this rectification fails such as sSet) we include results about the
preservation of the commutative monoid axiom. Recall that commutative monoids are built via the functor
S ym(X) = S ∧ X ∧ X2/Σ2 ∧ . . . . For monoidal structure we needed localization to play well with tensoring.
Now we’ll need it to work with Sym:

Theorem 10.3. Suppose M is a simplicial model category satisfying the commutative monoid axiom. If
Sym(−) preserves weak equivalences in LC(M) then LC(M) satisfies the commutative monoid axiom.

I am hoping to remove the hypothesis about ‘simplicial’ as soon as I can. Finally, we have a result about
the monoid axiom on LC(M) even though we don’t need it for the general preservation theorem to apply
(because semi-model categories are fine for us):

Theorem 10.4. SupposeM is a tractable, left proper, h-monoidal model category such that the (co)domains
of I are finite relative to the h-cofibrations and cofibrant objects are flat. Then for any monoidal Bousfield
localization LC, the model category LC(M) satisfies the monoid axiom.

You might think that all Bousfield localizations are monoidal. This is not true:

10.1. Non-Example. Thus, we have characterized monoidal localizations and there are examples of local-
izations which fail to be monoidal, e.g. in Ch(R[G]) when a localization kills a representation sphere.

Let R = F2[Σ3]. An R module is simply an F2 vector space with an action of the symmetric group Σ3.
Because R is a Frobenius ring, we may pass from R-mod to the stable module category S tMod(R) by identi-
fying any two morphisms whose difference factors through a projective module. LetM be the corresponding
model category, discussed in Subsection ??.

Proposition 4.2.15 of [?] proves that for R = F2[Σ3], this model category is a monoidal model category
because R is a Hopf algebra over F2. The monoidal product of two R-modules is M ⊗F2 N where R acts via
its diagonal R→ R ⊗F2 R.

We now check that cofibrant objects are flat in M. By the pushout product axiom, X ⊗ − is left Quillen.
Since all objects are cofibrant, all weak equivalences are weak equivalences between cofibrant objects. So
Ken Brown’s lemma implies X ⊗ − preserves weak equivalences.

Let f : 0 → F2, where the codomain has the trivial Σ3 action. We’ll show that the Bousfield localization
with respect to f cannot be a monoidal Bousfield localization. First observe that being f -locally trivial is
equivalent to having no Σ3-fixed points, and this is equivalent to failing to admit Σ3-equivariant maps from
F2 (the non-identity element would need to be taken to a Σ3-fixed point because the Σ3-action on F2 is
trivial).

If the pushout product axiom held in L f (M) then the pushout product of two f -locally trivial cofibrations
g, h would have to be f -locally trivial. We will now demonstrate an f -locally trivial object N for which
N ⊗F2 N is not f -locally trivial, so (∅→ N) � (∅→ N) is not a trivial cofibration in L f (M).

Define N � F2 ⊕ F2 where the element (12) sends a = (1, 0) to b = (0, 1) and the element (123) sends a
to b and b to c = a + b. The reader can check that (12)(123) acts the same as (123)2(12), so that this is a
well-defined Σ3-action. This object N is f -locally trivial. It does not admit any maps from F2 because it has
no Σ3-fixed points. However, N ⊗F2 N is not f -locally trivial because N ⊗F2 N does admit a map from F2
which takes the non-identity element of F2 to the Σ3-invariant element a⊗ a + b⊗ b + c⊗ c. Thus, L f (M) is
not a monoidal model category.



EILENBERG-MOORE MODEL CATEGORIES AND BOUSFIELD LOCALIZATION 15

11. Applications

In Ch(k) for a field k the only Bousfield localizations are the truncations (which are all nullifications in this
case). So all of them are monoidal. If char(k)=0 then Quillen’s homotopical algebra proves all preserve the
commutative monoid axiom.

In sSet and Top all Bousfield localizations are monoidal. This was known previously for spaces with the
homotopy type of CW complexes (by an argument of Farjoun), but now holds for k-spaces. Furthermore,
all Bousfield localizations respect Sym and commutative monoids are preserved.

Combining this with our general preservation result gives:

Corollary 11.1. Truncations in sSet, Top, and Ch(k) all preserve strict commutative monoids. Via Farjoun’s
trick, any monoidal localization in sSet will also preserve, e.g. LE for a homology theory E.

Connected commutative topological monoids are products of Eilenberg-Mac Lane spaces. So this bit about
spaces may recover some classical unstable results of Bousfield.

In Spectra a localization is monoidal iff it is stable, i.e. L◦Σ ' Σ◦L. Let’s turn now to commutative monoids
in spectra...

Gaunce Lewis: if commutative monoids formed a model category then taking the zeroth space of the cofi-
brant replacement of the sphere in that category would give such a space, but this implies there are no
homotopy operations present in the stable homotopy groups of spheres, contradiction.

Moving to the positive model structure fixes this (by breaking the cofibrancy of the unit). When two operads
O and P have the property that their categories of algebras are Quillen equivalent then rectification is said
to occur (e.g. P rectifies to O). Rectification occurs here because symmetric powers are weakly equivalent
to homotopy symmetric powers, i.e. the smash product can’t see the difference between the free algebra
functors over these two operads. Different choices for E∞ make no difference to the resulting algebras, so
we’ll choose the E∞ operad with E∞[n] = EΣn.

Theorem 10.3 gives a condition to check so that the Bousfield localization respects this type of structure.
Some applications are given in my thesis.

Let’s finally return to G-spectra. Genuine E∞ structure is encoded by any operad P where P(n) is an EGΣn,
i.e. a space with a G × Σn-action which is characterized up to G × Σn-weak equivalence by the property that
for H < G × Σn, we have (EGΣn)H = ∅ if H ∩ Σn , {e} and (EGΣn)H ' ∗ otherwise. This space EGΣn can
be defined as the total space of the universal G-equivariant principle Σn-bundle.

Theorem 11.2. In S G a Bousfield localization is monoidal iff C ⊗ (G/H)+ is a C-local equivalence for all
H.

This is a much easier to check hypothesis than the one in Hill’s patching theorem, and it’s also an iff so it’s
best possible. We see where our opening example failed: applying C ⊗ − killed all G/H and we would have
ended up inverting the zero map if the condition of the corollary was satisfied.

Furthermore, we have developed a theory of what happens when C respects some but not all of the sub-
groups. A family of subgroups is closed under conjugation and passage to subgroup.

Recall that for every family of subgroups F of G there is a model structure on TopG where weak equiva-
lences and fibrations are maps such that (−)H is again such a map in Top for all H ∈ F . For each family there
is a universal F -space EF which is a G-CW complex such that (EF)H is contractible for H ∈ F and empty
otherwise. The family model structure on Top has generating cofibrations (G/H × S n−1)+ → (G/H × Dn)+

for all n and all H ∈ F , and the analogous generating trivial cofibrations. These family model structures are
also present in S G, and can be defined by similarly changing the generating (trivial) cofibrations.
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For any family F of subgroups of G there is a collection EF Σn whose nth space is the total space of
a universal F -equivariant principle Σn-bundle. When using the family model structure on G-spaces this
becomes a cofibrant collection, and it’s equivalent as a collection to an Blumberg-Hill N∞ operad because
of the universal property of the nth space. We may thus introduce operads EF

∞ which interpolate between
naive E∞ (i.e. if you forget the G-action) and genuine E∞ (which HHR worked with). Such algebras have
multiplicative ‘up through F ’ but not necessarily above.

Theorem 11.3. The category of simplicial (resp. topological) G-operads can be given a model structure via
transfer from the category of collections on G-spaces. Neither Com nor the naive E∞ operads are cofibrant.
Their Σ-cofibrant replacement EG

∞ can be described by EG
∞[n] = EGΣn.

The general preservation result says algebras over such operads are preserved precisely when C∧ (G/H)+ is
contained in the C-local equivalences for all H ∈ F . It is also possible for localization to reduce the amount
of structure an algebra has (from some EF

∞ to some other EF
∞ ’) and one can generalize Hill’s example to

force this to occur. Pictorially:

EG
∞

��

��

!!

L // EG
∞

EF
∞

//

��

EF
∞

. . . . . .

EF ′

∞
//

""

EF ′

∞

E∞ // E∞

12. FutureWork

I intend to study the properties of the operads EF
∞ further in joint work with Javier Gutierrez.

I hope to study when localization preserves the generalizations of the commutative monoid axiom to other
non-cofibrant P. I am in the process of generalizing the semi-model category table to colored operads in
joint work with Donald Yau.

Michael’s machinery lets you pass to P-algebras then apply localization. Mine is localization then pas-
sage to P-algebras (because the requisite axioms are passed to LC(M)). We intend to link up these two
machines.

M

''xx
LC(M)

��

P − alg(M)

��
P − alg(LC(M)) oo ?? // LPC(P − alg(M))
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We believe the commutative monoid axiom implies a model structure on the category of symmetric (non-
reduced) operads, and can be generalized to the setting of non-polynomial monads. So we hope to extend
the results of the Batanin-Berger paper a bit into the realm of non-polynomial monads (note that polynomial
monads correspond to Σ-cofibrant colored operads, so this type of extension is very much in line with my
thesis).

We hope to better understand the connection between assuming T -alg(LC(M)) inherits a model structure, as-
suming LC preserves T -algebras, and assuming LC lifts to a localization LTC on the level of algebras.
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