
1. Outline

(1) Basic Graph Theory and graph coloring

(2) Pigeonhole Principle

(3) Definition and examples of Ramsey Numbers - R(3), R(3, 3, 3)

(4) Generalized Ramsey Numbers and Ramsey’s Theorem

(5) Erdös’s famous lower bound on R(n)

2. Basic Graph Theory

Definition 1. A graph G is a pair (V,E) where V is a set of points, called vertices, and E is a
set of pairs of points (vi, vj) called edges.

For us |V | will always be finite. IMAGE: General graph

The complete graph on n vertices has n vertices and edges between all pairs of vertices. IMAGES:
K3, K4

Graphs are useful all over mathematics and computer science. Much of the world can be modeled
through graphs. For example, a group of people can make a friendship graph where there is an
edge if two people are friends. Or the internet is a graph with computers as nodes and edges if
they’re on the same network (or visiting the same websites, or whatever).

3. Graph Coloring

Definition 2. A coloring of a graph is an assignment of colors (living in some finite set {c1, . . . , cr})
to the edges of the graph.

You may have seen this defined before and probably with the nodes being colored such that no
edge connects two nodes of the same color. But for this talk I will need to be coloring the edges of
graphs and I will not insist that two adjacent edges are of different colors.

IMAGE: Color a K5 so it DOES HAVE a monochromatic triangle.

4. Pigeonhole Principle

Proposition 1 (Pigeonhole Principle). If you are placing n + 1 pigeons into n holes, then some
hole will end up containing at least two pigeons (obviously this holds for placing m pigeons into n
holes whenever m > n).

If you are placing 2n−1 pigeons into 2 holes then some hole will end up containing at least n balls.
So if you have 2n− 1 people at a party then at least n are of the same gender.

Because combinatorics studies discrete objects (mostly finite), this is crucial to the field and many
proofs rely on it. The notion of placing pigeons into 2 holes is exactly the same as 2-coloring the pigeons.

Here do the example with K6 and show that every vertex has three edges of one color coming out
of it.
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5. Ramsey

Ramsey Theory generalizes the Pigeonhole Principle and solves the party problem above more
generally. The question is: what is the minimum number of guests that must be invited so that at
least n will know each other?

Definition 3. R(n) is the smallest integer m such that in any 2-coloring of Km there is a monochro-
matic Kn.

In the most general sense, Ramsey Theory asks how many elements are necessary to insure that
some property is met.

6. Known Ramsey numbers

Theorem 1 (Theorem on Friends and Strangers). R(3) = 6, i.e. 6 is the smallest number such
that any 2-coloring of K6 has a monochromatic K3 (i.e. a monochromatic triangle)

This means at any party with at least six people, there are either three people who are all mutual
acquaintances (each one knows the other two) or mutual strangers (each one does not know either
of the other two).

Proof. First, R(3) ≥ 6 because here is a 2-coloring of K5 with no monochromatic triangle. It’s
always easier to find lower bounds on Ramsey numbers because it’s constructive. IMAGES.

Second, R(3) ≤ 6 because if a is a vertex of K6 then a has 5 edges touching it. By the Pigeonhole
Principle, three of them are the same color (e.g. as shown above) without loss of generality red.
Consider the three vertices b, c, d those edges connect to. If any edges between them are red (say
(b, c) is) then we’re done because 4abc is red. So none of these edges are red and they must all be
blue. This means 4bcd is blue. So we have a monochromatic triangle. �

So we know R(3) = 6 and it’s trivial that R(1) = 1 and R(2) = 2 since any coloring of a K2 (i.e. 1
edge) has a monochromatic K2.

Fact: R(4) = 18. You’ll need to find a 2-coloring of a K17 without a monochromatic K4 and
then prove that any 2-coloring of K18 has a monochromatic K4. Indeed, the 2-coloring works by
coloring an edge (i, j) red if i − j is a square modulo 17 and coloring it blue otherwise (this red
subgraph is called the 17-Paley graph). So R(4) ≥ 18. There has been much beautiful work done
here putting lower bounds on Ramsey numbers using elementary number theory. Perhaps more
advanced number theory would give better bounds! DEBT: R(4) ≤ 18.

Fact: 43 ≤ R(5) ≤ 49 and 102 ≤ R(6) ≤ 165. If you find better bounds you will have a very nice
paper. If you nail either one down you’ll probably get a PhD immediately!

For a K48 there
(
48
2

)
= 1128 edges. Each can get one of two possible colors. So there are 21128

colorings to consider, which is totally infeasible for a computer.

Paraphrased from Paul Erdös: Aliens invade the earth and threaten to obliterate it in a year’s
time unless human beings can find the Ramsey number for red five and blue five. We could marshal
the world’s best minds and fastest computers, and within a year we could probably calculate the
value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have
no choice but to launch a preemptive attack.

Erdös was one of the most prolific publishers of papers in mathematical history, second only to
Leonhard Euler; Erdös published more papers, while Euler published more pages.
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Proposition 2. (n− 1)2 < R(n) ≤ 4n

Proof. Clearly for k = 1, R(k) ≤ 4k. Suppose this holds for all k < n. Let m = 4n = 22n, and
consider any 2-coloring of Km. IMAGE with flags and neighbors. For any vertex x1 the degree of
x1 is 22n−1 and so the pigeonhole principle assures us that there are 22n−1 neighbors of the same
color, call it blue. So place a blue flag on x1. Next, select x2 from among these blue neighbors
of x1 and note that by the pigeonhole principle it has 22n−2 neighbors of the same color (perhaps
it is red and needs a red flag). Continue in this way till you have a sequence x1, x2, . . . , x2n−1. By
the pigeonhole principle some n of these have the same color flag (perhaps red). Selecting those
vertices gives a red Kn. IMAGE with blocks and interior edges.

As for the lower bound, partition K(n−1)2 into n − 1 sets and color all edges in each set red. So I
have n− 1 groups of red Kn−1’s and so every vertex is in one of these groups. Color all remaining
edges blue. Clearly there is no red Kn because all the red groups are one vertex short. If there was
a blue Kn then consider where its n vertices are. There are only n− 1 red groups so two of these
bad vertices must be in the same red group. But this means the edge between them is red, so in
fact this all blue Kn wasn’t all blue!

�

7. Generalizing Ramsey numbers

Define R(s, t) and note that R(s, t) = R(t, s). Existence below:

Proposition 3. (1) Relatively easy to show and very useful: R(s, t) ≤ R(s− 1, t) +R(s, t− 1).

(2) Theorem of Erdös-Szekeres: R(s, t) <
(
s+t−2
t−1

)
. Corollary of (1). IMAGE

Proof. (1) R(s, t) ≤ R(s−1, t)+R(s, t−1). We may assume by induction that n1 = R(s−1, t)
and n2 = R(s, t− 1) are finite. Let n be their sum and consider any 2-coloring of Kn. Let
x be a vertex, so its degree is n − 1 = n1 + n2 − 1. By the pigeonhole principle there
are either n1 red edges or n2 blue edges coming out of x. Assume the first holds (the other
case is symmetric) and note that these neighbors form a Kn1 . If this graph has a blue Kt

we are done. Otherwise, R(s− 1, t) gives a red Ks−1 and so with x this makes a red Ks.

(2) R(s, t) <
(
s+t−2
t−1

)
is a corollary the above by induction. Assume it holds for all 2 ≤ s′+ t′ <

s+ t. Then by the above we have

R(s, t) ≤ R(s− 1, t) +R(s, t− 1) ≤
(
s+ t− 3
s− 2

)
+
(
s+ t− 3
s− 1

)
=
(
s+ t− 2
s− 1

)
�

Theorem 2 (Ramsey’s Theorem). Given integers n1, . . . , nr there is a number m = R(n1, . . . , nr)
such that for any r-coloring of the edges of Km there exists an i such that 1 ≤ i ≤ r and there
exists a complete Kni monochromatic in color i.

That R(n1, . . . , nr) is the Generalized Ramsey Number. For example, we’ve already shown
R(3, 3) = 6 and R(4, 4) = 18. Clearly R(s, 2) = s for all s because either you have a red Ks or
you have some blue edge. It’s also true that R(3, 4) = 9, i.e. 9 is the minimal m for which any
2-coloring of Km contains a red triangle or a blue K4. Easy exercises: R(3, 5) = 14, R(3, 6) =
18, R(3, 7) = 23, R(3, 8) = 28
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Proposition 4. R(n1, . . . , nr) ≤ R(R(n1, n2), n3, . . . , nr)

(1) and this give an inductive proof of Ramsey’s Theorem.

Proof. Suppose R(n1, . . . , nr) ≤ R(R(n1, n2), n3, . . . , nr) holds for all r < k. Because the RHS
relies on 2-color Ramsey numbers and r − 1 color Ramsey numbers we can assume it exists and is
finite by induction. Consider a k-colored Kn. Now replace the first two colors with a new color
but remember your old coloring. So we have k − 1 colored a Kn and so by the inductive
hypothesis this graph contains either a Kni monochromatic in color i (for some i ≥ 3) or it has a
KR(n1,n2) monochromatic in my new color. In the former case we are finished. In the latter case,
the definition of R(n1, n2) and our memory of the old coloring assures use that we must have either
a monochromatic Kn1 in color 1 or a Kn2 in color 2. In either case the proof is complete.

With this result, Ramsey’s theorem follows easily. By (1) it holds for the 2-color case because
R(s, t) must be finite and we can take it to be the minimum such value. Then, by induction we
assume Ramsey’s Theorem holds r − 1 colors and use (3) to bound the r-color case by the r − 1
color case. So the r-color case is finite and we take the minimum over all n for which any r coloring
of Kn contains a monochromatic Kni in color i. This minimum is R(n1, . . . , nr).

�

We can use (1) to prove some of our earlier claims. For instance: R(4) ≤ R(3, 4)+R(4, 3) = 9+9 =
18 and R(3, 5) ≤ R(2, 5) +R(3, 4) = 14. DEBT PAID

These are tools which get things a bit tighter, but don’t rely on any advanced mathematics. The
beauty of Ramsey theory is that people can get even tighter bounds using random graphs and other
fields. These random graphs and tricks get us nice asymptotics too. But even with all these bounds
floating around some problems require tricks specific to the numbers involved. SKIP NEXT

For example, the tools give us that R(3, 4) ≤ 6 + 4 = 10. But in fact it’s 9 and the K8 with red
perimeter and red diagonals proves R(3, 4) ≥ 9. To get R(3, 4) ≤ 9 we deal with cases. If any
vertex has six blue edges coming out then in the set of its neighbors I can find a blue triangle
(giving a blue K4) or a red triangle. Either way I’m done. If x has 4 reds going out I look in the
K4 they make and if there’s any red edge in there I have a red triangle with x. If not, then that
K4 is blue. In the only other case I have 5 blue and 3 red going out of each vertex. When counting
blue edges we should get an even number since each is counted from both ends. But 9 ∗ 5 = 45 is
not even, contradiction. This is how we show R(s, t) ≤ R(s− 1, t) +R(s, t− 1)− 1 if both smaller
Ramsey numbers are even.

The only non-trivial case known exactly for the generalized Ramsey numbers with r = 3 is
R(3, 3, 3) = 17. It’s the smallest non-trivial case because any time 2 appears we reduce to r = 2
(e.g. R(3, 3, 2) = R(3, 3)) since the third color can’t be used at all. SKIP NEXT

I’m not going to draw a 3-colored graph with 16 vertices and no monochromatic triangle. The proof
that R(3, 3, 3) ≤ 17 is that any x has 16 neighbors which is more than 5 + 5 + 5 so there must be
some six in the same color, say green. Among those six you can’t have a green edge because that
would give a green triangle with x. But R(3, 3) = 6 now forces there to be a red or blue triangle in
that set of six vertices.
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8. Erdös Probability Method

All the proofs in the last slide were upper bounds. There are many creative constructive lower
bounds (e.g. giving polynomial lower bounds of any fixed degree), but nothing reaching cn for any
c > 1. This is achieved only by the Erdös Probability Method and the following two facts:

(1) P (∪En) ≤
∑
P (En) with equality iff events are pairwise disjoint.

(2) P (A) = 0 iff A = ∅. So P (E) > 0 iff there is some model in which E occurs. This is clear
when probability space is finite.

Theorem 3. If
(
m
n

)
< 2(n

2)−1 then m < R(n)

Corollary 1. For n ≥ 3, 2
n
2 < R(n)

The best asymptotics for m come easily from the corollary and we get

m = 2
n
2 · n

e
√

2
< R(n)

PROOF The probability space is the space of 2-coloring of the edges of Km, which has N = 2(m
2 )

elements. A subset of n vertices yield a monochromatic Kn with probability p = 2

2(
n
2)

since only

two of all the colorings has this property (the all red and the all blue). Therefore the probability of
having some monochromatic Kn is at most p ·

(
m
n

)
< 1 by hypothesis on m. Thus, the probability

of having no monochromatic Kn is strictly positive. Since the probability space is finite, this
means there must exist a 2-coloring with no monochromatic Kn which implies m is a lower
bound on R(n) without actually having to find the coloring!

This method generalizes to prove many useful things in graph theory, and more advanced topics
from probability theory gave the following bounds: SKIP

c′
(

t

log(t)

)2

< R(3, t) < c′′
log(log(t))

log(t)
t2

NOTE: there is a similar theorem for R(s, t) with basically the same proof.

45 MIN

9. Extensions of Ramsey Numbers

They extend to directed graphs: let R(n) be the smallest number m such that any Km with
singly-directed arcs (also called a tournament) contains an acyclic (also called transitive) n-node
subtournament. For directed graphs, R(n) is computed up to n = 6 and there are sharper bounds
above.

They extend to hypergraphs (where edges can have more than 2 nodes) and you get Rt(n1, . . . , nr)
to be the smallest m such that if the edges of Kt

m are r-colored in any way, then for some i you
have a monochromatic Kt

i in color i. Note that Kt
m has m vertices and every t element set is a

hyperedge.

They extend to infinite graphs, but you need to talk about when colorings are equivalent, irre-
ducible, canonical, etc. There are some beautiful results here which rely on theorems from logic to
prove. There are others which are simple statements about finite sets but which cannot be proven
using the Peano Axioms and seem to require infinite Ramsey numbers.
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Fact: In any k-coloring of N there is an infinite A ⊂ N such that all sums
∑

x∈X x over ∅ 6= X ⊂ A
have the same color. The proof uses the Stone-Cech Compactification (a semi-group) and
Principal Ultrafilters. It’s a result in Partition Calculus which is SET THEORY

Fact: if you 2-color K∞ then there will be a monochromatic K∞ by the flag argument.

Theorem (infinite hypergraphs): Let X be some countably infinite set and color the elements of
X(n) (the subsets of X of size n) in r different colors. Then there exists some infinite subset M of
X such that the size n subsets of M all have the same color.

They extend to R(G1,G2, . . . ,Gr) which is the smallest number such that an r-colored Kn has no
monochromatic Gi in color i. These are well-studied for the following:

cycles (solved for 2-colorings), stars, wheels, fan with ` blades, bipartite graphs, sparse graphs,

trees (R(Ks, Tt) = (s− 1)(t− 1) + 1), paths, Kn’s with one edge removed,

multiple disjoint copies of graphs: ps+ (q − 1)t− 1 ≤ r(sKp, tKq) ≤ ps+ (q − 1)t+ C

In the plane we have Happy Ending Problem: Any set of five points in the plane in general
position has a subset of four points that form the vertices of a convex quadrilateral.

More generally: f(n) is the minimal number such that any f(n) points in R2 in general position
contain a convex n-gon. Because f(n) ≤ R4(5, n) and f(n) ≤ R3(n, n), this always exists.

Even more generally: If you have more than
(
k+`−4
k−2

)
+1 points then you have either a k-cup (convex)

or an `-cap (concave)

10. An alternate construction of Ramsey numbers

R(s, t) is the smallest n such that for every graph G with |G| = n either G contains Ks or G
contains Kt. Here G has as vertices the edges of G and connects two if they were adjacent (shared
a vertex) in G. Note that G = G for all graphs. Ramsey used this construction and some set theory
to originally prove his theorem.

11. Other attacks on Ramsey Numbers

Linear Algebra Method is viewing edges or vertices as vectors in a vector space and using
independence to formulate a bound based on dimension.

Evolutionary Algorithms have been used to evolve constructive lower bounds on some Ramsey
numbers of the R(G1, . . . , Gs) type. But human-found constructive solutions have already been
left in the dust so this may not work for improved lower bounds of R(5) and R(6).

Bounds based on clique number, independence number, chromatic number, discrepancy, and other
graph invariants.

Example: R(G,H) ≥ (χ(G) − 1)(c(H) − 1) + 1 where c(H) is the size of the largest connected
component of H.

R(G,G) ≤ cdn(G) where cd is a constant depending only on the maximum degree d of G.

Using the generalized Schur number as a lower bound. Or the maximal order of any cyclic color-
ing.



7

12. More probability theory

Local Lemma Setup: We say events {A1, . . . , An} have Dependency Bound D if for all i, Ai
depends on at most D other events Aj . Equivalently, for each i there is some Si ⊂ [n] such that
|Si| ≤ D, i /∈ Si, and Ai is independent of any boolean combination of events Aj from j /∈ Si. Two
events are independent if P (A ∩B) = P (A)P (B).

Local Lemma: Assume A1, . . . , An have dependency bound D and P (Ai) ≤ 1
4D . Then P (∩Ai) > 0.

This capitalizes on independent events and gets even better bounds. Also applies widely in graph
theory.

Random graphs can be used to find bounds on Rα(m) the smallest integer n such that for any
G of size n either G or G has a subgraph H of order ≤ m with δ(H) ≥ α(|H| − 1). Use the
semi-random method (a.k.a. Rödl’s nibble method) to select small random bits and analyze
as we go. This gives really good asympotics on Ramsey Numbers.

In probability theory, a martingale is a stochastic process (i.e., a sequence of random variables)
such that the conditional expected value of an observation at some time t, given all the observations
up to some earlier time s, is equal to the observation at that earlier time s. Formally, it’s a sequence
of random variables X1, X2, X3, . . . such that for all n, E(|Xn|) <∞ and E(Xn+1 | X1, . . . , Xn) =
Xn. These Martingales have recently been used to get better inequalities in Ramsey Theory and
elsewhere in probability theory.

Use of CENTRAL LIMIT THEOREM? LAW OF LARGE NUMBERS? CHEBYCHEV’S IN-
EQUALITY? OTHER THINGS FROM PROBABILITY THEORY?

13. Dessert

Proposition 5. (1) R(n) ≤ 4R(n− 2, n) + 2

(2) R(n) ≤ R3(6, n) is a non-trivial exercise due to Kiran Kedlaya.

(3) R(3, 3, . . . , 3) ≤ ber!c+ 1

Proof. (1) See K. Walker, Dichromatic graphs and Ramsey numbers, Journal of Combinatorial
Theory, 5 (1968) 238-243

(2) Let m = R3(R(3), n) and consider any 2-coloring of G = Km. We’ll show this contains a
monochromatic Kn. Use the given coloring to define a 2-coloring of K3

m. Color hyperedge
abc red if a, b, and c do not form a monochromatic triangle in G. Color abc blue otherwise.
By definition of m, means you either have a red K3

6 or a blue K3
n. If you have a red K3

6

then those six vertices contain no subset of size three which is monochromatic (by the
definition of when you color something red). So we have a K6 without a monochromatic
K3, contradicting the fact that R(3) = 6. Thus, we must be in the second case and have
a blue K3

n. But then you must have had a monochromatic Kn in G because we know all
triangles contained in this Kn are the same color, which means all edges in Kn are the same
color.

This proof generalizes obviously to show R(n) ≤ Rm(R(m), n) and Ri(n) ≤ Rm(Ri(m), n).

(3) First, e =
∑∞

i=0
1
i! so it’s sufficient to truncate this sum to get some f and proveR(3, 3, . . . , 3) ≤

bfr!c+ 1. In particular, f =
∑r

i=0
1
i! will work. This is a proof by induction:

R(3, 3) = 6 ≤ b2!(1 + 1 + 1
2)c+ 1 = 6 is true.
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Assume the result holds for R(3, 3, . . . , 3) with k entries. For simplicity denote this r(k).
Finally,

(k+ 1)!(
k+1∑
i=0

1
i!

) + 1 = (k+ 1)!(
k∑
i=0

1
i!

+
1

(k + 1)!
) + 1 = (k+ 1)!(

k∑
i=0

1
i!

) + 2 = (k+ 1)

(
k!

k∑
i=0

1
i!

)
+ 2

By the inductive hypothesis, this is ≥ (k+ 1)(r(k)− 1) + 2 so to show it’s an upper bound
for r(k + 1) it’s sufficient to show m = (k + 1)(r(k) − 1) + 2 is such a bound. Consider
a k + 1 coloring of Km and we’ll show it has a monochromatic K3. For any vertex x its
degree is (k+ 1)(r(k)− 1) + 1 so the pigeonhole principle tells us x connects to r(k)− 1 + 1
vertices of one color, say red. If there are any red edges in there we are done because that
edge and the two edges to x will form a red triangle. If there are not any red edges then
we have a Kr(k) which is k-colored and so by the inductive hypothesis it must contain a
monochromatic triangle. Thus,

r(k + 1) ≤ (k + 1)(r(k)− 1) + 2 ≤ (k + 1)!(
k+1∑
i=0

1
i!

) + 1 ≤ b(k + 1)!e+ 1c since |V | ∈ Z

�
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