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1. Motivation for Spectra 1

It is VERY hard to compute homotopy groups. We want to put as much algebraic structure as
possible in order to make computation easier. You can’t add maps in HoTop but you can in Spectra
(i.e. Spectra is an Ab-category). The motivation to go to S−Alg = HoS then becomes that you
want an abelian category

We want to study the ring-like objects that arise in this category. “Ring-like” means ring-object,
i.e. using the lens of category theory. They have no points, so you can’t do traditional algebra. To
measure complexity of these we’ll use dimension.

2. Definitions

Definition 1 (Spectrum). A spectrum X is a sequence (Xi) of topological spaces (path conn. CW-
complexes) with maps from ΣXi → Xi+1 where Σ is reduced suspension.

Example: S = (Sn) the sphere spectrum. NOTE: We’ve erased dimension, so now maps that
are morally the same, e.g. a map S5 → S4 and a map S6 → S5 are now actually the same.
But the penalty is, we have no points. Define X∗ = πk(X) = [ΣkS,X]. It’s a graded ring, with
smash product given by (f : Sn → X) ∧ (g : Sm → X) : Sn+m → X. We get stable homotopy
as πk(X) = colimn πk+n(Xn) where the directed system is πk+n(Xn) → πk+n+1(S1 ∧ Xn) →
πk+n+1(Xn+1)

Example: Any cohomology theory, e.g. HQ, KO

Definition 2 (S-algebra). An S-algebra is a generalized cohomology theory with a cup product
that is associative up to infinitely coherent homotopy.

An S-algebra E comes with ∧ : E × E → E and u : S → E

E × E × E ∧×1 //
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E × E ∧ // E E

Mention: to make ∧ work you need to have an action of Σn on Xn. Analogy with Ch(R) shows
that A⊗B → B ⊗A takes a⊗ b 7→ (−1)|a|·|b|b⊗ a. In our case we need the Σn to pick up the sign
that contains the cost of moving b past a. Note: this works best if Xn is a simplicial set, but it all
pushes through for any Xn with an action of Σn.
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An S-algebra E is an S-module because we have S ∧ E → E. In particular, Si ∧ (Sj ∧ E) ∼=
(Si ∧ Sj) ∧ E ∼= Si+j ∧ E.

An E-module X has E ∧X → X satisfying the usual action rule.

EXAMPLE: HR = Eilenberg-Maclane spectrum. This puts K(Rn, n) in dimension n so the homo-
topy is R = (Rn). This is a way for rings to sit in the category of S-algebras.

EXAMPLE: Chain complexes are HZ-modules with HZ ∧ Y → Y simply multiplication as an
HZ-module map. There’s a spectra map going the other way, but not an HZ-module map. Indeed,
we have a Quillen equivalence: D(HZ) → D(Z) =ChainComplexes. This is because cofibrant
objects are built of ΣiHZ’s and these are simply n-cells mod (n− 1)-cells. Done because CnM =
πn(Mn,Mn−1).

3. Algebraic Motivation: why we care about dimension

Moral: Algebra ⊆ Homological Algebra ⊆ Stable Homotopy Theory

Krull Dim of R = sup{P0 ( P1 ( . . . ( Pn | each Pi is a prime ideal of R}. Note: this definition
fails for spectra because spectra have no points, hence no good definition of prime ideal.

The simplest rings are fields, which clearly have Krull dim zero because no ideals. Dimension is
telling us about complexity.

Dimension gives amazing theorems in algebra:

R is semisimple iff all modules over R are projective iff R is a direct sum of simple submodules.
My favorite way to define such a ring as one with global dimension zero

Semisimple implies Artinian and Noetherian.

Theorem 1 (Artin-Wedderburn Theorem). R is semisimple iff R = R1 × · · · × Rn where Ri =
Mn(D) for D a division algebra

Maschke’s Theorem says k[G] is semisimple, so it sufficies to study irreducible representations

A ring R is right hereditary if every right ideal is projective as a right R-module. True iff
r.gl.dim(R) ≤ 1

Theorem 2 (Serre’s Theorem). If commutative R has finite global dimension then R is regular,
i.e. for all prime P, the min number of generators for M⊂ RP is Krull dim(RP).

Note: Converse holds if R is semilocal, i.e. R/ rad(R) is artinian, hence semisimple.

A point x on a algebraic variety X is nonsingular if and only if the local ring OX,x of germs at x
is regular

Lam 5.84 (Serre): R is commutative Noetherian local ring then gl.dim(R) < ∞ iff R is a regular
local ring. In this case gl.dim = Krull dim.
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4. Global Dimension

We say module P is projective if:

P

��∃~~|
|

|
|

M // N // 0

A module M is flat if the functor −⊗R M is exact.

A projective resolution of M is · · · → Pn → · · · → P2 → P1 → P0 → M → 0, with all the Pi’s
projective.

Definition 3. Projective dimension = pd(M) = min. length of a projective resolution.

Ex: If P is projective, pd(P ) = 0 since · · · → 0→ 0→ P → P → 0 is a projective resolution.

Ex: For R = Z, pd(Z/n) = 1 since · · · → 0→ Z→ Z→ Z/n→ 0 is minimal projective resolution,
where the first map is mult by n and the second is quotient.

Examples: Q⊕ Z is flat but not injective or projective. Q/Z is injective but not projective or flat.
Z is projective but not injective. Injective Z-modules are exactly divisible groups.

Definition 4 (Right Global Dimension). r.gl.dim(R) = sup{pd(M) |M ∈ R−mod}

Ex: r.gl.dim(k[x1, . . . , xn]) = n because of the module (x1, . . . , xn)

Ex: r.gl.dim(k[x]/(x2)) =∞ because k is an R-module and the minimal projective resolution is an
infinite chain · · · → k[x]/(x2)→ k[x]/(x2)→ k → 0, where each map takes x→ 0 and 1→ x. You
can’t get a smaller projective resolution because if you take this one and Hom into k then times t
becomes zero and you get infinitely many non-zero Ext terms.

Fact: r.gl.dim(R) = 1⇒ submodules of projective modules are projective. This is the next simplest
ring after a semisimple ring. Ex: all PIDs.

Definition 5 (Weak Dimension). r.w.dim(R) = sup{fd(M) |M ∈ R−mod}

Projective ⇒ Flat, so r.w.dim(R) ≤ r.gl.dim(R). If R is Noetherian then w.dim(R) = r.gl.dim(R)
because fd(M) = pd(M) for all M .

R is Von Neumann Regular iff w.dim(R) = 0 iff all modules over R are flat.

w.dim(R) = 1 implies submodules of flat modules are flat.

r.gl.dim(R) = 1 implies submodules of projective modules are projective.

5. Derived Category

The correct category to study modules over an S-algebra E is D(E). Objects are E-modules, maps
from M1 to M2 are {S−algebra morphisms:M1 →M2}/ ∼ where f ∼ g if f = g ◦ s−1 and s∗ is an
isomorphism.

CORRECT CATEGORY because triangulated. There is no abelian category of E-modules, i.e.
none where you can add maps and get kernels and cokernels. Triangulated is the best you can do.
It’s also compactly generated and has derived tensor products and derived Hom objects.
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Definition 6. A map f : X → Y in D(E) is ghost if f∗ = 0

Such maps CANNOT BE SEEN BY π∗

EXAMPLE: any map from HR → ΣkHR is ghost if k > 0 because πn(HR) = R iff n = 0, so
πn(ΣkHR) = πn−k(HR) = 0

We have a categorical equivalence: D(HR) ∼= D(R). We also have D(S)→ D(HZ) via X 7→ HZ∧X
i.e. extension of scalars. Going the other way send Y 7→ Y and it’s restriction of scalars.

X ∈ D(E) is projective iff X∗ is a projective E∗-module. Define pd(X) = 1. Projective E∗-
modules are realizable.

Proof of Realizable: Retracts of coproducts of free will realize the projective guys. M is a retract
of ⊕nΣnE∗ so X will be a retract of

∨
n ΣnE.

Definition 7. pd(X) ≤ n + 1 iff Y → P → X̃ → ΣY with P projective, pd(Y ) ≤ n, and X a
retract of X̃.

6. Dimensions of Ring Spectra

Definition 8. pd(X) ≤ n+ 1 iff Y → P → X̃ → ΣY with P projective, pd(Y ) ≤ n, X a retract of
X̃

Definition 9. r.gl.dim(E) = sup{pd(X) | X ∈ D(E)}
Definition 10 (Ghost Dimension). gh.dim(E) = sup{pd(X) | X ∈ D(E) is compact}

Fact: gh.dim(E) ≤ r.gl.dim(E)

Fact: r.gl.dim(E) =r.gl.dim(E∗). Also, gh.dim(E) =gh.dim(E∗).

Fact: If E = HR then r.gl.dim(E) =r.gl.dim(R). Same for weak dim.

Proposition 1. X ∈ D(E) is projective iff the natural map D(E)(X,Y ) → HomE∗(X∗, Y∗) is iso
for all Y

We use this in practice all the time, especially to show when ghosts are null.

Proposition 2. pd(X) ≤ n iff every composite of n+1 ghosts fn+1◦· · ·◦f1 is null where Dom(f1) =
X. This holds iff Es,t

2 = Exts,t
E∗

(X∗, Y∗)⇒ D(E)(X,Y )t−s has Es,∗
∞ = 0 ∀ s > n

Here we have algebra on the E2 term converging to topology on the E∞ term.

EXAMPLE: There are these really important, well-studied maps of cohomology theories called
the Steenrod Squares. They’re tricky to define properly, but one way is as an attempt to make
the cup product be stable. Anyway, Sqi : Hn(X;R) → Hn+i(X;R). Given any spectrum X, let

a ∈ Hn(X). Then we have X
a→ HF2

Sqi

→ Σn+iHF2 → . . . . The composite of Sqi and a is a
ghost, even if a is not. For a specific example, let X = RP k (sits in spectra as Σ∞RP k) and let
〈a〉 = H1(RP k; F2) = F2. Sq1 is a ghost.

EXAMPLE: gh.dim(S) = ∞. Suppose it was n < ∞. Consider X = RP k for k = 2n+1. Using a
above:
X

a→ Σ1HF2
Sq1

→ Σ2HF2
Sq2

→ Σ4HF2 . . . . We get a composite of n ghosts which is non-null.
Hence, pd(X) ≥ n+ 1 so gh.dim(S) ≥ n+ 1, contradiction.
Note: Sqi : ΣnHF2 → Σn+iHF2. Applying πn we see LHS6= 0 but RHS= 0. So Sqi is ghost.
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7. Analogy to Ring Theory Holds

Recall: depth(R) = length of the longest regular sequence ((x1, . . . , xn) s.t.
∑
xiR 6= R and xi

not a zero-divisor in R/(x1R+ · · ·+ xi−1R))

Theorem 3. If E is a commutative S-algebra then depth(E∗) ≤ gh.dim(E) ≤ min{w.dim(E∗),r.gl.dim(E) ≤
r.gl.dim(E∗)

Theorem 4. If E is a commutative S-algebra and E∗ is Noetherian with gl.dim(E∗) < ∞ then
gh.dim(E) =r.gl.dim(E) = r.gl.dim(E∗)

Proof: by Serre every RP is regular local since R is commutative of finite global dim. Thus, R
is Cohen-Macaulay by defn: all localizations at prime ideals are local Cohen-Macaulay (because
regular local rings). So depth = gl.dim.

Cool fact: Commutative R is a regular local ring iff gl.dim(R) <∞.

We need to have the Noetherian condition on E∗ because without IDEALS we have no definition
for E to be Noetherian.

Key fact: Regular local rings are Cohen-Macaulay. The proof uses Auslander-Buchsbaum: Let
(R,P ) be a local ring. If M is a finitely presented R-module of finite projective dimension then
pd(M) =depth(P,R)−depth(P,M). If R is Noetherian, regular, and local then all modules are
finitely generated, so that condition means nothing. Also, pd(M) is the length of every minimal
free resolution of M .

All we need to prove is that if gl.dim(R) < ∞ then depth(R) =gl.dim(R). This is page 482 of
Eisenbud. Let k = R/M and let x1, . . . , xn be a minimal set of generators forM. By the Principal
Ideal Theorem (about codim(P ) ≤ c where P is minimal prime containing x1, . . . , xc) we have Krull
dim (R) ≤ n. We must show depth(R) ≥ n since depth is ≤ Krull dim. Turns out the Koszul
complex K(x1, . . . , xn) has length n and is contained in the minimal free resolution of k. Thus,
pd(k) ≥ n and this proves depth(R) ≥ n.

Fact: E∗ semisimple ⇒ E semisimple. We’ll see in a moment the converse is false.

EXAMPLE: En∗ = WFpn [[u1, . . . , un−1]][u, u−1] so gh.dim En = gl.dim En = gl.dim En∗ = n.
First, WFpn is the Witt Ring of Fpn . It’s the smallest DVR in characteristic zero with residue
field R/M∼= Fpn and it’s unique up to isomorphism. This is a local field and a finite extension of

Zp of degree pn. The chain of extensions Zp
p→ Z/p p→ Z/p2 . . . corresponds to W (Fpn)

pn

→ P pn

→
P∈ . . . .

Next, WFpn has dimension 1 because it’s a ring of integers in a field. Similarly, it’s Noetherian.
Adjoining n−1 variables gives dimension 1+n−1 = n and keeps it Noetherian. Because we adjoin
both u and u−1 they are units and so it doesn’t affect dimension.

8. Analogy to Ring Theory Almost Holds

Theorem 5. A semisimple S-algebra E with E∗ commutative has E∗ ∼= R1 × · · · ×Rn where each
Ri is either a graded field k or an exterior algebra k[x]/(x2) over a graded field k

Thus, E semisimple 6⇒ E∗ semisimple

Corollary: r.gl.dim(E) = 0 ⇒ E∗ is quasi-Frobenius, hence 0-Gorenstein, i.e. R has injective
dimension 0 as an R-module
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Conjecture: r. gl. dim(E) = n⇒ E∗ is n-Gorenstein.

Theorem 6. Suppose E → F in S-alg gives F∗ free over E∗. Then gh. dim(E) ≤ gh.dim(F )

Proof: Consider the functor F ∧E (−) : D(E)→ D(F ) and its right adjoint the restriction functor.
Because F∗ is flat over E∗ we have F∗ ⊗E∗ X∗ → (F ∧E X)∗ is an iso. Both sides are homology
functors and it’s an iso for X = E so it’s an iso for all X. Thus, F ∧E (−) preserves ghosts since a
ghost in E has π∗f = 0 so it’s image is ghost in F . If g is n-ghosts with domain compact in D(E)
then F ∧E g is n-ghosts with domain compact in D(F ). Because F∗ is free over E∗ we know F ∧EX
is a coproduct of copies of X as an E-module, so g is a restriction of F ∧E g. This means we can’t
have F ∧E g = 0 unless g 6= 0.

9. Analogy to Ring Theory Fails

KO is 2-local periodic real K-theory

KO∗ = Z(2)[η, w, v, v−1]/(η3, 2η, wη,w2 − 4v) where 〈η〉 = π1(KO), 〈w〉 = π4(KO), 〈v〉 = π8(KO).
Infinite global dim.

HF∗2(KO) = [KO,HF2]∗ = maps of spectra. This is an A−module but not a ring. It’s zero.

(HF2)∗(KO) = π∗(HF2 ∧KO) = [S0, HF2 ∧KO]. It’s zero.

ko is 2-local connective real K-theory

KO = v−1ko, specifically it’s the direct limit of ko ·v→ Σ−8ko
·v→ . . .

ko∗ = Z(2)[η, w, v]/(η3, 2η, wη,w2 − 4v)

K∗ = Z[u, u−1] with |u| = 2. KO∗ = Z[η, w, v, v−1]/(η3, 2η, wη,w2 − 4v). We work in Z(2)

k∗ = Z[u] with |u| = 2. ko∗ = Z[η, w, v]/(η3, 2η, wη,w2 − 4v)

A max ideal in KO∗ is (η, w, 2). Certainly any max ideal must contain η because all prime ideals
do. Kill off η and you have Z(2)[w, v, v−1]/(w2 − 4v). If 2 ∈ M then so is w because v is a unit
and we modded out by w2 − 4v. But 2 must be in M to have Z(2)/M be a field. If 2 /∈ M then
2x+ z = 1 for some x, z. This means 〈{2} ∪M〉 = R, a contradiction of maximality.

Theorem 7. 1 ≤ gl.dimKO ≤ 3 and 4 ≤ gl.dim ko ≤ 5

C(η): C(η2)

Lower bound: Sq2Sq1Sq2Sq1 6= 0 for ko−module ko ∧A(1).

Upper bound: Follow Bousfield and view aKO−module as a CRT-module where CRT= {KO∗,K∗,KSC∗}
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Thus, gl.dim E∗ =∞ means we cannot apply our theorems

More general “build from” statement does exist (here we built ku from ko ∧ C(η)):

Theorem 8. If E is an S-algebra and X is a spectrum s.t. r.gl.dim(E ∧X) = m, pd(X) = k, and
S can be built from X in ` steps then gl.dim(E) ≤ (k + 1)(`+ 1)(m+ 1)− 1

If X is a finite type zero spectrum then S can be built in finitely many steps. These spectra have
rational homology not equal to zero, so HQ detects them. Type n is the first time your n-th
K-theory is nonzero. Same type implies can build one from another using coproducts, suspensions,
and retracts. A is a retract of B if A→ B → A. For KO example, ` could be huge, so the theorem
just gives gl.dim(KO) <∞. Finding the right X might make ` small, but m = k = 1 still.

Cor: r. gl.dim(E) = n 6⇒ E∗ is n-Gorenstein. A counterexample is KO because it’s not n-
Gorenstein for any n. We can see this because Gorenstein is a special case of Cohen-Macaulay, and
KO∗ is not Cohen-Macaulay: Krull dim = 1 (prime ideals are (η) and (η, 2, w)) but Depth = 0 (no
non-zero divisors in the maximal ideal, so if x is any non-unit then x is a zero divisor, so no regular
sequences at all).

From KO → K is complexification, i.e. − ⊗ C. From K → KO is forgetting. Doing c then
forgetting gives two copies of the original vector bundle. Thus, if 2 is a unit we have K is a
KO-summand.

10. Future Directions

(1) Find the exact global dim for KO and ko

(2) Use the theory of ideals to define Noetherian E and depth for E. Relate to E∗ notions.
Make the analogy to algebra stronger

(3) Other notions of dimension I didn’t mention: find examples, see which are equivalent, relate
to E∗
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