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1. Motivation and History

This section is mostly taken from Margolis [7]

Homotopy theory studies topological spaces up to homotopy, so it must study the functor π∗ :
Top → Π−algebras. Passage to the homotopy category is declaring π∗-isomorphisms to be iso-
morphisms. Because this functor is difficult to compute, one way to do homotopy theory is to

study simpler functors which also map to graded abelian categories, e.g. πQ∗ , H∗(−;Z), K∗, or
more generally E∗ for E some generalized homology theory. The study of these functors reveals
information about spaces as seen through the eyes of these various homology theories. It also
reveals information about the spectra representing these homology theories, namely how much of
Top they can “see.” To study this we must work in a category where the isomorphisms are exactly
the E∗-isomorphisms, i.e. the maps f such that E∗ is an isomorphism. These are the maps seen
as isomorphisms by E. Is there always such a category? What about if we’re working in Spectra
instead of Top?

In full generality, when you have a category C and a class of maps W to invert, you’re asking for a
functor C → C[W−1] which is universal with respect to the property that it takes W into
isomorphisms. The difficulty comes in proving C[W−1] exists. One way to do this is to show that
C has a model structure with weak equivalencesW. There are other ways as well which we’ll discuss
below, but we note here that in the end it is possible to do this in a model category framework and
to get a model structure with W as the weak equivalences. Let’s fix some notation:

An object B is W-local if for all v : X → Y in W, we have a bijection C(Y,B) → C(X,B). This
means B can’t see the difference between W and isomorphisms. A W-localization of an object A
is a map w : A→ B where w ∈ W and B is W-local. It is easy to see that w is universal, so B is
unique up toW-isomorphism. In particularly nice cases,W is the class of maps f such that L(f) is
an isomorphism for a nice endofunctor L. In particular, call L : C → C a Bousfield localization

functor if there is a natural transformation η : 1→ L such that ηLX = LηX : LX
∼=→ L2X. When

the class W is the E∗-isomorphisms for a homology theory E, we can make these definitions nicer.
Namely, C is E-acyclic if E∗(C) = 0 and X is E-local if [C,X] = 0 for all E-acyclic C. So
E-localization depends on E-acyclics only (i.e. same acyclics implies LE = LF ).

Now, it’s easy to see that the objects of C[W−1] should be the same objects as in C. To construct
the morphisms you need to know that W satisfies a calculus of fractions (see [4]. Formally, this
means you need W to contain idX for all X, to satisfy the Ore condition (if X → Y ← Z and
←∈ W then there is some X ← K → Z making the diagram commute and ←∈ W), and to satisfy

cancellability (if X
→→ Y →w Z coequalizies the two arrows then there’s K →w X which equalizes

them). Informally, these rules are exactly what you need to define the morphisms by equivalence
classes of spans A ← • → B where the backwards arrow is in W. The calculus of fractions tells

Date: February 20, 2013.

1



2 DAVID WHITE

you this is well-defined, has a composition rule, is associative, and contains identity maps. The
problem is that you might have a class worth of maps between two objects.

To get around this set theoretic issue, you should prove an equivalence of categories C[W−1] ∼= CW
the full subcategory of C consisting of W-local objects. Because it’s a subcategory of C, the
morphism problem is resolved. It’s easy to see that all this works in the case where W is the L-
isomorphisms for some Bousfield localization L; this functor L is both directions of the equivalence.
In general, however, to prove this equivalence of categories you must prove every object A ∈ C
admits a W-localization. This construction is where the hard work is done. Once you know this
you define a functor L which takes A to its W-localization and you must prove this is a functor
unique up to W-equivalence. It is because of the universal property of W-localization.

Specializing the previous paragraph, one could take C to be the homotopy category and W to
be the E∗-isomorphisms. However, one could also take C to be the Quillen model structure on
spaces and W to be the E∗-isomorphisms. This gives the calculus of fractions (on a subcategory
of fibrant objects), gives tools to make the proof that C[W−1] ∼= CW go easier, and gives a better
understanding of the morphisms in C[W−1]. It also gives a stronger conclusion, namely that we get
a model structure whose weak equivalences are generated in a nice way by the E∗-isomorphisms and
whose homotopy category is HoTop[W−1]. We’ll discuss how model categories enter the picture at
the end of the talk, but record here that even Bousfield’s original proof for spectra required him
to take a homotopy colimit, i.e. to work in the (model) category of spectra rather than
its homotopy category. Furthermore, Bousfield’s proof that every object admits E-localization
is strongly reminiscent of the small object argument which appears in the study of model
categories.

In 1975, Bousfield [2] proved that there is a homotopy category of spaces whose isomorphisms are
the E∗-equivalences (in this case, W-localization is also known as E-localization LE). Around this
same time, Ravenel was studying localization of spectra, and in particular things like v−1n BP . These
localization were the spectra analogue of obvious localizations in GrRing after applying π∗. They
could easily be seen to exist via general realization principles, and Ravenel had also done a nice job
getting his hands on them concretely enough to use them for computations in the non-local world.
By 1979, Bousfield [3] had extended his proof about spaces to work also for homology theories of
spectra (interestingly, it fails for cohomology theories, as we’ll discuss next section). Furthermore,
Bousfield proved an analogue of Whitehead’s Theorem, which lets you get back from local
data on spaces to global data. This says that an E-equivalence between E-local spaces lifts
to a weak equivalence. In practice, most people use the universal property of E-localization
rather than digging into Bousfield’s proof. However, we’ll sketch it next section anyway just to
show that it’s not insanely mysterious.

2. Bousfield’s Proof

This section is mostly from Bousfield’s 1979 paper [3] and Margolis’s book [7], but also from Nerses
Aramian’s lecture notes [1] for a talk he gave at UIUC.

2.1. Making it work for a small subcategory. Adams and Baird (unpublished, early 70s)
noticed that for a small category C one does not have the set theoretic issues mentioned above.
They noticed that everything worked when you restrict from Top or Sp to the subcategory of
objects less than some huge cardinal κ (formally, this is the subcategory where |π∗(X)| < κ for all
X). In particular, one can construct the E-localization of any object by iteratively taking wedges
of E-acyclic objects (attaching E-acyclics does not change E-homology) and passing to cokernels
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and colimits to make sure the map from X to LE(X) is an E-equivalence. The construction goes
basically as follows:

• Base Case: X0 = X

• Successor Case: Given Xλ, define Xλ+1 as the cofiber of
∨
f :A→Xλ

A → Xλ, where A runs
through all E-acyclic objects of our small category

• Limit Case: Define Xλ = colimγ<λXγ

Let LE(X) = Xκ for the huge κ above. For any A we show [A,LE(X)] = [QA,LE(X)] = 0 where
QA is the cofibrant replacement of A in Sp. Note that QA necessarily contains less than κ many
cells, so that QA→ LE(X) factors through some Xλ and so QA→ Xλ → Xλ+1 is null by definition
of the cokernel. This proves LE(X) is E-local. Furthermore, X → LE(X) is an E-equivalence. To
see this, note that it holds for all Xλ → Xλ+1 by the cofiber sequence in E-homology, and if X → Xγ

is an E-equivalence for all γ < λ then E∗(Xλ) = E∗(colimXγ) ∼= colimE∗(Xγ), so X → Xλ is
an E-equivalence. This is why the proof breaks down for cohomology theories: they do
not commute with colimit or hocolimit. So far the only known way to prove one can localize
at cohomology theories (due to Casacuberta, Scevenels, and Smith) is to assume a large cardinal
axiom known as Vopenka’s Principle which makes this part of the argument unnecessary.

2.2. Getting from a small subcategory to all of Sp via hocolims. The problem with Adams
and Baird’s proof is that they make no mention of why one should be allowed to pass from Sp to
Sp<κ. How do we know that the E-equivalences remain unchanged? How do we know that Xκ

matches Xρ for some ρ > κ? Or that in the end these constructions will stabilize to the same
LE(X)? The trick is to replace the cokernel above by the cofiber on the model category level and
to replace the colimit by a homotopy colimit. In Jacob Lurie’s language, what is needed is to
show that there is a small subcategory C0 which generates Sp under homotopy colimits.
The method Bousfield originally used to do this came to be known as proving homology functors are
cardinality continuous (cf Margolis). Morally, this works because we can take for objects of C0 the
set S of homotopy type representatives for spectra A with |π∗A| < |π∗E|. The proof above shows
that [A,X] = 0 for all these A, and Bousfield’s work shows this is enough to conclude [B,X] = 0
for all spectra B because any B can be represented as a homotopy colimit of spectra in
S.

The key is to take any map f : X → A where |π∗(X)| < |π∗E| and A is E-acyclic, and factor f

through some E-acyclic X(1) with |π∗(X(1))| < |π∗E|. Do this first for finite X, then for general Y

by writing Y as a homotopy colimit of a directed system of finite X. Next get a chain Y (n) and define
Y (∞) as the homotopy colimit. Then any E-acyclic A can be written as a hocolim of spectra

X with |π∗(X)| < |π∗E| by applying the above to get A ' hocolimXα → hocolimX
(∞)
α → A and

showing this is a π∗ isomorphism.

Use this result to conclude that if a functor F ∗(C) is trivial on the subset of X with
|π∗(X)| < |π∗E| then F ∗(C) is trivial for all C (we’ll apply this to F = [−, LE(X)]. The proof
writes C as a hocolim of Nα in the set and uses the Milnor Exact Sequence lim1 F ∗−1(Nα) →
F ∗(C)→ limF ∗(Nα) to conclude F ∗(C) is trivial. Applying all this to the Adams and Baird proof
shows that it’s enough to check [A,LEX] = 0 on this subset of A, so completes the proof that
LE(X) is an E-localization.

In the end, Bousfield constructed an E-localizationA→ AE whereAE comes out of this complicated
construction. Actually, one has a triangle in the homotopy category: CEA→ A→ AE → Σ(CEA)
where CEA is E-acyclic.
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2.3. Margolis’s proof. Margolis’s Chapter 7 goes back to the Adams and Baird proof (i.e. the
calculus of fractions version) and add an axiom on the functor we’re trying to invert. In Proposition
3, he proves: if P : C → C[W−1] is exact, preserves coproducts, and has factorization for maps
h : P (X) → P (Y ) through P (U) where X → U ← Y with the backwards arrow in W, then there
is an H-localization functor.

This isolates the difficulty to forcing C[W−1](X,Y ) to be small. Margolis adds an axiom to a
functor H : C → Set which makes this work. H is said to be cardinality continuous if for each
cardinal c there is a cardinal d = d(c) such that |H(X)| ≤ c implies there is some Y ∈ C<d and
f : Y → X where H(f) is a bijection. More or less, this is assuming exactly what Bousfield needed
in his proof. Margolis proves in Proposition 5 that homology functors have this property. Again,
at a critical moment he must use the fact that homology functors commute with colimits.

The benefit of Margolis’s approach is that it highlights what one would need to prove that coho-
mological localization exists:

Proposition 1 (Proposition 6). Let H be a cohomology functor represented by a spectrum W and
suppose there is a cardinal e = e(W ) such that for all Y ∈ Sp and nonzero f : Y → W there is
some g : Z → Y in Sp<e with fg 6= 0. This occurs if there are no f -phantom maps to W . Then H
is cardinality continuous.

2.4. Extra Facts (courtesy of Bousfield 1979).

• If X is a module spectrum over a ring spectrum E (i.e. X ∈ E−mod) then X is E-local.

• The product of a set of E-local spectra is E-local.

• A retract of an E-local spectrum is E-local.

• E-localization commutes with Σ, with Σ−1 and with finite wedge.

• LE need not preserve smash products, but it does preserve monoids, commutative monoids,
A∞-algebras, and E∞-algebras.

Recall that LE is determined by the E-acyclics. There is an E-acyclic spectrum aE such that the
smallest class containing aE closed under coproducts and the two-out-of-three property on triangles
is the whole class of E-acyclics. This aE is incredible: its existence shows that the class of E-
acylics is generated by a single object. He proves it exists, but it’s difficult to get your hands
on. The construction is similar to the theorem above, i.e. goes by transfinite induction.

One can use the existence of E-localization to make an E∗-Adams Spectral Sequence Es,t2 (X,Y ) =

Exts,tE∗E
(E∗X,E∗Y )⇒ [X,E∧Y ]∗, where convergence occurs iff lim1

r E
s,t
r (X,Y ) = 0 for all s, t.

3. Examples and Applications

This section is mostly from Bousfield [3] and Ravenel [9], [8]

3.1. Arithmetic Localization and Completion. From Tom Goodwillie at http://mathoverflow.net/questions/87174/absence-
of-maps-between-p-local-and-q-local-spectra

“Localizing a spectrum at a prime p (or at a set of primes) is the kind of Bousfield localization
that is most like localization in algebra. In this case πn of the localization of X is the algebraic
localization of πnX, i.e. the result of inverting all the primes other than p. The local spectra are
the spectra X such that for every n the abelian group πnX is one on which every prime other than
p acts invertibly, and the acyclic objects are the ones which become trivial upon localizing, i.e. the
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spectra X such that for every n the group πnX is a torsion group without p-torsion. Localization
of X is the same as smash product of X with the localization of the sphere spectrum. If you want
to describe the acyclic objects as the E∗-acyclic objects for some E, you can of course let E be the
localization of the sphere. Note that we are not starting with an E and using the general machine
of Bousfield to make the localization functor, although of course we could.

Completing at a prime is again not too far from being a purely algebraic matter. Here we can
choose E to be the mod p Moore spectrum, i.e. the homotopy cofiber of the map p : S → S from
the sphere spectrum to itself. The acyclic objects are the spectra for which each homotopy group
has p acting invertibly. The localization LX (which is called the p-completion) can be described as
the holim, over natural numbers k, of the smash product of X with the mod pk Moore spectrum. If
each homotopy group of X is finitely generated, then πnLX can be described as the tensor product
of πnX with the group Zp of p-adic integers, and also in this case LX is the smash product X∧LS.
But neither of these statements is true for general X: for example, the p-completion of HQ is
trivial while Q ⊗ Zp is the field of p-adic numbers and X ∧ LS = H(Q ⊗ Zp). And (therefore)
LH(Q/Z) = ΩHZp.”

From Bousfield...

Let J be a set of primes and let Z(J) be the subring of Q where p is invertible iff p /∈ J . Let
X(J) = X ∧M(Z(J)) for the Moore spectrum. This is arithmetic localization of spectra. Let X∧p be
the p-adic completion of X, i.e. the inverse limit limn(X ∧M(Z/pn)). Let X∧J =

∏
p∈J X

∧
p . This is

completion of spectra. We now show that both arithmetic localization and completion are special
cases of Bousfield localization and indeed get a number theoretic characterization for LE(X) if
both X and E are connective.

Theorem 1. Let E∗ be a connective homology theory and X a connective spectrum. Let J be
complementary to the set of primes where Ei is uniquely p-divisible for each i. Then LEX = X∧J
if each element of E∗ has finite order, and LEX = X(J) otherwise.

In the same vein, the times pn map on some X has cofiber X ∧M(pn). The homotopical version
of completion is the inverse holimn(X ∧M(pn)). This turns out to equal LM(p)X. The fact that
completion is a special case of localization is one of the few places where algebraic topology
is simpler than homological algebra.

K-theory is unbounded and had been studied separately, with various computations being done
there which show the situation can be quite a bit more complicated, e.g. π−2LKS

0 ∼= Q/Z.

3.2. Chromatic Homotopy Theory. In [8] Ravenel noticed lots of periodicity in the E2-term of
the Adams-Novikov spectral sequence, saw that it came from algebraic periodicity of the E1-term
of the chromatic spectral sequence, and attempted to find geometric periodicity (e.g. related to
BP∗BP -comodules) to explain that.

Let Ln denote LE(n) for Morava E-theory. Our goal is to computationally relate BP∗(X) and
BP∗(LnX). Recall that E(0) = HQ and E(1) is one of the p − 1 isomorphic summands of K
localized at p. Finding geometric descriptions of E(2) is the motivation for elliptic cohomology
(namely TMF). For the higher E(n) it’s supposed to be TAF.

Side Note: The E-locals for L0 are {X | [M(p), X] = 0}, and the E-locals for L1 are {X | [M(p, v1), X] =
0}, i.e. for generalized mod p Moore space. In each case you can use Bousfield’s work to find aE
generating these and thereby get a good handle on what localization is doing. Incidentally, you

might think L2 is given by {X | [M(p, v1, v2), X] = 0} but actually that’s the finite version Lf2 .

The telescope conjecture was asking if L2 = Lf2 . We’ll discuss this a little bit more below.
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We can get an equivalence relation on spectra given by E ∼ F if LE = LF . The equivalence
classes are called Bousfield classes and all together they form the Bousfield lattice. Remark:
If 〈E〉 ≤ 〈F 〉 then LF → LE .

Fact: 〈Ln〉 = 〈E(n)〉 = 〈v−1n BP 〉 =
∨n

0 〈K(i)〉

Using the last description and the remark, we get natural transformations Ln → Ln−1 for all n.
This gives the chromatic tower for a p-local spectrum X:

L0X ← L1X ← L2X ← · · · ← X and hence a chromatic filtration of π∗X given by ker(π∗X →
π∗(LnX)). The Chromatic Convergence Theorem states that for a p-local finite CW complex

X, this tower converges, i.e. X ∼=lim← LnX

One form of the telescope conjecture states that for a type n complex X with a vn-map f

(this gives X an intrinsic periodicity), the telescope X̂ of the tower X
f→ Σ−dX

f→ Σ−2d
f→ . . .

satisfies the property that X̂ → LnX is an equivalence. This is false for n = 2 (though true
for the finite version of Ln), so we won’t go that route. However, one can still do some useful
computations, e.g. if BP∗(X) = BP∗/In then BP∗(LnX) = v−1n BP∗/In and the E2 term is known.
In general, to compute BP∗(LnX) in terms of BP∗(X), Ravenel proves and uses the Localization
Theorem:

BP ∧LnX = X ∧LnBP for any X and if v−1n−1BP∗(X) = 0 then BP ∧LnX = X ∧ v−1n BP , which

implies BP∗(LnX) = v−1n BP∗(X). See section 6 of [8] for computations of Ln(BP )

Every localization satisfies the property that for all X, E ∧X is E-local. However, it need not be
the case that E∧X = LEX. A Bousfield localization is said to be smashing if LEX = X ∧LE(S0).
This occurs iff L preserves homotopy colimits and iff L commutes with all coproducts. Bousfield has
spectral sequence conditions which help determine when this happens. Ravenel’s Smash Product
Theorem states that LnX ∼= X ∧ LnS0. This is very useful for computations and will probably
come up again in the pre-Talbot seminar.

4. Model Categories

Model categories give a general place you can do homotopy theory, and this transforms
algebraic topology from the study of topological spaces into a general tool useful in many areas of
mathematics. The localization M → M[W−1] always lands in a homotopy category and always
takes exactly the zig-zags of weak equivalences to isomorphisms. Let T be a set of maps in M.
Because the homotopy category is nice, we can do:

M

��

// ?????

��
Ho(M) // Ho(M)[T−1]

We’d like a model category LTM which actually sits above Ho(M)[T−1]. Because all three cate-
gories above have the same objects, its objects are determined. It’s morphisms will be the same
as those in M, but we want the maps in T to become isomorphisms in Ho(M)[T−1] so we need
them to be weak equivalences in LTM. So this category must have a different model category
structure, whereW ′ = 〈T ∪W〉 and clearlyW ⊂W ′. You can’t change onlyW because it’ll screw
up the axioms. We want to keep the cofibrations fixed so we can build things out of them and have
the two model structures related, so we have to shrink the fibrations: F ⊃ F ′. If you assume M
is cellular and left proper then you can generalize Bousfield’s Theorem (see Hirschhorn’s book [5])
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and get the model structure desired, but you have to be careful with how you generate W ′ from T ,
i.e. you have to use simplicial mapping spaces.

The functorM→ LTM preserves a lot of properties. For many years everyone assumed it preserved
monoids and commutative monoids (now you need a monoidal structure onM) because it does for
Spectra. Mike Hill (2011) showed that for the model category of G-equivariant spectra Bousfield
localization does NOT preserve commutative monoids. My thesis finds hypotheses on M
and on the maps T so that Bousfield localization preserves strict commutative monoids, where
strict means the diagrams commute on the nose rather than up to higher homotopy. The question
for E∞ is much easier. On the way I find conditions so that Bousfield localization preserves the
pushout product axiom, the monoid axiom, and the Σn-equivariant monoid axiom that’s needed on
a model category C in order to conclude commutative monoids in C inherit a model structure.
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