
INVERTIBLE SHEAVES

DAVID WHITE

1. Defining Sheaves

Definition 1. Given a variety V , the ring of regular functions (or coordinate ring) is R(V ) =
k[x1, . . . , xn]/I(V ). The functions in R(V ) are called regular functions. Note that R(V ) is a
finitely generated k-algebra.

Definition 2. Given a commutative ring R define the Spectrum as Spec(R) = {P ⊂ R | P is a
proper, prime ideal}.

This can be augmented with the Zariski Topology in the following way: The closed sets in |Spec(R)|
are those V such that there is some I ⊂ R s.t. V consists of all prime ideals in R containing I.
Formally, V (I) = {x ∈ | SpecR| : f(x) = 0 ∀ f ∈ I} = {[P ] ∈ | SpecR| : P ⊃ I}. A point in
|Spec(R)| is a prime ideal P strictly contained in R. We will denote this [P ] ∈ Spec(R). The only
closed points are maximal ideals in R.

Define Γ(Df ,OX) = Rf to be the localization of R (this is also a sheaf). If P ∈ Spec(R) then
the stalk at P is a locally ringed space which is a localization of R at P . Note that with this
topology, |Spec(R)| is compact and has as basis {Df}f∈R where Df = {prime ideals P such that
f /∈ P}. Also, Spec is a contravariant functor from the category of commutative rings to the
category of topological spaces and all ring homomorphisms f : S → R induce continuous maps:
Spec(f) : Spec(S) → Spec(R). As a side note, |Spec(R)| is a structure sheaf, has a sheaf defined
on it, and is a locally ringed space. We’ll talk more about this in a moment.

Examples:

(1) If R = Z then |Spec(R)| consists of primes union (0) (this is a special point because it’s
dense).

(2) If R = C then | Spec(R)| consists of the complex line union (0). All points on the complex
line are closed (because (x− a) is a maximal ideal) but (0) is dense in R.

(3) Spec(C[x](x)) has only two points. It has the ideal (x) which is closed and it has the point
(0) which is dense.

(4) If R = Zp then | Spec(R)| is just the point {0}

(5) Spec(Z[x]) has four types of points: (0), (p), irreducible polynomials f , and (f, p) where the
polynomials are irreducible mod p.

For every f in R there is some related map on |Spec(R)|. Also, if [P ] ∈ | Spec(R)| then we have
R → R/P , an integral domain. This maps to the Residue Field at x, K(x) which is just the
quotient field of R/P . We define the value of f at [P ] as f(x) ∈ K(x)

Examples:
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(1) If R = C, a ∈ R, and P = (x−a) then we have C[x]→ C[x]/(x−a) ∼= C so the value of f(x)
is f(a) ∈ C. If P = (0) then we have C[x]→ C[x]/(0)→ C[x] and f 7→ f + (0) 7→ f ∈ C[x]

(2) If R = Z, f = 15, and x = [P ] ∈ | Spec(R)| then if P = (0) we have Z → Z/(0) → Q
and 15 7→ 15 7→ 15. If P = (p) for some prime p then we have Z → Z/(p) → Zp and
15 7→ 15 + (p) 7→ 15 (mod p)

We now define a sheaf of functions on X = |Spec(R)|, but note that shaves can be defined MUCH
more generally on the open sets of any topology:

Definition 3. A sheaf is an assignment which assigns to every open U ⊂ X a set OX(U) of
regular functions on U (more generally, a set of “sections” on U) s.t.

(1) V ⊂ U ⇒ OX(U)→ OX(V ) via a restriction of U to V

(2) We obtain a category X with open sets as objects and inclusions as arrows such that OX :
Xop → Ring.

(3) Given an open cover U =
⋃
α Uα, if f ∈ OX(U) and f |Uα = 0 for all α then f = 0. Also, if

fα ∈ OX(Uα) and fα|Uα∩Uβ = fβ|Uα∩Uβ then there is some f ∈ OX(U) such that f |Uα = fα
for all α. This is referred to as the gluing property. If this property is omitted we get a
pre-sheaf.

One immediate fact is that OX(X) = R. Also, given f ∈ R we can define Rf to be the localization
where we invert all powers of f . We can then define Xf = |SpecR| \ V (f) = {[P ] | f /∈ P} ∼=
|SpecRf | and note that OX(Xf ) = Rf . These two facts determine OX . Note that if (X,OX) is a
ringed space then the sheaf OX is called the structure sheaf of X.

This is not a talk about sheaves in general, but I feel I must mention that a pre-sheaf can be turned
into a sheaf by the functor of “sheafification” which is adjoint to the forgetful functor going from
sheaves to pre-sheaves. I also feel I must define a stalk since you will hear people talking about
them.

Definition 4. The stalk Fx of a sheaf F captures the properties of a sheaf ”around” a point x ∈ X
as we look at smaller and smaller neighborhood of x. Formally, Fx := i−1F({x}), where i is the
inclusion map: {x} → X.

The natural morphism F (U) → Fx takes a section s in F (U) to what is called its germ. This
generalizes the usual definition of a germ.

2. Schemes and Coherent Sheaves

Definition 5. An Affine Scheme is a pair (|X|,OX) such that there exists a cover |X| =
⋃
α Uα

and (Uα,OX |Uα) ∼= (|SpecRα|,OSpecRα). Here |X| is a topological space and OX is a sheaf of rings
in |X|.

Perhaps an easier way to think of this is as a locally ringed space isomorphic to Spec(A) for some
commutative ring A. A Scheme is a pair (|X|,OX) which is locally an affine scheme (i.e. a locally
ringed space which is locally isomorphic to the spectrum of a ring). Schemes form a category if we
take as morphisms the morphisms of locally ringed spaces.

Example: The smallest non-affine scheme is |X| = {p, q1, q2} with open sets ∅, {p}, X1 = {p, q1}, X2 =
{p, q2}, X and sheaf OX(∅) = 0,OX({p}) = C[x],OX(X1) = OX(X2) = OX(X) = C[x](x)
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Affine schemes are closely related to commutative rings and it’s perfectly fine to think of all affine
schemes as having X = SpecC[x](x) for this talk. Basically, a scheme is a topological space together
with commutative rings for all open sets which arise via gluing together spectra of commutative
rings. Formally, it is a locally ringed space X admitting a covering by open sets Ui s.t. the
restriction to the structure sheaf OX |Ui is an affine scheme. Every scheme comes equipped with a
unique morphism to Spec(Z).

Sheaves contain locally defined data attached to the open sets of a topology. We can get the
open sets to be arbitrarily small but we can also build up information from the local information
in a coherent way (thanks to the gluing). There are also maps (or morphisms) from one sheaf
to another; sheaves (of a specific type, such as sheaves of Abelian groups) with their morphisms
on a fixed topological space form a category. On the other hand, to each continuous map there
is associated both a direct image functor, taking sheaves and their morphisms on the domain to
sheaves and morphisms on the codomain, and an inverse image functor operating in the opposite
direction. These functors, and certain variants of theirs, are essential parts of sheaf theory.

Suppose (X,OX) is a ringed space. Let OX(U) be the ring of regular functions on U and let F(U)
be an OX(U) module. Note that the category of such modules is abelian.

Definition 6. A quasi-coherent sheaf is a sheaf of OX-modules locally isomorphic to the cokernel
of a map between free OX-modules.

A coherent sheaf F is a quasi-coherent sheaf which is locally of finite type and for all U open in
X satisfies ker(φ) is of finite type for all morphisms φ : OU -module→ FU of finite rank.

A sheaf of rings is coherent if it is coherent considered as a sheaf over itself. For affine varieties
V with affine coordinate ring there is a covariant equivalence of categories between that of quasi-
coherent sheaves and sheaf-morphisms on the one hand and that of R-modules and R-module
homomorphisms on the other. If R is Noetherian then coherent sheaves correspond to finitely
generated modules.

3. Invertible Sheaves

Definition 7. An invertible sheaf is a coherent sheaf S on X (still a ringed space) for which there
is an inverse T with respect to tensor product of OX-modules. That is, we have S ⊗ T isomorphic
to OX , which acts as identity element for the tensor product.

Invertible sheaves are locally free sheaves of rank 1. It is my goal to relate these objects to line
bundles, divisors, and the Picard Group. The Picard Group is the group (under tensor product)
of isomorphism classes of invertible sheaves on X. Note that Pic is a functor from the category of
invertible sheaves to the category of abelian groups.

Definition 8. Given a variety X over C, attach a 1-dimensional vector space (i.e. a complex line)
at each point to get the Line Bundle L over X.

There is an open cover {Ui} of X such that L|Uα ∼= Uα×C. Consider Uα ∩Uβ. We may patch this
as Uα ×C|Uα∩Uβ → Uβ ×C|Uα∩Uβ (where this map is called gα,β and is not identically zero). More
generally, we may let g be a linear transformation into the vector space of invertible matrices.

Theorem 1. The line bundle L is an invertible sheaf if L(U) is a rank 1 OX-module.

For the above theorem, we need to state how to patch because sheaves need this property. But
again we can use gα,β. We require it to be rank 1 because tensoring keeps rank 1 and this lets us
form an abelian group.
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Definition 9. A Weil divisor is a finite formal linear combination of codimension 1 subvarieties

A Cartier divisor is a collection of {Ui, fi} such that {Ui} is an open cover of X and fi ∈ K(Ui)
the function field of rational functions.

Given a (Weil) divisor we may define a relation D < D′ if D′ − D has non-negative coefficients.
Then we get a vector space of functions L(D) = {f/g | (f/g) > −D} = {f/g | (f/g) + D > 0}.
Finally, we get an equivalence relation D ∼ D′ if there is some f/g with D+ (f/g) = D′ under the
above notion of equality. It is an easy proposition to see that D ∼ D′ ⇒ L(D) ∼ L(D′) and the
converse also holds.

To patch with divisors we need fi/fj 6= 0 anywhere on Ui ∩ Uj . With this condition, we can get a
line bundle from a divisor by simply taking the cross product of our open sets with C. All we need
is the patching function gα,β which is non-zero on Ui ∩Uj . We can simply define gα,β = fα/fβ and
we have this property.

To get an invertible sheaf from D = {Ui, fi} define L(D)(Ui) = OX(Ui)-module generated by 1/fi.
This means it’s {f/fi | f ∈ OX(Ui)}. Because fi ∈ OX(Ui) we know that 1 is in our module.

Recall that D ∼ D′ iff L(D) ∼= L(D′). This implies L(D1+D2) ' L(D1)⊗L(D2). We can therefore
define the Picard group as the group of line bundles mod this isomorphism, as the group of divisors
mod this isomorphism, or as the group of invertible sheaves mod this isomorphism.

On a smooth curve C we get a canonical divisor KC which captures tangency information and is
associated to the cotangent bundle.

Now come some extra sections that I won’t have time to talk about but which I find interest-
ing.

4. Grothendieck Topology

Definition 10. A Grothendieck topology is a structure on a category C which makes the objects of
C act like the open sets of a topological space. A category together with a choice of Grothendieck
topology is called a site.

With this notion we can define sheaves on a category and get closer to derived categories and
stacks.

The motivation for this concept is the Weil conjectures. Andr Weil proposed that certain properties
of equations with integral coefficients should be understood as geometric properties of the algebraic
variety that they defined. His conjectures postulated that there should be a cohomology theory of
algebraic varieties which gave number-theoretic information about their defining equations. This
cohomology theory was known as the “Weil cohomology”, but using the tools he had available,
Weil was unable to construct it.

A Grothendieck topology on C is a collection of sets (called coverings) for every object x which act
as the categorical morphisms. This collection will be denoted Cov(x) and satisfies:

(1) For all objects x, {x id→ x} ∈ Cov(x)

(2) If {Xα → X}α ∈ Cov(X) and Y → X is any arrow then the fiber product Xα ×X Y exists
and is in Cov(Y ) for all α

(3) If {Xα → X} ∈ Cov(X) and for all α, {Xαβ → Xα}β ∈ Cov(Xα) then {Xαβ → Xα →
X} ∈ Cov(X)
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Note that the fiber product is the limit of the following diagram:
? //

?
��

Y

��
Xα

// X

Example: If P and Q are properties of morphisms of schemes and Y is a fixed scheme then the P−Q
site on Y is a category called the full subcategory of schemes over Y . It’s objects are P morphisms

and its arrows are commutative diagrams (where f1, f2 ∈ P ) X1
//

f1

  

X2

f2~~
Y

This example leads to

(1) Big/small site of a topological space (Q is the property of being a homeomorphism onto an
open subset)

(2) Big/small Zariski site

(3) Etale Site (Q is etale maps)

(4) Big faithfully flat finite presentation site (Q is flat and finitely presented)

(5) Lisse-Etale site (P is smooth, Q is etale)

A topos is a category equivalent to the category of sheaves on a site.

5. Etale

If F is a sheaf over X, then the tale space of F is a topological space E together with a local
homeomorphism π : E → X; the sheaf of sections of π is F . E is usually a very strange space, and
even if the sheaf F arises from a natural topological situation, E may not have any clear topological
interpretation. For example, if F is the sheaf of sections of a continuous function f : Y → X, then
E = Y if and only if f is a covering map.

The tale space E is constructed from the stalks of F over X. As a set, it is their disjoint union
and π is the obvious map which takes the value x on the stalk of F over x ∈ X. The topology
of E is defined as follows. For each element s of F (U) and each x ∈ U , we get a germ of s at
x (i.e. an equivalence class of functions). These germs determine points of E. For any U and
s ∈ F (U), the union of these points (for all x ∈ U) is declared to be open in E. Notice that each
stalk has the discrete topology. Two morphisms between sheaves determine a continuous map of
the corresponding tale spaces which is compatible with the projection maps (in the sense that every
germ is mapped to a germ over the same point). This makes the construction into a functor.

This gives an example of an tale space over X. An tale space is a topological space E together
with a continuous map π : E → X which is a local homeomorphism such that each fiber of π has
the discrete topology. The construction above determines an equivalence of categories between the
category of sheaves of sets on X and the category of tal spaces over X. The construction of an
tale space can also be applied to a presheaf, in which case the sheaf of sections of the tale space
recovers the sheaf associated to the given presheaf.

The map π is an example of what is sometimes called an tale map. “tale” here means the same
thing as “local homeomorphism”. However, the terminology “tale map” is more common in contexts
where the right analogue of a local homeomorphism of manifolds is not characterized by the property
of being a local homeomorphism. This is the case in algebraic geometry.
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With this notion we can talk about stacks. A stack generalizes a scheme. A stack is a category X
over the tale site satisfying the following three properties:

(1) We can define restrictions of objects over a scheme S to objects in open coverings of S: The
category X is fibered in groupoids over the tale site.

(2) We can patch isomorphisms: Isomorphisms are a sheaf for X.

(3) We can patch objects: Every descent datum is effective.

Note that the tale site is the name for the usual category of schemes considered together with the
tale Grothendieck topology.

Example: The moduli space of algebraic curves (Deligne-Mumford stack) defined as a universal
family of curves of given genus g does not exist as an algebraic variety because in particular
there are elliptic curves admitting nontrivial automorphisms. For elliptic curves over the complex
numbers the corresponding stack is a geometrical factor of the upper half-plane by the action of
the modular group.

PERHAPS LOOK NOW AT THE AMS ARTICLE “WHAT IS...A STACK?”


