
HANDOUT FOR GSS ON DIMENSION OF RING SPECTRA

1. Some algebra

Morally, Algebra ⊆ Homological Algebra ⊆ Stable Homotopy Theory.

We have dimension for ring theory; what does it give us in stable homotopy theory?

Krull dimension of R is sup{P0 ( P1 ( . . . ( Pn | each Pi is a prime ideal of R}.

The simplest rings are fields, which have Krull dimension zero. A field has all modules free. The
next simplest modules after free modules are projective (they are direct summands of free modules).
So the next simplest rings should have all modules projective. Such a ring is called semisimple.
Turns out R ∼= R1 × · · · ×Rn for Ri = Mr(D) and D a division algebra.

We say module P is projective if: A module Q is injective if:
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i.e. maps out of P lift along epimorphisms and maps into Q extend along monomorphisms

Given a module M a projective resolution of M is an infinite exact sequence of modules
· · · → Pn → · · · → P2 → P1 → P0 →M → 0, with all the Pi’s projective.
Similar for injective resolution but 0→M → I0 → I1 → · · · .

The projective dimension of M (pd(M)) is the minimal length of a projective resolution ofM .

Ex: If P is projective, pd(P ) = 0 since · · · → 0→ 0→ P → P → 0 is a projective resolution.

Ex: For R = Z, pd(Z/n) = 1 since · · · → 0→ Z→ Z→ Z/n→ 0 is minimal projective resolution,
where the first map is mult by n and the second is quotient.

The right global dimension of R is sup{pd(M) |M ∈ R−mod}

Ex: r.gl.dim(k[x1, . . . , xn]) = n because of the module (x1, . . . , xn)

Ex: r.gl.dim(k[x]/(x2)) =∞ because k is an R-module and the minimal projective resolution is an
infinite chain · · · → k[x]/(x2)→ k[x]/(x2)→ k → 0, where each map takes x→ 0 and 1→ x

Fact: r.gl.dim(R) = 1 ⇒ submodules of projective modules are projective. Next simplest after
semisimple. Ex: all PIDs. NOTE: ∀ R, R is a projective R-module. Not so for injective.

Note: A ring with injective dimension zero is called quasi-Frobenius and every injective (projective)
left R-module is projective (injective). Also, Krull dimension is zero. Example: Z/p.

N ∈ R−mod is flat if whenever 0→ A→ B → C → 0 is exact then
⇒ 0→ A⊗N → B ⊗N → C ⊗N → 0 is exact.
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2 HANDOUT FOR GSS ON DIMENSION OF RING SPECTRA

Examples: Q⊕ Z is flat but not injective or projective. Q/Z is injective but not projective or flat.
Z is projective but not injective. Injective Z-modules are exactly divisible groups.

The flat dimension of M is the minimal length of a flat resolution. The right weak dimension of R
is sup{fd(M) |M ∈ R−mod} = max{n | TorRn (M,N) 6= 0, some M,N ∈ R−mod}

R is Von Neumann Regular if w.dim(R) = 0. This implies all modules over R are flat. Rings of
weak dimension 1 have submodules of flat modules being flat.

NOTE: Projective ⇒ Flat, so w.dim(R) ≤ r.gl.dim(R).

Serre’s Theorem: If R is commutative and has finite global dimension then R is regular, so Krull
dim = r.gl. dim. This allows us to apply homological algebra to commutative algebra.

To GSS readers: Section 1 is a great analogy for Section 2, but today we’re going to
focus solely on Section 2. Many examples of S-algebra dimension will be given

2. Some topology

A spectrum X is a sequence (Xi) of topological spaces with maps ΣXi → Xi+1 where Σ is reduced
suspension. Example: S = (Sn) the sphere spectrum.

An S-algebra E is a spectrum which is also a generalized cohomology theory with a “nice” cup
product. E comes with ∧ : E × E → E and u : S → E satisfying:

E × E × E ∧×1 //
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E × E ∧ // E E

NOTE: We’ve erased dimension, but now we have no points because of the grading. Thus, Krull
Dimension for these E fails. Note also: these diagrams make E into an S-module.

To define dim(E) we have two tools. First, the homotopy π∗(E) of E is a graded ring. Second, we
can talk about E-modules, i.e. S-algebras M with an action E ∧M →M . Such M satisfy π∗(M)
is a π∗(E)-module. To study E-modules correctly we need D(E) = derived category of E: objects
are E-modules, Morphisms(M1,M2) = D(E)(M1,M2) = {S−algebra morphisms:M1 → M2}/ ∼
where f ∼ g if f = g ◦ s−1 for s a quasi-isomorphism (i.e. π∗(s) is an isomorphism).

Note: X ∈ D(E) is projective iff π∗(X) is a projective π∗(E)-module. Define pd(X) = 0. Say
pd(Z) ≤ n if there exists Y, P ∈ D(E) with pd(P ) = 0, pd(Y ) ≤ n − 1 s.t. Y → P → Z̃ → ΣY
where Z̃ is a retract of Z. Flat dimension is similar.

Define r.gl.dim(E) = sup{pd(Y ) | Y ∈ D(E)} and say E is semisimple if r.gl.dim(E) = 0.

Fact: Semisimple E has π∗(E) ∼= R1 × · · · ×Rn for Ri = graded field k or Ri = k[x]/(x2)

A map f : M1 →M2 is ghost if π∗f = 0. This means π∗(E) can’t see f . With this,

ghost dim(E) = min{n | every composite of n+ 1 ghosts in D(E) is zero}.

E is called Von Neumann Regular if gh.dim(E) = 0. Because gh.dim(E) = sup{pd(X) | X is
compact in D(E)}, we get gh.dim(E) ≤ r.gl.dim(E).
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3. Motivation for Spectra 2

We want to compute homotopy groups, because homotopy is a strong invariant of the space. For
example, Whitehead’s Theorem says if X,Y are connected spaces with the homotopy type of a CW-
complex then f : X → Y is a homotopy equivalence iff πi(f) : πi(X) → πi(Y ) is an isomorphism
for all i > 0. So homotopy groups allow us to study spaces up to homotopy equivalence.

Before spectra, the homotopy of spaces doesn’t form a generalized homology theory because it
doesn’t satisfy excision. Blakers-Massey Excision Theorem says πn(X/A,B/A) ∼= πn(X,B) when
πi(X,A) = 0 for all i < a, πi(X,B) = 0 for all i < b, and n < a + b − 2. So excision only holds
when our spaces are highly connected.

One way to make it easier is to use the Freudenthal Suspension Theorem to say there exists a
direct limit of [Sn+1,ΣX] → [Sn+2,Σ2X] → [Sn+3,Σ3X] → · · · . Call this limit πsn(X), the stable
homotopy group. The graded group πs∗(S

0) is the stable homotopy of spheres.

We want some category where the Hom-sets consist of stable homotopy classes of maps. Turns out
HoS does the job for S = Spectra. Also turns out HoS is S-alg.

4. Proof of 1.7

Useful Theorem from Lam (4.23): Let 0 → K → F → P be exact in MR where F is free with
basis {ei}. Then P is flat iff ∀ c ∈ K ∃ θ ∈ HomR(F,K) with θ(c) = c.

Proof: (⇐) : Get K ∩ FI ⊂ KI for I ⊂ R any left ideal. Write c ∈ K ∩ FI as
∑
eiri and take θ

with θ(c) = c. Then c = θ(ei)ri + · · ·+ θ(em)rm ∈ KI

(⇒): Write c =
∑
eiri and let I =

∑
Riri. So c =

∑
cαsα for cα ∈ K and sα ∈ I. So

c =
∑

j(
∑

α cαtαj)rj lets us define θ to send eij to
∑

α(cαtαj) ∈ K and the other e’s to zero. Then
θ(c) = c

weak dim R ≤ gh.dim R...

Spse RHS = n < ∞. Let X be an E-module. Then we know there’s a free resolution of X∗
byP0, . . . , Pn. Create the SES’s 0 → Mk+1 → Pk → Mk → 0 where Mk = ker(dk−1). Exactness is
because it’s inclusion followed by dk with range restricted so it becomes onto. The Pi are realized
in D(E) by Qi. Use Lam’s theorem above by getting Pn → Mn+1 sending c to itself (do so via
perfect complexes). This proves the n-th element in downstairs chain is flat, so fd(M) ≤ n.

r.gl.dim(E) ≤ r.gl.dim(E∗)...

Spse RHS = n < ∞. We’ll show pd(X) ≤ pd(X∗) for all X, following Christiensen 8.3. Let
pd(X∗) = k. Let X0 = X and construct P 0 → X0 s.t. P 0

n → X0
n and (P 0

n)∗ → (X0
n)∗ are epi and

P 0 is projective. Let X1 = Σ ker(P 0 → X0) be a choice of cofiber in the exact triangle upstairs.
Continue in this way to get 0 → A → Qk−2 → · · · → Q1 → X∗ → 0 with each Qi projective. A
must be projective because pd(X∗) = k. So we can realize all the Qi and A upstairs and we see that
Xk−1 is projective, i.e. ghosts out are zero. This tells us Xk−2 has length at most 2 (i.e. composite
of two ghosts out is null). Continuing we see X = X0 has length k, so a composite of k ghosts out
is null. This proves pd(X) ≤ k.

EASIER WAY: Look at the universal coefficient spectral sequence. If pd(X) ≤ k then there’s
nothing above the k-line in E2 and this means there can’t be anything above that line in E∞. But
this means any composite of k ghosts is null, since composing moves you up in filtration by at least
one each time. This is Hovey’s Prop 1.5
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gh.dim(E) ≤ sup{con.flat.dim(X) with X arbitrary} ≤ w.dim(E∗)...

The first inequality follows because gh.dim(X) is equal to sup{con.flat.dim(X) with X compact} =
sup{flat dim(X) with X compact} = sup{flat dim(X) with X arbitrary}. The key here is that
compact and flat implies projective.

The second inequality is because con.flat.dim(X) ≤ flat dim(X∗) for all X. This is because given

a resolution 0 → F → Pn−1
dn−1→ · · · → P0 → X∗ → 0 where F is flat over E∗, we have exact

0 → Ki+1 → Pi → Ki → 0 for Ki = ker(di−1),K0 = X∗, and Kn = F . Because the Pi are
projective this is uniquely realizable by triangles Xi+1 → Qi → Xi → ΣXi+1 where (Xi)∗ = Ki

and (Qi)∗ = Pi. Because Pi is a retract of a direct sum of copies of E∗, Qi is a retract of a
coproduct of copies of E. This gives Σi−1Xi → Yi → X → ΣiXi for all i. This gives exact
Σi−1Qi → Yi → Yi+1 → ΣiQi via the 3x3 lemma on X → ΣiXi with X → Σi+1Xi+1 under
it.

5. Proof of 2.3

If E is a commutative S-algebra then depth(E∗) ≤ gh.dim(E) ≤ min{w.dim(E∗),r.gl.dim(E) ≤
r.gl.dim(E∗)

We already have everything except the first inequality, because of 1.7. Let (x1, . . . , xn) be a regular
sequence in R = E∗. First, we know there is an E-module E/(x1, . . . , xn) realizing the R-module
R/(x1, . . . , xn) by induction. R is a projective R-module so it is realizable (base case). We have an
exact triangle E/(x1, . . . , xk−1) xk→ E/(x1, . . . , xk−1 → E/(x1, . . . , xk) → ΣE/(x1, . . . , xi−1 by the
usual quotient SES exactness. So we define E/(x1, . . . , xk) to be the thing filling the blank spot in
the triangle.

Next, ExtiR(R/(x1, . . . , xn), R) = 0 iff i 6= n, again by induction. The base case is clear because R is
a projective R-module. We know 0 → R/(x1, . . . , xk−1) xk→ R/(x1, . . . , xk−1 → R/(x1, . . . , xk) → 0
is exact. Applying Hom(−, R) to this picture gets a long exact sequence where the Ext terms all
vanish except at i = n.

Finally, the Universal Coefficient Spectral Sequence tells us:
Exts,tR (R/(x1, . . . , xn), R)⇒ D(E)(E/(x1, . . . , xn), E).
So Es,t2 = 0 whenever s 6= n. This means all differentials are zero so E∞ must have an element of
filtration n (i.e. Es,t∞ has some non-zero part when s = n). So gh.dim E ≥ n by Prop 1.4.

6. Cohomology Theories

The EilenbergSteenrod axioms apply to a sequence of functors Hn from the category of pairs (X,A)
of topological spaces to the category of abelian groups, together with a natural transformation
∂ : Hi(X,A) → Hi−1(A) called the boundary map (here Hi−1(A) is a shorthand for Hi−1(A,∅)).
The axioms are:

(1) Homotopy: Homotopic maps induce the same map in homology. That is, if g : (X,A) →
(Y,B) is homotopic to h : (X,A)→ (Y,B), then their induced maps are the same.

(2) Excision: If (X,A) is a pair and U is a subset of X such that the closure of U is contained in
the interior of A, then the inclusion map i : (X−U,A−U)→ (X,A) induces an isomorphism
in homology.

(3) Dimension: Let P be the one-point space; then Hn(P ) = 0 for all n 6= 0.
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(4) Additivity: If X =
∐
αXα, the disjoint union of a family of topological spaces Xα, then

Hn(X) ∼=
⊕

αHn(Xα).

(5) Exactness: Each pair (X,A) induces a long exact sequence in homology, via the inclusions
i : A→ X and j : X → (X,A):

· · · → Hn(A)→i∗ Hn(X)→j∗ Hn(X,A)→∂∗ Hn−1(A)→ · · ·

Brown Representability...for all cohomology theories hn(−) there is an object En such that [X,En] ∼=
hn(X) ∼= [X,ΩEn+1] ∼= [ΣX,En+1]. This proves En ∼= ΩEn+1

∼= . . .

Example: for homotopy theory En = K(G,n) Eilenberg Maclane space. For K-theory, En = BU
so reduced homotopy of K-theory of X is [X,BUk] and non-reduced homotopy is [X,BUk × Z].
Bott Periodicity says Kn+2(X) ∼= KnX. Also, πi(BU × Z) = Z, 0,Z, 0, . . . and πi(BO × Z) =
Z,Z/2,Z/2, 0,Z, 0, 0, 0

7. How to do computation

Ext: Given a projective resolution of A with fi : Pi → Pi−1, apply Hom(−, B) and define

ExtkR(A,B) =
ker f∗k+1

=f∗k
TorRn (A,B) =

ker fn ⊗ id
=fn+1

Alternately, apply − ⊗R B and define Tor. Some examples of Ext are cohomology computa-
tions.

Hk(RPn) =

 Z k = 0, k = n odd
Z/2 k < n odd

0
Hk(RPn) = Hk(RPn) Hk(RP∞; Z/2) = Z/2 ∀k

Hk(RP∞) = Z/2 if k is odd H∗(RP∞; Z/2) = Z/2[x] as a ring

Universal Coefficient Theorem: Hn(X;G) ∼= Hom(Hn(X), G)⊕Ext(Hn−1(X), G) and Hn(X;A) ∼=
(Hn(X,R)⊗R A)⊕ TorR(Hn−1(X,R), A)

From now on, work mod 2.

A cohomology operation (π, n;G,m) is a family θX : Hn(X;π) → Hm(X;G) for all X such that
f∗θY = θXf

∗ for all f

Theorem: [X,K(π, n)]↔ Hn(X;π) by f ↔ f∗(ιn). Hence, O(π, n;G,m)↔ Hm(K(π, n);G)

α ∈ ΩX defines cα : ΩX → ΩX by β → α ∗ β ∗ α. Thus, we have an action of π1(X) on πn(X)
given by [f ] 7→ [cα ◦ f ]

Define ^: Hn(X,π) × Hm(X,π) → Hn+m(X,π) by taking (f, g) to the function φ which does f
on front n-face of simplicial complex and g on back m-face, i.e.

φ =
{
f on σ|0,...,n
g on σ|n,...,n+m

Next, u ^ v = (−1)pqv ^ u for p = deg u, q = deg v. So cup product cannot commute with Σ,
hence CUP PRODUCT IS NOT STABLE. We define ^1 to tell us how far ^=^0 is from being
stable.
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φ is the equivariant chain map arising from the carrier C : di⊗σ → C(σ×σ) = C(X)⊗C(X) which
sends w ⊗ k → k ⊗ k. Then ^i: Cp(K) ⊗ Cq(K) → Cp+q−i(K) via (u ^i v)(c) = (u ⊗ v)φ(di ⊗
c).

Equivariant carriers are really hard!! Another way to define the squares is axiomatically, via
Sq0 = 1, |u| = q ⇒ Sqqu = u ^ u, q > |u| ⇒ Sqqu = 0, and Cartan for excisive pairs.

Sqi(u) = u ^i u is stable.

Given g : X → Y, g∗ : H∗(Y )→ H∗(X) preserves +,×,^, and Sq because cohomology is a functor:
Top→Ring

Here’s A(1) = 〈Sq1, Sq2〉. The left column points from bottom to top are 1, Sq1, Sq2, Sq1Sq2 = Sq3.
The right column points from bottom to top are Sq2Sq1, Sq3Sq1, Sq2Sq3, Sq5Sq1
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