THE SPECTRAL CATEGORY AND VON-NEUMANN REGULAR RINGS

PETER GABRIEL AND ULRICH OBERST; TRANSLATED BY DAVID WHITE AUGUST 17, 1965; TRANSLATED JUNE 12, 2011

ABSTRACT. All rings considered are associative with identity and all occurring modules are unital right modules. We denote by Mod R the category of all *R*-modules.

The spectrum of a ring R is known to be the "set" of isomorphism classes of indecomposable injective right R-modules. When R is right-Noetherian the spectrum describes all injective Rmodules, since each injective module is a direct sum of indecomposable submodules. We want to briefly show that for any R (or even for every Grothendieck category), this spectrum can be replaced by the so-called spectral category; one obtains this spectral category by formally inverting all essential monomorphisms. Approaches to such considerations are provided by the work of JOHNSON[6] and UTUMI[8].

As an application one obtains for each module invariant, that the invariant coincides with that which FUCHS[3] introduced under strong assumptions.

1. The Spectral Category of a Grothendieck Category

1.1. Let \mathfrak{A} be a Grothendieck category¹, i.e. an abelian category with exact direct limits and a generator. Exactness of direct limits is equivalent to the following statement:

(*) For each family $(A_{\lambda})_{\lambda \in \Lambda}$ of objects of \mathfrak{A}

$$B \subset \bigoplus_{\lambda \in \Lambda} A_{\lambda} \text{ is } B = \sup_{\Gamma} \left(B \cap \bigoplus_{\lambda \in \Gamma} A_{\lambda} \right)$$

where all finite subsets of Λ factor through Γ .

(Often you see (*) as a special case of AB5)[5]. Suppose conversely that $(A_{\lambda})_{\lambda \in \Lambda}$ is an increasing filtered family of subobjects of an object A and A' is another subobject of A. When

$$p: \bigoplus_{\lambda \in \Lambda} A_{\lambda} \to A$$

 $^{^{1}}$ Unlike FREYD[2] we require not only that the objects form a set (i.e. the category is small), but also the existence of generators

is the canonical morphism, then:

$$A' \cap \sup_{\lambda \in \Lambda} A_{\lambda} = p(p^{-1}A') = p\left(\sup_{\Gamma} \left(p^{-1}A' \cap \bigoplus_{\lambda \in \Gamma} A_{\lambda}\right)\right) = \sup_{\Gamma} p\left(p^{-1}A' \cap \bigoplus_{\lambda \in \Gamma} A_{\lambda}\right)$$
$$= \sup_{\Gamma} \left(A' \cap p\left(\bigoplus_{\lambda \in \Gamma} A_{\lambda}\right)\right) = \sup_{\Gamma} \left(A' \cap \sup_{\lambda \in \Gamma} A_{\lambda}\right) = \sup_{\lambda \in \Lambda} \left(A' \cap A_{\lambda}\right)$$

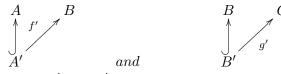
where all finite subsets of Λ factor through Γ and the last equation holds because $(A_{\lambda})_{\lambda \in \Lambda}$ is an increasing filtration.

1.2. A monomorphism $i : A \to B$ is called essential if the condition $i(A) \cap B' = 0$ for $B' \subset B$ implies B' = 0.

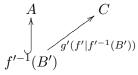
We define the spectral category Spec \mathfrak{A} of \mathfrak{A} : the spectral category has the same objects as \mathfrak{A} . For A and B objects of Spec \mathfrak{A} ,

$$(\operatorname{Spec}\mathfrak{A})(A,B) = \lim_{\longrightarrow}\mathfrak{A}(A',B)^2$$

where the direct limit is taken over all essential subobjects $A' \subset A$. Elements $f \in \text{Spec } \mathfrak{A}(A, B)$ and $g \in \text{Spec } \mathfrak{A}(B, C)$ are now determined by the diagrams:



where A' and B' are essential in A and B. Then $f^{-1}(B')$ is essential in A and gf is defined via the diagram:



The categories \mathfrak{A} and Spec \mathfrak{A} become connected by the canonical functor $P : \mathfrak{A} \to \operatorname{Spec} \mathfrak{A}$ which is the identity on objects and which has $\mathfrak{A}(A, B)$ as the natural image in

$$\lim_{\overrightarrow{A'}} \mathfrak{A}(A', B)$$

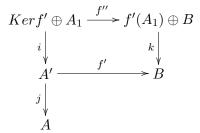
1.3.

Theorem. Suppose \mathfrak{A} is a Grothendieck category. Then Spec \mathfrak{A} is a Grothendieck category in which each morphism decomposes (i.e. Ker f and Im f are direct summands in the source and target of f).

Proof. It is clear that Spec \mathfrak{A} is an additive category and P is an additive functor. Let $f \in (\operatorname{Spec} \mathfrak{A})(A, B)$ be a morphism as considered in 1.2. Let A_1 be the complement of Ker f' in A' (i.e. $A_1 \cap \operatorname{Ker} f' = 0$ and A_1 is maximal with respect to this property) and B_1 the complement

²If A and B are objects in the category \mathfrak{A} we write $\mathfrak{A}(A, B)$ instead of Hom_{$\mathfrak{A}}(A, B)$ </sub>

of $f'(A_1)$ in B. This results in a commutative diagram



where f'' is induced by f' and decomposes via the essential inclusions i, j, k. Since Pf'' is isomorphic to f and decomposes, f also decomposes. In particular, Spec \mathfrak{A} is an abelian category and P is left exact.

Furthermore Spec \mathfrak{A} has infinite direct sums and P commutes with direct sums, since a direct sum of essential monomorphisms is an essential monomorphism in the Grothendieck category \mathfrak{A} .

In general, P commutes with intersections (because of left-exactness) and with a supremum of a filtered system of subobjects (analogous to the proof for direct sums). Therefore (*) from 1.1 holds in Spec \mathfrak{A} .

Finally, PU is a generator in Spec \mathfrak{A} if U is a generator in \mathfrak{A} .

1.4. The canonical functor P is an isomorphism iff every morphism in \mathfrak{A} is decomposable. A Grothendieck category in which each morphism decomposes is therefore called a spectral category.

1.5.

Theorem. For objects $A, B \in \mathfrak{A}$ the following are equivalent

- i) PA is isomorphic to PB
- ii) There is an object $C \in \mathfrak{A}$ and essential monomorphisms $i: C \to A$ and $j: C \to B$
- iii) A and B are isomorphic to their injective hulls

The proof is clear

Therefore there is a 1-1 correspondence between the isomorphism classes of injective objects of \mathfrak{A} and the isomorphism classes of all objects of Spec \mathfrak{A} . An object $A \in \mathfrak{A}$ is co-irreducible iff PA is simple. At the same time, an object A is coirreducible if it's nonzero and each different subobject is essential in A.

2. Characterizing the Spectral Category with the help of regular rings

2.1.

Theorem. Let \mathfrak{S} be a spectral category with generator U and $R = \mathfrak{S}(U,U)$. Then R is regular³ and is an injective R-module. The functor

$$S \xrightarrow{F} \mathfrak{S}(U, S)$$

 $^{{}^{3}}R$ regular means each principal ideal is a direct summand in R

is an equivalence of \mathfrak{S} onto the full subcategory of Mod R consisting of direct summands of powers of R.

Proof. That the functor F is an equivalence onto the full subcategory follows from [7]. From [7] it also follows that infinite direct products are in \mathfrak{S} because F is an equivalence to the induced quotient category of Mod R (the existence of inverse limits follows from the existence of direct limits, and is also true under much more general assumptions (see e.g. [1]).) Since each morphism in \mathfrak{S} decomposes and U is a generator, it is also an injective cogenerator. To each $S \in \mathfrak{S}$ there is thus a monomorphism i from S into the product

$$\prod_{\lambda} U_{\lambda}$$

for $U_{\lambda} \cong U$. Since *i* decomposes, *Fi* also decomposes, i.e. *FS* is a direct summand of

$$F(\prod_{\lambda} U_{\lambda}) \cong \prod_{\lambda} F(U_{\lambda})$$

however, $F(U_{\lambda})$ is isomorphic to R.

Suppose conversely that p is an idempotent endomorphism of a power \mathbb{R}^{\aleph} of R and $M = p(\mathbb{R}^{\aleph})$. Then p is of the form Fq for $q \in \mathfrak{S}(U^{\aleph}, U^{\aleph})$. Therefore M = Ker(1-p) = F(Ker(1-q)). We now finally show that R is self injective: Let $I \subset R$ be a right ideal. We want to show that the natural image of R in $\text{Hom}_R(I, R)$ is surjective. There are the following identifications:

$$\operatorname{Hom}_{R}(I,R) = \operatorname{Hom}_{R}(\lim M,R) = \lim \operatorname{Hom}_{R}(M,R) = \lim \mathfrak{S}(V,U) = \mathfrak{S}(\lim V,U)$$

where M is a finitely generated submodule of I, hence a direct summand of R, hence it has the form $FV, V \subset U$. But

 $\lim V$

is a direct summand in U; therefore the natural image

$$\operatorname{Hom}(U,U) = R \to \mathfrak{S}(\lim V,U) = \operatorname{Hom}_R(I,R)$$

is surjective

2.2.

Theorem. Let R be a regular, self-injective ring. Then the full subcategory of Mod R of direct summands of powers of R is a spectral category.

Proof. Let \mathfrak{C} be the localizing subcategory [4, pg. 377] of all modules C of Mod R with $\operatorname{Hom}_R(C, R) = 0$.

A right ideal $I \subset R$ is essential iff $R/I \in \mathfrak{C}$. Let $R/I \in \mathfrak{C}$ and $e \in R$ with $I \cap eR = 0$. Given any morphism $f : eR \to R$, form a monomorphism from eR to R/I by continuing f to R/I

hence $\operatorname{Hom}_R(eR, R) = 0$ so eR = 0 as eR is a direct summand of R.

Conversely suppose I is essential in $R, f: R/I \to R$ is a homomorphism, and g is the composition of f with projection from R to R/I. The image g(R) is cyclic, hence projective, therefore Ker g is a direct summand in R and is essential, hence Ker g = R and f = 0.

We now know that Mod R/\mathfrak{C} is a Grothendieck category [4, pg. 378] and that the canonical functor from Mod R to Mod R/\mathfrak{C} possesses a right adjoint functor S. This S induces an equivalence of Mod R/\mathfrak{C} to the full subcategory of all \mathfrak{C} -closed objects of Mod R. This means a module M is \mathfrak{C} -closed when 0 is the unique submodule of M in \mathfrak{C} and when $R/I \in \mathfrak{C}$ implies every morphism $f: I \to M$ extends to R. In particular, each injective module is \mathfrak{C} -closed when 0 is the unique submodule in \mathfrak{C} . The direct summands of powers of R are also \mathfrak{C} -closed.

Conversely let M be a \mathfrak{C} -closed module. Let I be any right ideal and let I' be the complement of I, so each homomorphism $f: I \to M$ extends to $I \oplus I'$ and also to R. Thus $I \oplus I'$ is essential in R and therefore $R/I \oplus I'$ is in \mathfrak{C} . This means that M is injective, hence in particular that the \mathfrak{C} -closed modules form a spectral category.

For $f \in \operatorname{Hom}_R(M, R)$, the R_f are also copies of R. The canonical image $\phi(M)$ of M in

$\prod_{f} R_{f}$

is injective because Ker ϕ belongs to \mathfrak{C} . Hence M is a direct summand in $\prod R_f$. The \mathfrak{C} -closed modules are hence exactly direct summands of powers of R.

3. Applications

3.1. \mathfrak{S} is a spectral category so each object S of \mathfrak{S} is a direct sum of its base So S, i.e. a sum of simple subobjects of S, and its radical Ra S, i.e. the intersection of maximal subobjects of S. We denote by \mathfrak{S}_d (d for discrete) or \mathfrak{S}_k (k for continuous) the full subcategory of all objects whose radical or base is 0, so the functor $S \to (So S, Ra S)$ is an equivalence of \mathfrak{S} with $\mathfrak{S}_d \times \mathfrak{S}_k$. If \mathfrak{E} is another representative system of isomorphism classes of simple objects in \mathfrak{S} then it's known that the functor $S \to \mathfrak{S}(E, S)_{E \in \mathfrak{E}}$ is also an equivalence of the semi-simple category \mathfrak{S}_d and the product category

$$\prod_{E \in \mathfrak{E}} \operatorname{Mod} \mathfrak{S}(E, E)$$

the category of vector spaces over the skew field $\mathfrak{S}(E, E)$

From 2.2 and the previous comments we obtain

Theorem. Each regular, self-injective ring R is the ring direct product of its base So S and the finite radical Ra_eR (this is the intersection of all maximal direct summands of R). This Ra_eR is a

regular, self-injective ring whose base vanishes.

3.2. For each $E \in \mathfrak{E}$ and $S \in \mathfrak{S}$ let $r_E(S)$ be the well-defined dimension of $\mathfrak{S}(E, S) = \mathfrak{S}(E, \operatorname{So} S)$ over $\mathfrak{S}(E, E)$. Often this is characterized as the magnitude $r_E(S)$, $E \in \mathfrak{E}$ of the basis of S up to isomorphism. The function r_E has the following properties:

- i) If S and T are isomorphic, then $r_E(S) = r_E(T)$
- ii) If $S = \bigoplus_{\lambda} S_{\lambda}$ then $r_E(S) = \sum_{\lambda} r_E(S_{\lambda})$
- iii) If F is simple then

$$r_E(F) = \begin{cases} 1 \text{ for } F \cong E\\ 0 \text{ otherwise} \end{cases}$$

iv) If So S = 0 then $r_E(S) = 0$

It is clear that r_E is the unique function from the objects of \mathfrak{S} to the cardinal numbers with properties i) through iv).

3.3. Suppose now \mathfrak{A} is any Grothendieck category with spectral category Spec \mathfrak{A} , $P : \mathfrak{A} \to \operatorname{Spec} \mathfrak{A}$ the canonical functor, and \mathfrak{F} a representative system of isomorphism classes of indecomposable injective objects in \mathfrak{A} . Then $P\mathfrak{F}(=\mathfrak{F})$ is a representative system of isomorphism classes of simple objects of Spec \mathfrak{A} .

Carrying over the results of 3.1 and 3.2 for Spec \mathfrak{A} and \mathfrak{A} one obtains the following result:

Theorem. Suppose $(I_{\gamma})_{\gamma \in \Gamma}$ and $(J_{\lambda})_{\lambda \in \Lambda}$ are direct families of indecomposable injective objects, A is an object, and $i : \bigoplus_{\gamma} I_{\gamma} \to A$ and $j : \bigoplus_{\lambda} J_{\lambda} \to A$ are essential monomorphisms in \mathfrak{A} . Then there is a bijection $b : \Gamma \to \Lambda$ with $J_{b(\gamma)} \cong I_{\lambda}$ for all $\gamma \in \Gamma$.

Furthermore, for all $I \in \mathfrak{F}$ and $A \in \mathfrak{A}$, $r_I(A) := r_{PI}(PA) = \text{dimension of } (\text{Spec }\mathfrak{A})(PI, PA)$ over $(\text{Spec }\mathfrak{A})(PI, PI)$. NOTE: original paper had " $I \in J$ ", a typo The function r_I has the following properties:

- i) If $f: A \to B$ is an essential monomorphism then $r_I(A) = r_I(B)$
- ii) If $A = \bigoplus_{\lambda} A_{\lambda}$ then $r_I(A) = \sum_{\lambda} r_I(A_{\lambda})$
- iii) If A is coirreducible then

 $r_I(A) = \begin{cases} 1 \text{ if I is isomorphic to the injective hull of } A \\ 0 \text{ otherwise} \end{cases}$

iv) If A contains no coirreducible subobject then $r_I(A) = 0$

$$\sup_{\lambda} A_{\lambda} = \bigoplus_{\lambda} A_{\lambda}$$

(Zorn's Lemma). Then $r_I(A)$ is the cardinality of the set of all A_{λ} whose injective hulls are isomorphic to I. Specifically, if U is a generator of \mathfrak{A} then A is U-cyclic, i.e. a choice of epimorphic image of U.

As a corollary one obtains e.g: suppose $(A_{\gamma})_{\gamma \in \Gamma}$ and $(A_{\lambda})_{\lambda \in \Lambda}$ are families of copies of an object A in \mathfrak{A} . Then

$$\bigoplus_{\gamma} A_{\gamma} \cong \bigoplus_{\lambda} A_{\lambda}$$

and there is an $I \in \mathfrak{F}$ with $0 < R_I(A) < \aleph_0^{\gamma}$ so Γ and Λ have the same cardinality.

Using the preceding on modules over a ring, the result that basis length of free modules is unique follows. Furthermore, this follows without any of the assumptions of Fuchs[3] on the ring.

4. References

- 1 BENABOU, J: Criteres de representabiliite des foncteurs (1965)
- 2 FREYD, P: Abelian Categories (1964)
- 3 FUCHS, L: Ranks of modules (1963)
- 4 GABRIEL, P: Des categories abeliennes (1962)
- 5 GROTHENDIECK, A: Sur quelques poins d'algebre homologique (1957)
- 6 JOHNSON, R.E. The extended centralizer of a ring over a module (1951)
- 7 POPESCO, N and GABRIEL, P: Characterisation des categories abeliennes avec generateur et limites inductives exactes (1964)
- 8 UTUMI, Y: On quotient rings (1956)