THE SPECTRAL CATEGORY AND VON-NEUMANN REGULAR RINGS

PETER GABRIEL AND ULRICH OBERST; TRANSLATED BY DAVID WHITE
AUGUST 17, 1965; TRANSLATED JUNE 12, 2011

ABSTRACT. All rings considered are associative with identity and all occurring modules are unital
right modules. We denote by Mod R the category of all R-modules.

The spectrum of a ring R is known to be the “set” of isomorphism classes of indecomposable
injective right R-modules. When R is right-Noetherian the spectrum describes all injective R-
modules, since each injective module is a direct sum of indecomposable submodules. We want
to briefly show that for any R (or even for every Grothendieck category), this spectrum can be
replaced by the so-called spectral category; one obtains this spectral category by formally inverting
all essential monomorphisms. Approaches to such considerations are provided by the work of
JOHNSON][6] and UTUMI|[8].

As an application one obtains for each module invariant, that the invariant coincides with that
which FUCHS[3] introduced under strong assumptions.

1. THE SPECTRAL CATEGORY OF A GROTHENDIECK CATEGORY

1.1. Let & be a Grothendieck categoryEL i.e. an abelian category with exact direct limits and a
generator. Exactness of direct limits is equivalent to the following statement:

(*) For each family (Ay)aea of objects of A
Bc@PAyis B=sup | BnED A,
AEA r Ael

where all finite subsets of A factor through T.

(Often you see (*) as a special case of AB5)[5]. Suppose conversely that (Ay)xea is an increasing
filtered family of subobjects of an object A and A’ is another subobject of A. When

p:@A,\—uél

AEA

lUnlike FREYD|[2] we require not only that the objects form a set (i.e. the category is small), but also the existence
of generators
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is the canonical morphism, then:

A nsup Ay =p(p~tA) =p (sup (plA/ N @AA>> =supp (plA/ N @A)\>
r

A€A r AeT AeT

= sup (A/ Np (EB A,\>> = sup <A’ N supA)\> = sup (A" N A4,)
r r

el Ael AEA

where all finite subsets of A factor through I' and the last equation holds because (A))xea is an
increasing filtration.

1.2. A monomorphism i : A — B is called essential if the condition i(4) N B’ = 0 for B’ C B
implies B’ = 0.

We define the spectral category Spec 2 of 2: the spectral category has the same objects as 2. For
A and B objects of Spec 2,

(Spec?)(4, B) = lim2A(4', B)ﬁ

where the direct limit is taken over all essential subobjects A’ C A. Elements f € Spec2(A, B)
and g € Spec®(B, C) are now determined by the diagrams:

A B B C
e v
g/
A and B’

where A’ and B’ are essential in A and B. Then f~!(B’) is essential in A and gf is defined via the
diagram:

A c
j %;'-%B/»
)

flfl (B/
The categories 2l and Spec 2 become connected by the canonical functor P : 2l — Spec2l which is
the identity on objects and which has (A, B) as the natural image in

lim 2A(4’, B)
A/

1.3.

Theorem. Suppose A is a Grothendieck category. Then Spec®l is a Grothendieck category in which
each morphism decomposes (i.e. Ker f and Im f are direct summands in the source and target of

f)-

Proof. 1t is clear that Specf2l is an additive category and P is an additive functor. Let f €
(Spec2)(A, B) be a morphism as considered in 1.2. Let A; be the complement of Ker f" in A’ (i.e.
AN Kerf’ =0 and A; is maximal with respect to this property) and By the complement

2If A and B are objects in the category 2 we write 2(A, B) instead of Homg (A, B)
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of f/(Ay) in B. This results in a commutative diagram

Kerf’@A1L>f/(A1)@B

| |
A ! B
|
A
where f” is induced by f’ and decomposes via the essential inclusions 7, j, k. Since P f” is isomorphic

to f and decomposes, f also decomposes. In particular, Spec® is an abelian category and P is left
exact.

Furthermore Spec® has infinite direct sums and P commutes with direct sums, since a direct sum
of essential monomorphisms is an essential monomorphism in the Grothendieck category 2.

In general, P commutes with intersections (because of left-exactness) and with a supremum of a
filtered system of subobjects (analogous to the proof for direct sums). Therefore (*) from 1.1 holds
in Spec%l.

Finally, PU is a generator in Spec® if U is a generator in 2. U

1.4. The canonical functor P is an isomorphism iff every morphism in 2 is decomposable. A
Grothendieck category in which each morphism decomposes is therefore called a spectral cate-

gory.
1.5.
Theorem. For objects A, B € A the following are equivalent

i) PA is isomorphic to PB

i1) There is an object C € A and essential monomorphismsi: C — A and j : C — B

i11) A and B are isomorphic to their injective hulls

The proof is clear

Therefore there is a 1-1 correspondence between the isomorphism classes of injective objects of 2
and the isomorphism classes of all objects of Spec®. An object A € 2 is co-irreducible iff PA is
simple. At the same time, an object A is coirreducible if it’s nonzero and each different subobject
is essential in A.

2. CHARACTERIZING THE SPECTRAL CATEGORY WITH THE HELP OF REGULAR RINGS

2.1.

Theorem. Let & be a spectral category with generator U and R = &(U,U). Then R is regulmﬂ
and is an injective R-module. The functor

s L e(w,s)

3R regular means each principal ideal is a direct summand in R
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is an equivalence of & onto the full subcategory of Mod R consisting of direct summands of powers

of R.

Proof. That the functor F' is an equivalence onto the full subcategory follows from [7]. From [7]
it also follows that infinite direct products are in & because F' is an equivalence to the induced
quotient category of Mod R (the existence of inverse limits follows from the existence of direct
limits, and is also true under much more general assumptions (see e.g. [1]).) Since each morphism
in & decomposes and U is a generator, it is also an injective cogenerator. To each S € & there is
thus a monomorphism ¢ from .S into the product

L1
A
for Uy 2 U. Since i decomposes, F'i also decomposes, i.e. F'S is a direct summand of

F(IJun =] F@y)
X X

however, F'(Uy,) is isomorphic to R.

Suppose conversely that p is an idempotent endomorphism of a power R® of R and M = p(RY).
Then p is of the form Fgq for ¢ € G(UR, UY). Therefore M =Ker(1 — p) = F(Ker(1 — ¢)). We now
finally show that R is self injective: Let I C R be a right ideal. We want to show that the natural
image of R in Homp(I, R) is surjective. There are the following identifications:

Hompg(I, R) = Homp(lim M, R) = limHompg (M, R) =1lim &(V,U) = &(lim V,U)
where M is a finitely generated submodule of I, hence a direct summand of R, hence it has the
form FV,V Cc U. But

limV

is a direct summand in U; therefore the natural image

Hom(U,U) = R — &(lim V,U) = Hompg(I, R)

is surjective ([l

2.2.

Theorem. Let R be a reqular, self-injective ring. Then the full subcategory of Mod R of direct
summands of powers of R is a spectral category.

Proof. Let € be the localizing subcategory [4, pg. 377] of all modules C of Mod R with Homp(C, R) =
0.

A right ideal I C R is essential iff R/I € €. Let R/I € € and e € R with I NeR = 0. Given any
morphism f : eR — R, form a monomorphism from eR to R/I by continuing f to R/I
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hence Homp(eR, R) = 0 so eR =0 as eR is a direct summand of R.

Conversely suppose [ is essential in R, f : R/I — R is a homomorphism, and g is the composition
of f with projection from R to R/I. The image g(R) is cyclic, hence projective, therefore Ker g is
a direct summand in R and is essential, hence Ker ¢ = R and f = 0.

We now know that Mod R/€ is a Grothendieck category [4, pg. 378] and that the canonical functor
from Mod R to Mod R/€ possesses a right adjoint functor S. This S induces an equivalence of
Mod R/€ to the full subcategory of all €-closed objects of Mod R. This means a module M is
¢-closed when 0 is the unique submodule of M in € and when R/I € € implies every morphism
f I — M extends to R. In particular, each injective module is €-closed when 0 is the unique
submodule in €. The direct summands of powers of R are also €-closed.

Conversely let M be a €-closed module. Let I be any right ideal and let I’ be the complement of
I, so each homomorphism f : I — M extends to I & I’ and also to R. Thus I & I’ is essential
in R and therefore R/I & I’ is in €. This means that M is injective, hence in particular that the
¢-closed modules form a spectral category.

For f € Hompg(M, R), the R; are also copies of R. The canonical image ¢(M) of M in
1%
/

is injective because Ker ¢ belongs to €. Hence M is a direct summand in [[ Rf. The €-closed
modules are hence exactly direct summands of powers of R. g

3. APPLICATIONS

3.1. G is a spectral category so each object S of G is a direct sum of its base So 5, i.e. a sum
of simple subobjects of S, and its radical Ra S, i.e. the intersection of maximal subobjects of S.
We denote by &4 (d for discrete) or & (k for continuous) the full subcategory of all objects whose
radical or base is 0, so the functor S — (So S, Ra S) is an equivalence of & with &4 x &. If € is
another representative system of isomorphism classes of simple objects in & then it’s known that
the functor S — S(E, S)pee is also an equivalence of the semi-simple category &4 and the product
category

[[ Mod&(E, E)
L

the category of vector spaces over the skew field &(FE, E)

From 2.2 and the previous comments we obtain

Theorem. Fach regular, self-injective ring R is the ring direct product of its base So S and the
finite radical RaeR (this is the intersection of all maximal direct summands of R). This Ra.R is a
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reqular, self-injective ring whose base vanishes.

3.2. Foreach F € € and S € G let rg(S5) be the well-defined dimension of &(E, S) = &(E,SoS)
over &(F, E). Often this is characterized as the magnitude rg(S), E € € of the basis of S up to
isomorphism. The function rg has the following properties:

i) If S and T are isomorphic, then rg(S) = rg(T)

ii) IfsS= @)\ S)\ then TE(S) = EATE(S)\)

iii) If F' is simple then

lfor F2E
"E - { 0 otherwise

iv) If So.S =0 then rg(S) =0

It is clear that rg is the unique function from the objects of & to the cardinal numbers with prop-
erties i) through iv).

3.3. Suppose now 2 is any Grothendieck category with spectral category Spec 2, P : 2 — Spec®
the canonical functor, and § a representative system of isomorphism classes of indecomposable
injective objects in 2. Then PF(= §) is a representative system of isomorphism classes of simple
objects of Spec .

Carrying over the results of 3.1 and 3.2 for Spec2l and 2l one obtains the following result:

Theorem. Suppose (Iy)yer and (Jx)aea are direct families of indecomposable injective objects, A
1s an object, and i : @7 I, - Aandj: @, Jy — A are essential monomorphisms in A. Then
there is a bijection b: I' — A with Jy.,) = Iy for all vy € T.

Furthermore, for all I € § and A € 2, r;(A) := rp;(PA) = dimension of (Spec®)(PI, PA) over
(Spec)(PI, PI). NOTE: original paper had “I € J”, a typo
The function r; has the following properties:

i) If f: A — B is an essential monomorphism then r;(A) = r;(B)
ii) If A= &P, A then r1(A) =", rr(Ax)
iii) If A is coirreducible then

1 if T is isomorphic to the injective hull of A
ri(A) = {

0 otherwise

iv) If A contains no coirreducible subobject then r7(A) =0
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Via the properties i) through iv), r; becomes uniquely defined. The number r;(A) is called the
I-rank of A. It can be calculated as follows: let (Ay)rca be a family of coirreducible subobjects of
A, maximal with respect to the property

Sl;pAA = @A)\
A

(Zorn’s Lemma). Then r;(A) is the cardinality of the set of all Ay whose injective hulls are
isomorphic to I. Specifically, if U is a generator of 2 then A is U-cyclic, i.e. a choice of epimorphic
image of U.

As a corollary one obtains e.g: suppose (A, ) er and (Ax)xea are families of copies of an object A

in 2. Then
@A7 o @AA
Y A

and there is an I € § with 0 < R;(A) < N so I" and A have the same cardinality.

Using the preceding on modules over a ring, the result that basis length of free modules is unique
follows. Furthermore, this follows without any of the assumptions of Fuchs|[3] on the ring.
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