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Abstract. All rings considered are associative with identity and all occurring modules are unital
right modules. We denote by Mod R the category of all R-modules.

The spectrum of a ring R is known to be the “set” of isomorphism classes of indecomposable
injective right R-modules. When R is right-Noetherian the spectrum describes all injective R-
modules, since each injective module is a direct sum of indecomposable submodules. We want
to briefly show that for any R (or even for every Grothendieck category), this spectrum can be
replaced by the so-called spectral category; one obtains this spectral category by formally inverting
all essential monomorphisms. Approaches to such considerations are provided by the work of
JOHNSON[6] and UTUMI[8].

As an application one obtains for each module invariant, that the invariant coincides with that
which FUCHS[3] introduced under strong assumptions.

1. The Spectral Category of a Grothendieck Category

1.1. Let A be a Grothendieck category1, i.e. an abelian category with exact direct limits and a
generator. Exactness of direct limits is equivalent to the following statement:

(*) For each family (Aλ)λ∈Λ of objects of A

B ⊂
⊕
λ∈Λ

Aλ is B = sup
Γ

(
B ∩

⊕
λ∈Γ

Aλ

)

where all finite subsets of Λ factor through Γ.

(Often you see (*) as a special case of AB5)[5]. Suppose conversely that (Aλ)λ∈Λ is an increasing
filtered family of subobjects of an object A and A′ is another subobject of A. When

p :
⊕
λ∈Λ

Aλ → A

1Unlike FREYD[2] we require not only that the objects form a set (i.e. the category is small), but also the existence
of generators
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is the canonical morphism, then:

A′ ∩ sup
λ∈Λ

Aλ = p(p−1A′) = p

(
sup

Γ

(
p−1A′ ∩

⊕
λ∈Γ

Aλ

))
= sup

Γ
p

(
p−1A′ ∩

⊕
λ∈Γ

Aλ

)

= sup
Γ

(
A′ ∩ p

(⊕
λ∈Γ

Aλ

))
= sup

Γ

(
A′ ∩ sup

λ∈Γ
Aλ

)
= sup

λ∈Λ

(
A′ ∩Aλ

)
where all finite subsets of Λ factor through Γ and the last equation holds because (Aλ)λ∈Λ is an
increasing filtration.

1.2. A monomorphism i : A → B is called essential if the condition i(A) ∩ B′ = 0 for B′ ⊂ B
implies B′ = 0.
We define the spectral category Spec A of A: the spectral category has the same objects as A. For
A and B objects of Spec A,

(Spec A)(A,B) = lim
→

A(A′, B)2

where the direct limit is taken over all essential subobjects A′ ⊂ A. Elements f ∈ Spec A(A,B)
and g ∈ Spec A(B,C) are now determined by the diagrams:

A B B C

A′
?�

OO
f ′

>>}}}}}}}
and B′

?�

OO

g′

>>}}}}}}}

where A′ and B′ are essential in A and B. Then f−1(B′) is essential in A and gf is defined via the
diagram:

A C

f ′−1(B′)
?�

OO

g′(f ′|f ′−1(B′))

;;vvvvvvvvv

The categories A and Spec A become connected by the canonical functor P : A→ Spec A which is
the identity on objects and which has A(A,B) as the natural image in

lim
→
A′

A(A′, B)

1.3.

Theorem. Suppose A is a Grothendieck category. Then Spec A is a Grothendieck category in which
each morphism decomposes (i.e. Ker f and Im f are direct summands in the source and target of
f).

Proof. It is clear that Spec A is an additive category and P is an additive functor. Let f ∈
(Spec A)(A,B) be a morphism as considered in 1.2. Let A1 be the complement of Ker f ′ in A′ (i.e.
A1∩ Kerf ′ = 0 and A1 is maximal with respect to this property) and B1 the complement

2If A and B are objects in the category A we write A(A, B) instead of HomA(A, B)
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of f ′(A1) in B. This results in a commutative diagram

Kerf ′ ⊕A1
f ′′ //

i

��

f ′(A1)⊕B

k

��
A′

f ′ //

j

��

B

A
where f ′′ is induced by f ′ and decomposes via the essential inclusions i, j, k. Since Pf ′′ is isomorphic
to f and decomposes, f also decomposes. In particular, Spec A is an abelian category and P is left
exact.

Furthermore Spec A has infinite direct sums and P commutes with direct sums, since a direct sum
of essential monomorphisms is an essential monomorphism in the Grothendieck category A.

In general, P commutes with intersections (because of left-exactness) and with a supremum of a
filtered system of subobjects (analogous to the proof for direct sums). Therefore (*) from 1.1 holds
in Spec A.

Finally, PU is a generator in Spec A if U is a generator in A. �

1.4. The canonical functor P is an isomorphism iff every morphism in A is decomposable. A
Grothendieck category in which each morphism decomposes is therefore called a spectral cate-
gory.

1.5.

Theorem. For objects A,B ∈ A the following are equivalent

i) PA is isomorphic to PB

ii) There is an object C ∈ A and essential monomorphisms i : C → A and j : C → B

iii) A and B are isomorphic to their injective hulls

The proof is clear

Therefore there is a 1-1 correspondence between the isomorphism classes of injective objects of A
and the isomorphism classes of all objects of Spec A. An object A ∈ A is co-irreducible iff PA is
simple. At the same time, an object A is coirreducible if it’s nonzero and each different subobject
is essential in A.

2. Characterizing the Spectral Category with the help of regular rings

2.1.

Theorem. Let S be a spectral category with generator U and R = S(U,U). Then R is regular3

and is an injective R-module. The functor

S
F→ S(U, S)

3R regular means each principal ideal is a direct summand in R



4PETER GABRIEL AND ULRICH OBERST; TRANSLATED BY DAVID WHITE AUGUST 17, 1965; TRANSLATED JUNE 12, 2011

is an equivalence of S onto the full subcategory of Mod R consisting of direct summands of powers
of R.

Proof. That the functor F is an equivalence onto the full subcategory follows from [7]. From [7]
it also follows that infinite direct products are in S because F is an equivalence to the induced
quotient category of Mod R (the existence of inverse limits follows from the existence of direct
limits, and is also true under much more general assumptions (see e.g. [1]).) Since each morphism
in S decomposes and U is a generator, it is also an injective cogenerator. To each S ∈ S there is
thus a monomorphism i from S into the product

∏
λ

Uλ

for Uλ ∼= U . Since i decomposes, Fi also decomposes, i.e. FS is a direct summand of

F (
∏
λ

Uλ) ∼=
∏
λ

F (Uλ)

however, F (Uλ) is isomorphic to R.

Suppose conversely that p is an idempotent endomorphism of a power Rℵ of R and M = p(Rℵ).
Then p is of the form Fq for q ∈ S(Uℵ, Uℵ). Therefore M =Ker(1− p) = F (Ker(1− q)). We now
finally show that R is self injective: Let I ⊂ R be a right ideal. We want to show that the natural
image of R in HomR(I,R) is surjective. There are the following identifications:

HomR(I,R) = HomR(lim
→
M,R) = lim

←
HomR(M,R) = lim

←
S(V,U) = S(lim

→
V,U)

where M is a finitely generated submodule of I, hence a direct summand of R, hence it has the
form FV , V ⊂ U . But

lim
→
V

is a direct summand in U ; therefore the natural image

Hom(U,U) = R→ S(lim
→
V,U) = HomR(I,R)

is surjective �

2.2.

Theorem. Let R be a regular, self-injective ring. Then the full subcategory of Mod R of direct
summands of powers of R is a spectral category.

Proof. Let C be the localizing subcategory [4, pg. 377] of all modules C of ModR with HomR(C,R) =
0.

A right ideal I ⊂ R is essential iff R/I ∈ C. Let R/I ∈ C and e ∈ R with I ∩ eR = 0. Given any
morphism f : eR→ R, form a monomorphism from eR to R/I by continuing f to R/I
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hence HomR(eR,R) = 0 so eR = 0 as eR is a direct summand of R.

Conversely suppose I is essential in R, f : R/I → R is a homomorphism, and g is the composition
of f with projection from R to R/I. The image g(R) is cyclic, hence projective, therefore Ker g is
a direct summand in R and is essential, hence Ker g = R and f = 0.

We now know that Mod R/C is a Grothendieck category [4, pg. 378] and that the canonical functor
from Mod R to Mod R/C possesses a right adjoint functor S. This S induces an equivalence of
Mod R/C to the full subcategory of all C-closed objects of Mod R. This means a module M is
C-closed when 0 is the unique submodule of M in C and when R/I ∈ C implies every morphism
f : I → M extends to R. In particular, each injective module is C-closed when 0 is the unique
submodule in C. The direct summands of powers of R are also C-closed.

Conversely let M be a C-closed module. Let I be any right ideal and let I ′ be the complement of
I, so each homomorphism f : I → M extends to I ⊕ I ′ and also to R. Thus I ⊕ I ′ is essential
in R and therefore R/I ⊕ I ′ is in C. This means that M is injective, hence in particular that the
C-closed modules form a spectral category.

For f ∈ HomR(M,R), the Rf are also copies of R. The canonical image φ(M) of M in

∏
f

Rf

is injective because Ker φ belongs to C. Hence M is a direct summand in
∏
Rf . The C-closed

modules are hence exactly direct summands of powers of R. �

3. Applications

3.1. S is a spectral category so each object S of S is a direct sum of its base So S, i.e. a sum
of simple subobjects of S, and its radical Ra S, i.e. the intersection of maximal subobjects of S.
We denote by Sd (d for discrete) or Sk (k for continuous) the full subcategory of all objects whose
radical or base is 0, so the functor S → (So S, Ra S) is an equivalence of S with Sd ×Sk. If E is
another representative system of isomorphism classes of simple objects in S then it’s known that
the functor S → S(E,S)E∈E is also an equivalence of the semi-simple category Sd and the product
category ∏

E∈E

Mod S(E,E)

the category of vector spaces over the skew field S(E,E)

From 2.2 and the previous comments we obtain

Theorem. Each regular, self-injective ring R is the ring direct product of its base So S and the
finite radical RaeR (this is the intersection of all maximal direct summands of R). This RaeR is a
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regular, self-injective ring whose base vanishes.

3.2. For each E ∈ E and S ∈ S let rE(S) be the well-defined dimension of S(E,S) = S(E,SoS)
over S(E,E). Often this is characterized as the magnitude rE(S), E ∈ E of the basis of S up to
isomorphism. The function rE has the following properties:

i) If S and T are isomorphic, then rE(S) = rE(T )

ii) If S =
⊕

λ Sλ then rE(S) =
∑

λ rE(Sλ)

iii) If F is simple then

rE(F ) =
{ 1 for F ∼= E

0 otherwise

iv) If SoS = 0 then rE(S) = 0

It is clear that rE is the unique function from the objects of S to the cardinal numbers with prop-
erties i) through iv).

3.3. Suppose now A is any Grothendieck category with spectral category Spec A, P : A→ Spec A
the canonical functor, and F a representative system of isomorphism classes of indecomposable
injective objects in A. Then PF(= F) is a representative system of isomorphism classes of simple
objects of Spec A.
Carrying over the results of 3.1 and 3.2 for Spec A and A one obtains the following result:

Theorem. Suppose (Iγ)γ∈Γ and (Jλ)λ∈Λ are direct families of indecomposable injective objects, A
is an object, and i :

⊕
γ Iγ → A and j :

⊕
λ Jλ → A are essential monomorphisms in A. Then

there is a bijection b : Γ→ Λ with Jb(γ)
∼= Iλ for all γ ∈ Γ.

Furthermore, for all I ∈ F and A ∈ A, rI(A) := rPI(PA) = dimension of (Spec A)(PI, PA) over
(Spec A)(PI, PI). NOTE: original paper had “I ∈ J”, a typo
The function rI has the following properties:

i) If f : A→ B is an essential monomorphism then rI(A) = rI(B)

ii) If A =
⊕

λAλ then rI(A) =
∑

λ rI(Aλ)

iii) If A is coirreducible then

rI(A) =
{ 1 if I is isomorphic to the injective hull of A

0 otherwise

iv) If A contains no coirreducible subobject then rI(A) = 0
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Via the properties i) through iv), rI becomes uniquely defined. The number rI(A) is called the
I-rank of A. It can be calculated as follows: let (Aλ)λ∈Λ be a family of coirreducible subobjects of
A, maximal with respect to the property

sup
λ
Aλ =

⊕
λ

Aλ

(Zorn’s Lemma). Then rI(A) is the cardinality of the set of all Aλ whose injective hulls are
isomorphic to I. Specifically, if U is a generator of A then A is U -cyclic, i.e. a choice of epimorphic
image of U .
As a corollary one obtains e.g: suppose (Aγ)γ∈Γ and (Aλ)λ∈Λ are families of copies of an object A
in A. Then ⊕

γ

Aγ ∼=
⊕
λ

Aλ

and there is an I ∈ F with 0 < RI(A) < ℵ0 so Γ and Λ have the same cardinality.

Using the preceding on modules over a ring, the result that basis length of free modules is unique
follows. Furthermore, this follows without any of the assumptions of Fuchs[3] on the ring.
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