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Abstract

We derive relation between a quantum channel’s capacity to convey classical infor-
mation and its ability to convey quantum information. We also show that these
properties of a quantum channel are related to the channel’s ability to convey quan-
tum coherent information.

I. Introduction

A quantum communication channel can be used to perform a variety of tasks,
including:

1. Conveying classical information from a sender to a receiver.

2. Conveying quantum information (including quantum entanglement) from a sender
to a receiver.

Each of these tasks can be performed in the presence of noise. Indeed, in quan-
tum cryptography the noise is of central importance in revealing the activity of an
eavesdropper.

A central concern in the analysis of any noisy communications channel is the
channel’s capacity: the maximum rate at which information (classical or quantum)
can be reliably transmitted through the channel. When we use quantum systems to
convey information we confront concerns which are not present in classical channels.
A chief concern is the measurement performed by the receiver in order to extract the
information.

Measurement of the received message is not particular to quantum channels; a
receiver using a classical channel must also measure the received message. Counting
the numbers of dots and dashes in a Morse codeword is a measurement. What is a



particular concern for the user of a quantum channel is that a measurement result
may be ambiguous even if the quantum channel is noiseless. For example, assume
that Alice, the sender and Bob, the receiver, agree to use vertically polarized photons
to represents a “1” and horizontally polarized photons to represent a “0”. We also
assume that Bob measures for photons polarized along an axis that is 45 degrees
from horizontal. Quantum mechanics tells us that, in this case, Bob could not tell
if Alice sent a “1” or a “0”. This is true even if Alice’s photon reaches Bob without
ant distortion in its angle of polarization. One might object (quite rightfully in this
case) that Alice and Bob settled on a particularly silly measurement to use in reading
the signals. If the letter states (photon polarizations here) are not orthogonal then
there is no measurement Bob can perform that will perfectly distinguish them. This
is a first difference between classical and quantum channels: measurements are, in
general, ambiguous, even if no noise is present.

One might suggest that if Bob cannot use a single measurement to decode Alice’s
signal then Bob should perform several measurements on each photon. Quantum
mechanics prevents implementation of such a scheme: a measurement of a quantum
system fundamentally changes the properties of that system. We return to our exam-
ple where Alice and Bob used vertical and horizontal polarizations and a measurement
at 45 degrees. After Bob has measured a given photon, it is the in a pure state of 45
degree polarization. That is, if a second polarizer is set up immediately after the first
with the same (45 degree) polarization then the photon will pass it with certainty.
If the polarizer is set at any other angle, then there is a nonzero chance that the
particle will not pass. Indeed, even if Alice dispatches the photon with vertical po-
larization and if it passes Bob’s first polarizer, it will then have only a 50% chance of
passing a subsequent vertical polarizer. This is a second difference between classical
and quantum channels: measurements of the received signals fundamentally change
the signal.

One might further suggest that if Bob’s measurements change the state of the
transmitted systems, then Bob should make several copies of each signal state. He
could the perform a single measurement on each copy and thereby extract Alice’s
message. Once again, quantum mechanics prevents such a solution. The problem
here is that general quantum states can not be perfectly copied. This is the content
of the no-cloning theorem of Wootters and Zurek [3]. This is a third difference between
quantum and classical channels: quantum states cannot be cloned.

It should be noted that the no-cloning theorem does not imply that Alice can not
make multiple copies of the states she is sending. All that she needs to do is prepare
multiple systems in the same way; this is not cloning. If Alice and Bob decide to do
this to increase the reliability of their channel it would decrease the capacity of the
channel. This is because capacity is the rate at which information is transmitted per
letter state. If Alice send more letter states, the capacity of the channel is reduced.



Given what has been said to this point, one might conclude that even finding the
classical capacity of a quantum channel is problematic at best. In fact, we do know
the classical capacity, even for noisy quantum channels. This result is presented in
Section II.

To this point, we have been concerned with the classical capacity of a quantum
channel. One can also analyze the quantum capacity of a quantum communications
channel. This is the ability of the channel to faithfully transmit a quantum state from
one system to another. The capacity of a noiseless quantum channel is known [11]
but the case of the noisy channel is still under analysis even though some progress has
been made [20]. Section III presents the concept of coherent quantum information
[18] and some of its properties. Section III concludes with an anlysis showing the re-
lation between the classical capacity of a channel, the coherent information conveyed
by that channel and the quantum capacity of the channel.

I1. Classical capacity of a noisy quantum channel

Suppose Alice wishes to convey classical information to Bob by using a quantum
system () as a communication channel. Alice prepares the channel in one of various
quantum states W, with a priori probabilities p,. Bob makes a measurement on
the system @), and from its result he tries to infer which state Alice prepared. A
theorem stated by Gordon [1] and Levitin [5], first proved by Kholevo [6], gives an
upper bound to the amount of information that Bob can obtain about Alice’s signal.
It W =3, p.W, is the density operator describing the ensemble of Alice’s signals,
then the mutual information H(X :Y') between Alice’s input X and Bob’s output Y
is bounded by

H(X :Y) < HOW) = Y p H(W,), 1

where H(W) = —Tr W log W, the von Neumann entropy of the density operator W.
The upper bound in Equation 1 is in general a weak one, in that Bob may not be able
to choose an observable that gives him an amount of information near to the upper
bound [7].

Suppose that Alice employs signal states W, that are mized states. Then can Alice
and Bob find a choice of code and decoding observable so that the general Levitin -
Kholevo bound (Equation 1) can be approached arbitrarily closely? In this paper, we
show that the answer to this question is “yes”. That is, we prove the following result:

Theorem. Suppose we have letter states W, with a prior: probabili-
ties p,, and let

X = H<W) - prH<Wm)
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Fix €,6 > 0. Then for sufficiently large L, there exist a code (whose
codewords are strings of L letters) and a decoding observable such that
the information carried per letter is at least x — 6 and the probability of
error Pg < e.

The proof employs an average over randomly generated codes to establish the
existence of a satisfactory code. (If the average probability of error is small for an
ensemble of codes, the ensemble must contain specific codes with small probability of
error.) We also use a similar prescription for Bob’s decoding observable. The chief
refinement in the proof presented here is the enforcement of stronger “typicality”
conditions on various quantities associated with the channel.

The mixed states W, may be thought of as the outputs of a noisy quantum
channel. Thus, our main result will enable us to draw conclusions about the classical
information capacity of a noisy quantum channel.

We have shown that it is possible to send information at any rate up to x bits per
letter with arbitrarily low probability of error. The capacity of a channel is defined
as the maximum information per letter that may be sent through the channel with
Pg arbitrarily small. Thus, y provides a lower bound to the capacity of the quantum
channel.

Classical information theory together with the Levitin - Kholevo Theorem also
allows us to use y to establish an upper bound for the capacity of the channel. Suppose
X represents Alice’s input and Y represents Bob’s decoding measurement outcome.
Then the Fano inequality [10] states that

where Pg is the probability of error and Ny is the number of possible values of X.
H(X]Y) is the conditional Shannon entropy of X given Y—that is, the entropy of
the conditional distribution p(x|y), averaged over the various values of y. It is related
to the mutual information H(X :Y) by

H(X|Y)=H(X)- H(X:Y). (3)

In the channel, Alice uses some signal states p, with probabilities P,. Levitin -
Kholevo Theorem places an upper bound on the mutual information H(X :Y):

H(X:Y) < H(p) = Y. PuH(p,).

(Note that, if the channel used by Alice and Bob consists of L letters used inde-
pendently, then the Levitin - Kholevo bound is just L x, where x is the Levitin -
Kholevo bound for a single letter.) If the Alice’s input X has an entropy H(X) that
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exceeds H(p) — >, P.H(pa), then H(X|Y) > 0 and it will not be possible to make
the probability of error Pg arbitrarily small.

Suppose we fix an alphabet I' = {IW,} of letter states W,, and require that Alice
use codewords a that are length-L strings of these letter states: a = xy...xy. Then
the probability distribution P, yields marginal probability distributions p(z1),. .., p(xr)
and average density operators Wy, ..., Wy, for the L different letters. It follows that

H(p) =Y PaH(pa) < (H(Wl)—zp(l’l)H(Wm)>

T <H(WL) - Z p(xL)H(WmL)> (4)

where we have used the subadditivity of the entropy H(p). We might write this as

where Y represents the Levitin - Kholevo bound for the ensemble of codewords of
length L, and xq, ..., xr represent Levitin - Kholevo bounds for the individual letter
ensembles.

We define the fixed-alphabet capacity Cr to be

Cr =supx (6)
p(z)
where p(z) is the probability distribution over the letters states in I" and x is the single-
letter Levitin - Kholevo bound. This quantity represents the maximum information
rate per letter that Alice can send to Bob with arbitrarily low probability of error.

This claim follows directly from our results so far. Suppose Alice uses codewords
of length L. Then x*) < L Cp; and by the above argument, if Alice attempts to send
more than L Ct bits using these codewords then the probability of error will not be
arbitrarily small. Conversely, we can choose the letter probabilities so that y is as
close as required to Cr, and we have previously shown that a suitable choice of code
and decoding observable can convey up to y bits per letter with arbitrarily low Pg.
Thus, the capacity Cr cannot be exceeded but can be approached arbitrarily closely.

The mixed states W, used in our alphabet are the states available to Bob for
decoding. They may in fact not be the original states of the channel () chosen by Alice.
In the interval between Alice’s encoding and Bob’s decoding, the system () may have
undergone unitary internal evolution (which Bob can correct by a suitable choice of
“rotated” decoding observable) and interaction with the external environment (which
Bob cannot in general correct).

The most general description of the evolution of a quantum system @) interacting
with an environment is provided by a trace-preserving completely positive linear map
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on the set of density operators of @ [14]. Such a map is described by a superoperator
E:
p—p =Ep), (7)

where p is the initial state of the system and p’ is the final state. The superoperator £
acts linearly, so that a convex combination of input states yields a convex combination
of output states. This description clearly includes unitary evolution of () as a special
case, but it also can account for interaction with the environment.

A noisy quantum channel is defined by a superoperator £ that describes the evo-
lution of each letter as it is transmitted from Alice to Bob. We assume that the
channel is memoryless—i.e., that the evolution of each letter is independent. This
means, among other things, that a product state of several input letters will evolve
into a product state output.

Alice’s basic problem is to use input states w, so that the output states W, =
E(w,) can be distinguished by Bob. If Alice has a fixed alphabet {w,} of input
states, then the maximum achievable information rate per letter is still given by our
fixed-alphabet capacity Cr, where I' is the alphabet of output states.

Now suppose that Alice is allowed to choose her input states in order to maximize
the information conveyed to Bob over the noisy quantum channel, subject to the
constraint that Alice must transmit codewords which are represented by product
states of the letters. This almost reduces to the fixed-alphabet problem, where the
fixed alphabet I' now includes all of the possible output states of the channel. The
maximum over probability distributions is now a maximum over all input ensembles
of states chosen by Alice.

We say that this problem almost reduces to the fixed alphabet problem in that
the argument that y is an upper bound of the capacity must be modified in this case.
Recall from the previous section that we applied the classical Fano inequality to show
that if Alice attempts to send information at a rate exceeding y then the probability
of error cannot be made arbitrarily small. If we attempt to use the same argument
in the present case then the Fano inequality does not help us for at least two reasons.
First, the number of possible input states [V, is unbounded. Second, we do not have
a characterization of H(XlineY') that allows us to compare it with N,. Thus we will
modify the Fano inequality to understand the behavior of the probability of error in
the present case.

We first note that the probability of “getting it right”
1 -
L= Py == Prjal ik | sax) | (8)
ak

is linear in the elements of the POM. Thus the probability of error, Pg is a convex
function on the elements of the POM. We may modify the proof of a result of Davies



(Theorem 3 of [17]) to show that the convex function Pg is minimized by a POM
having no more than d? elements, where d is the dimension of the support of the
POM. Thus, the probability of error is minimized by a decision scheme in which at
most d? of the inputs are identified by the decision scheme. Let us denote the output
of such a scheme by Y,,;,. Fano’s inequality gives us that

—Pglog Py — (1 — Pg)log(1 — Pg) + Pglog(d® — 1) > H(X|Ynin). (9)

Note that
H(X|Y,,) = H(X)—H(X:Y,min) (10)
> H(X)-x, (11)

so that we conclude
—Pglog Pp — (1 — Pg)log(1 — Pg) + Pglog(d®* — 1) > H(X) — . (12)

Note that this is a relation between the minimum probability of error and a
quantity (H(X) — x) which does not depend on the particular decision scheme. We
see that if Alice attempts to send information at a rate H(X) in excess of x then the
probability of error can not be made arbitrarily small.

We now turn to a demonstration that this rate can be achieved. Alice wishes to
choose a set of input states w, (together with input probabilities p,) so that x is
maximized for the output states W,. We next show that Alice can do no better than
choose the input states w, to be pure. Let a set of (possibly mixed) input states w,
be given along with their a priori probabilities, and let

be the average output state. Then

X =HW) =3 p:H(E(w,)). (14)

Construct a new set of pure state inputs by resolving each mixed state input into a
convex combination of pure states:

We will use the state | 1,x) with probability p,x = p» A\sx. By linearity,



so that the average output state is still W, as before. By the convexity of the von
Neumann entropy,

It follows that
X' = HW)- Zk:pmkH(g(l Vi) (Ve |)

> H(W) = Y poH(E(w,)) = x. (18)

In other words, for any ensemble of mixed input states, we can find an ensemble of
pure input states whose output states have a y at least as great. The optimal inputs
for the noisy quantum channel are pure states.

To sum up, if Alice is required to use product states to represent her codewords,
then the capacity C™ of the noisy quantum channel is

O™ = max (19)

where y is the Levitin - Kholevo bound for the output states of the channel, and the
maximum is taken over all ensembles of pure state inputs. Alice can reliably transmit
information to Bob at any rate below C™"). We will refer to C") as the product state
capacity. The superscript (1) reminds us that Alice is required to use the multiple
available copies of the channel one at a time, coding her messages into product states.

III. Coherent quantum information and quantum capacity

The entropy exchange S, measures the amount of information that is exchanged
between the system ) and the environment F during their interaction. If the envi-
ronment is initially in a pure state, the entropy exchange is just the environment’s
entropy after the interaction—i.e., S, = S(p”), where p” is the final state of E.
(The entropy here is just the ordinary von Neumann entropy of a density operator,
S(p) = —=Tr plog p.) The entropy exchange is entirely determined by the initial state
p? of @ and the channel dynamics superoperator £9; that is, the entropy exchange
is a property “intrinsic” to () and its dynamics.

The coherent information I, introduced in [18], is given by
I, = S(p?) - S.. (20)

The coherent information has many properties that suggest it as the proper measure of
the quantum information conveyed from Alice to Bob by the channel. For example, I,
can never be increased by quantum data processing performed by Bob on the channel
output, and perfect quantum error correction of the channel output is possible for
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Bob if and only if no coherent information is lost in the channel [18]. Finally, the
coherent information seems to be related to the capacity of a quantum channel to
convey quantum states with high fidelity [20].

Alice might be using the channel to send classical information to Bob. Alice
prepares () in one of a set of possible “signal states” ,057 which are used by Alice with
a priori probabilities p,. The average state p® is given by

p? =" ppt. (21)
k

Bob receives the kth signal as ka/ =& Q(pg). Because the superoperator is linear, the
average received state is

pY =Y mEC(p) = E9(p?). (22)
k

Bob attempts to decode Alice’s message (that is, to identify which signal state was
chosen by Alice) by measuring some decoding observable on his received system @)'.

The amount of classical information conveyed from Alice to Bob, which we will
denote Hpggp, is governed by the quantity 9, defined by

X? = 5(07) = 3 mS (i) (23)
k
This quantity is significant in two ways:
o Hp, < x¥', regardless of the decoding observable chosen [21, 22].

e Hp, can be made as close as desired to to XQ' by a suitable choice of code
and decoding observable. To make Hp,, near XQ', Alice must in general use
the channel many times and employ code words composed of many signals; Bob
must perform his decoding measurement on entire code words. The net result is
that the channel is used N times to send up to Nx? bits of classical information
reliably [2].

In short, Y9 represents an upper bound on the classical information conveyed from
Alice to Bob, an upper bound that may be approached arbitrarily closely if Alice and
Bob use the channel efficiently.

If this general picture is used to describe a noisy quantum channel, then we need
to account for the information that is passed to the environment. Recall that the
evolution superoperator £9 describes all of the effects of the channel; or, to put it
another way, all of properties of the link between Alice and Bob are contained in the
interaction operator U®F. The information passed to the environment Hp will be

limited by
X7 =80") =3 mS(pr ). (24)
k

9



Assume that the states of () initially prepared by Alice are pure states ‘ ¢§>; also
recall that the environment E can be presumed to begin in a pure state ‘ 0F > After

) and FE interact unitarily, the joint state ‘ \IJSE/> = [9F ‘ ¢kQ> ® ‘ 0F > will also be a
pure state, generally an entangled one. The subsystem states, described by density
operators

o= Trp|wP) (v
il = Trg|UR”) (v

, (25)

will have exactly the same non-zero eigenvalues, so that S(p? ) = S(pZ'). Therefore

9 = S(p?)-S.
= S(p¥) —5(™)
_ S(pQ/) — Zka(pg) — S(/)E/) + st(ﬂky)

19 = x9 " (26)

As)

It is interesting to note that, although both y¢ and x”" depend on the choice
of pure state inputs for the channel @, the difference y¢ — x* depends only on the
overall density operator p? for the inputs.

In is shown in [18] that perfect error correction is possible if and only if the coherent
information of the channel equals the entropy of the input state. The quantity D, is
defined [24] as follows:

Dp = S(p9) — 19 (27)
We can thus say that perfect error correction is possible if and only if D, = 0.

Subtracting each side of equation (26) from the entropy of the input state yields:
S(p9) — I = De = S(p¥) — x¥ +x". (28)

Recall that y9 is maximized when Alice uses pure state to encode her messages. In
that case we have y¢ = S(p%), so equation (28) takes the form

D, = x? — x¥ +x". (29)

This equation is quite informative. It implies that conveying quantum information
perfectly depends on two tasks: Maximization of classical capacity and zero entropy
loss to the environment. This implies a strong connection between the quantum
capacity of a quantum channel and its classical capacity.

We would like to thank W. K. Wootters and M. A. Nielsen for helpful conversations
and suggestions.
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