## Knot Mosaics

## Lew Ludwig

Denison University
Fall, 2014 Southeastern AMS Sectional Meeting - Greensboro

## What are Knot Mosaics?

- Lomonaco and Kauffman (2008)



Figure 8

- Kuriya (2008), Shebab (2012) tame knot theory and mosaic knot theory are equivalent


## Why I like studying knot mosaics.

- You don't need to know a lot knot theory
- Wide area of math
- Knot theory (Tait's conjecture)
- Graph theory
- Combinatorics
- Algorithms
- Great for undergraduate research


## Some terminology

- mosaic number of a knot $K$, denoted $m(K)$

The minimal size mosaic board that a knot will fit on


\#

Figure 8

## Some terminology

- mosaic number of a knot $K$, denoted $m(K)$

The minimal size mosaic board that a knot will fit on

$$
m\left(3_{1}\right)=4 \quad m\left(4_{1}\right)=5
$$



Trefoil


Figure 8

## What we know - mosaic number



## What we ${ }^{\wedge}$ know - mosaic number



## Other things we know about mosaic number...

Do we know the mosaic number for an infinite family of knots?

- (L,J.Paat, and E. Evans, 2013)


$$
m(L)=2 n+1
$$



Number of Crossings: 22
Mosaic Size: 8


Number of Crossings: 23 Mosaic Size: 7
(Adams) Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?

## Other things we know about mosaic number...

Do we know the mosaic number for an infinite family of knots?

- (L. \& Wu, 20I2)

$$
m\left(T_{(p, p+1)}\right) \leq 2 p
$$

- (H.J. Lee, K. Hong, H. Lee, and S. Oh, 2013)

$$
m\left(T_{(p, q)}\right) \leq p+q-2|p-q| \neq 1
$$

## Other things we know <br> (Lomonaco and Kauffman)

Is the mosaic number, $m(K)$, related to the crossing number, $c(K)$, of a knot $K$ ?

## (H.J. Lee, K. Hong, H. Lee, and S. Oh)

- $m(K) \leq c(K)+l$, non-trival knot
- $m(K) \leq c(K)$ - $I$, prime and non-alternating
(H. Howards and A. Kobin)
- $c(k) \leq(m(K)-2)^{2}-2, m$ odd
- $c(k) \leq(m(K)-2)^{2}-(m-3), m$ even


## What we're working on - counting conformations

- L., Paat and Shapiro, 2010

| Board <br> Size | Conformations |
| :--- | :--- |
| I | I |
| 2 | 2 |
| 3 | 22 |
| 4 | 2,594 |
| 5 | $4,183,954$ |
| 6 | $\mathrm{IOI}, 393,4 \mathrm{II}, \mathrm{I} 26$ |

H.J. Lee et al., 2013, 2014


| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

## What we're working on - counting configurations

## sc-algorithm

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 1 | 2 | 3 |  |
|  | 4 | 5 | 6 |  |
|  | 7 | 8 | 9 |  |
|  |  |  |  |  |

Depth-first search

## What else we're working on counting components

- Given the 2,594 components on a $4 \times 4$ board, how many are trefoils, Hopf links, etc.?
- Our technique
- T_2 initialization
- sd-algorithm



## What else we're working on counting components $-4 \times 4$

| Link type | Conformations |
| :---: | ---: |
| Blank board | 1 |
| Unknot | 1,460 |
| Trefoil | 16 |
| Hopf link | 56 |
| King Solomon's knot | 2 |
| separable 2-component link | 860 |
| separable 3-component link | 180 |
| separable 4-component link | 18 |
| separable 5-component link | 1 |
| Total | 2,594 |

## What else we're working on counting components $-5 \times 5$

$5 \times 5$ : There are 4,183,954 boards.
0 Component Boards: 1
1 Component Boards: 1440892
2 Component Boards: 1728678
3 Component Boards: 798076
4 Component Boards: 189176
5 Component Boards: 25111 6 Component Boards: 1932
7 Component Boards: 86
8 Component Boards: 2
9 Component Boards: 0

Of the 1 components boards, it follows that
0 Crossing Knot-mosaics: 46684
1 Crossing Knot-mosaics: 182352
2 Crossing Knot-mosaics: 285216
3 Crossing Knot-mosaics: 326336
4 Crossing Knot-mosaics: 289712
5 Crossing Knot-mosaics: 189120
6 Crossing Knot-mosaics: 85376
7 Crossing Knot-mosaics: 28416
8 Crossing Knot-mosaics: 6656
9 Crossing Knot-mosaics: 1024

## Of the 3-crossing knot mosaics, there are 14248 trefoils.

## What we'd like to know

- What are the right counting questions?
- Mosaic number for all small knots:

9 and 10 crossings ( $49+165$ )

- $m\left(T_{(p, p+1)}\right)=2 p$ ?



## Thanks

- Elizabeth and Laura
- Colin
- Sam and Lou
- My students


