

Knot Mosaics: Results and Open Questions Lew Ludwig Denison University

• Review of knot mosaics

- Review of knot mosaics
- Some recent results in knot mosaics

- Review of knot mosaics
- Some recent results in knot mosaics
 - Arc presentation
 - Grid diagram

- Review of knot mosaics
- Some recent results in knot mosaics
 - Arc presentation
 - Grid diagram
- Provide an upper bound for the mosaic number of an infinite family of knots

- Review of knot mosaics
- Some recent results in knot mosaics
 - Arc presentation
 - Grid diagram
- Provide an upper bound for the mosaic number of an infinite family of knots
- Determine the mosaic number for an infinite family of knots

- Review of knot mosaics
- Some recent results in knot mosaics
 - Arc presentation
 - Grid diagram
- Provide an upper bound for the mosaic number of an infinite family of knots
- Determine the mosaic number for an infinite family of knots
- Conclude with open questions

• Lomonaco and Kauffman (2008)

• Lomonaco and Kauffman (2008)

• Lomonaco and Kauffman (2008)

• Lomonaco and Kauffman (2008)

 Kuriya (2008), Shebab (2012) tame knot theory and mosaic knot theory are equivalent

• mosaic number of a knot K, denoted m(K)

• mosaic number of a knot K, denoted m(K)

• mosaic number of a knot K, denoted m(K)

• mosaic number of a knot K, denoted m(K)

• mosaic number of a knot K, denoted m(K)

• mosaic number of a knot K, denoted m(K)

• mosaic number of a knot K, denoted m(K)

• mosaic number of a knot K, denoted m(K)

$$m(3_1)=4$$

 $m(4_1)=5$

Question – Lomonaco and Kauffman

Question – Lomonaco and Kauffman

Is the mosaic number, m(K), related to the crossing number, c(K), of a knot K?

<u>Recent results</u>: (H.J. Lee, K. Hong, H. Lee, and S. Oh)

<u>Recent results</u>: (H.J. Lee, K. Hong, H. Lee, and S. Oh)

Let K be a nontrivial knot (or a non-split link except the Hopf link and the 6_3^3), then

 $m(K) \le c(K) + 1$

<u>Recent results</u>: (H.J. Lee, K. Hong, H. Lee, and S. Oh)

Let K be a nontrivial knot (or a non-split link except the Hopf link and the 6_3^3), then

 $m(K) \leq c(K) + 1$

If K is prime and non-alternating, then

 $m(K) \leq c(K) - 1$

Some useful tools (Bae-Park, 2000) Let *K* be a knot or a non-

split link, then

 $\mathcal{\alpha}(K) \leq c(K) + 2$

Some useful tools

(Bae-Park, 2000) Let K be a knot or a nonsplit link, then

 $\mathcal{\alpha}(K) \leq c(K) + 2$

If K is prime and non-alternating, then

 $\alpha(K) \leq c(K) + 1$

Some useful tools

(Bae-Park, 2000) Let K be a knot or a nonsplit link, then

 $\mathcal{A}(K) \leq c(K) + 2$

If K is prime and non-alternating, then

 $\mathcal{A}(K) \leq c(K) + 1$

(Jin-Park, 2010) Let K be a non-alternating prime knot or link, then

 $\mathcal{C}(K) \leq c(K)$

Arc presentation
z-axis is binding

- z-axis is binding
- pages are half-planes

- z-axis is binding
- pages are half-planes
- finitely many pages

- z-axis is binding
- pages are half-planes
- finitely many pages
- each page meets one arc

Arc presentation

- z-axis is binding
- pages are half-planes
- finitely many pages
- each page meets one arc

Arc index, $\alpha(K)$, minimum number of pages required

What is $\alpha(K)$?

- Brunn 1897
- Birman & Menasco 1990s
- Cromwell 1990s
- Recently Heegaard Floer Homology

Arc presentation

- z-axis is binding
- pages are half-planes
- finitely many pages
- each page meets one arc

Arc index, $\alpha(K)$, minimum number of pages required

Some useful tools (Bae-Park, 2000) Let *K* be a knot or a non-split link, then

 $\alpha(K) \leq c(K) + 2$

If K is prime and non-alternating, then

 $\mathcal{A}(K) \leq c(K) + 1$

(Jin-Park, 2010) Let K be a non-alternating prime knot or link, then $\alpha(K) \leq c(K)$

0	Х		0		
1		х		0	
2			х		0
3	0			х	
4		0			Х

_	 _	_	_				_	_		_
		(4	2				
)	Ċ			ç	2		
)	(ç	2
	(5					>	Ċ		ľ
			()					>	

• Grid diagrams are *n x n*

0	Х		0		
1		х		0	
2			Х		
3	0			х	
4		0			

	_		_			_				
		(9	2				
)	Ċ			ç			
0					>	<			9	p
	(5					>	Ċ		
Х			(5					>	(

- Grid diagrams are *n x n*
- One X in every row (column)

- Grid diagrams are *n x n*
- One X in every row (column)
- One O in every row (column)

- Grid diagrams are *n x n*
- One X in every row (column)
- One O in every row (column)
- Vertical lines are overcrossings

- Grid diagrams are *n x n*
- One X in every row (column)
- One O in every row (column)
- Vertical lines are overcrossings
- Grid Index, G(K), min # vertical segments

- Grid diagrams are *n x n*
- One X in every row (column)
- One O in every row (column)
- Vertical lines are overcrossings
- Grid Index, G(K), min # vertical segments

\starNatural connection to knot mosaics**\star**

Stabilization and destabilization

- Stabilization and destabilization
- Interchanging neighboring edges if their pairs of endpoints do not interleave

- Stabilization and destabilization
- Interchanging neighboring edges if their pairs of endpoints do not interleave
- ★Cyclic permutation of vertical (horizontal) edges★

- Stabilization and destabilization
- Interchanging neighboring edges if their pairs of endpoints do not interleave
- ★Cyclic permutation of vertical (horizontal) edges – <u>do not change G(K)</u>

Knot K: $m(K) \le c(K) + 1$

Knot K, prime non-alternating: $m(K) \le c(K)-1$

Knot K: $m(K) \le c(K) + 1$

Knot K, prime non-alternating: $m(K) \le c(K)-1$

One more connection: grid diagram and arc presentation

Knot K: $m(K) \le c(K) + 1$

Knot K, prime non-alternating: $m(K) \le c(K)-1$

One more connection: grid diagram and arc presentation

Knot K: $m(K) \le c(K) + 1$

Knot K, prime non-alternating: $m(K) \le c(K)-1$

One more connection: grid diagram and arc presentation

Knot K: $m(K) \le c(K) + 1$

Knot K, prime non-alternating: $m(K) \le c(K)-1$

One more connection: grid diagram and arc presentation

 \bigstar Arc index (K)= Grid Index (K) \bigstar

Fig. I

Fig. 2

Notice the horizontal arcs:

Fig. I

Fig. 2

Notice the horizontal arcs:

Fig. I

Fig. 2

Notice the horizontal arcs Fig.2:

Notice the horizontal arcs Fig.2:

Notice the horizontal arcs Fig.2:

Notice the horizontal arcs Fig.I:

Fig. I

Notice the horizontal arcs Fig.I:

Fig. I

Notice the horizontal arcs Fig.I:

Fig. I

Notice the horizontal arcs Fig.I:

Fig. I

Notice the horizontal arcs Fig. I:

Fig. I

Notice the horizontal arcs Fig. I:

Fig. I

In either case...

So
$$m(K) = \alpha(K) - 1$$

 $\leq (c(K) + 2) - 1$ Bae & Park
 $= c(K) + 1$

and $m(K) \leq c(K) - 1$ if non-alt prime Jin & Park

A bound on the mosaic number of an infinite family of knots

A bound on the mosaic number of an infinite family of knots

• (L. & Wu, 2012)

 $m(T_{(p,p+I)}) \leq 2p$

A bound on the mosaic number of an infinite family of knots

• (L. & Wu, 2010)

 $m(T_{(p,p+1)}) \leq 2p$

• (H.J. Lee, K. Hong, H. Lee, and S. Oh) $m(T_{(p,q)}) \le p+q-2 \quad |p-q| \ne 1$
A bound on the mosaic number of an infinite family of knots

• (L. & Wu, 2010)

 $m(T_{(p,p+I)}) \leq 2p$

 $T_{(5,3)}$

• (H.J. Lee, K. Hong, H. Lee, and S. Oh) $m(T_{(p,q)}) \le p+q-2 \quad |p-q| \ne 1$

A bound on the mosaic number of an infinite family of knots

• (L. & Wu, 2010)

 $m(T_{(p,p+1)}) \leq 2p$

• (H.J. Lee, K. Hong, H. Lee, and S. Oh) $m(T_{(p,q)}) \le p+q-2 \quad |p-q| \ne 1$

The Question – Adams 2009

 Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?

- Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?
- Why is this interesting?

- Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?
- Why is this interesting?
- <u>Unknotting number</u> minimum number of times

knot must pass through itself to unknot

- Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?
- Why is this interesting?
- <u>Unknotting number</u> –

minimum number of times knot must pass through itself to unknot

• Bernhard 1994, generalized

Nakanishi 1983 result — infinite family of knots whose <u>unknotting number</u> is realized when the <u>crossing number</u> is NOT!

 Is there an infinite family of knots whose mosaic number is realized only when the crossing number is NOT?

Our Construction

Knot 6₁ Number of Crossings: 6 Mosaic Size: 6

Our Construction (Jacob Shapiro, '10)

Knot 6₁ Number of Crossings: 6 Mosaic Size: 6

Number of Crossings: 7 Mosaic Size: 5

Our Construction

Number of Crossings: 6 Mosaic Size: 6

Number of Crossings: 22 Mosaic Size: 8

Number of Crossings: 7 Mosaic Size: 5

Number of Crossings: 23 Mosaic Size: 7

What is our Game Plan?

Claim: L_{2n+1} is the family we seek,

Claim: L_{2n+1} is the family we seek, Three Acts

Claim: L_{2n+1} is the family we seek, Three Acts

I. Must compute crossing number for this family.

Claim: L_{2n+1} is the family we seek, Three Acts

- I. Must compute crossing number for this family.
- 2. Must compute mosaic number for this family.

Claim: L_{2n+1} is the family we seek, Three Acts

- I. Must compute crossing number for this family.
- 2. Must compute mosaic number for this family.
- 3. Must show when mosaic number is realized, crossing number is not.

• $(2n-1)^2$ inner tiles

- $(2n-1)^2$ inner tiles
- $(2n-1)^2-2$ crossing tiles

- $(2n-1)^2$ inner tiles
- $(2n-1)^2-2$ crossing tiles

- $(2n-1)^2$ inner tiles
- $(2n-1)^2-2$ crossing tiles

• Claim: $m(L_{2n+1})=2n+1$

- Claim: $m(L_{2n+1})=2n+1$
- By Act I, need (2n-I)²-3 crossings

- Claim: $m(L_{2n+1})=2n+1$
- By Act I, need (2n-I)²-3 crossings
- A 2n-mosiac board has $(2n-2)^2$ possible crossings

- Claim: $m(L_{2n+1})=2n+1$
- By Act I, need (2n-I)²-3 crossings
- A 2n-mosiac board has $(2n-2)^2$ possible crossings
- Since $(2n-2)^2 < (2n-1)^2 3$

- Claim: $m(L_{2n+1})=2n+1$
- By Act I, need (2n-I)²-3 crossings
- A 2n-mosiac board has $(2n-2)^2$ possible crossings
- Since $(2n-2)^2 < (2n-1)^2 3$
- m(L_{2n+1})=2n+1

Act 3

• We must show that when the mosaic number is realized, the crossing number is not.

Act 3

- We must show that when the mosaic number is realized, the crossing number is not.
- Important fact: L_{2n+1} is a <u>reduced</u>, <u>alternating</u> knot

Tait Flyping Conjecture:

Given any two <u>reduced alternating</u> diagrams D_1 and D_2 of an oriented, prime alternating knot, D_1 may be transformed to D_2 by a sequence of *flypes*.

(Thistlethwaite & Menasco 1991)

• Tait Flyping Conjecture

• Tait Flyping Conjecture

• Tait Flyping Conjecture

• Tait Flyping Conjecture

Why are reduced, alternating Knots a big deal?

• Tait Flyping Conjecture

• L₇ has 1 possible flype

Conclusion...

• There are only two "versions" of L_{2n+1}

Conclusion...

- There are only two "versions" of L_{2n+1}
- How can the individual versions be placed on a mosaic board and maintain their crossings?

Trefoil

Trefoil

Trefoil

What about *m*-gons on L_{2n+1} ?

Lucky break 1: Only 2-, 3-, 4-, 5-, and (8n-11)-gons

What about m-gons on L_{2n+1} ?

Lucky break 1: Only 2-, 3-, 4-, 5-, and (8n-11)-gons AND (8n-11) m-gon must be on outside.

What about m-gons on L_{2n+1}?

Lucky break 1: Only 2-, 3-, 4-, 5-, and (8n-11)-gons AND (8n-11) m-gon must be on outside.

... and another lucky break.

<u>Lucky break 2:</u> Both reduced alternating projections have a 5-gon.

Back to Act 3

• We know a non-reduced, non-alternating L_7 can fit on a 7x7 board, what about a reduced, alternating version of L_7 ?

 L_7

Back to Act 3

• We know a non-reduced, non-alternating L_7 can fit on a 7x7 board, what about a reduced, alternating version of L_7 ?

 L_7

• We need to place 22 crossing tiles

• We need to place 22 crossing tiles

- We need to place 22 crossing tiles
- Plus three non-crossing tiles as inner tiles

- We need to place 22 crossing tiles
- Plus three non-crossing tiles as inner tiles
- Since the 8n-11=13-gon must be on the outside of the knot, and there are 16 *inside perimeter* tiles, all 3 inner noncrossing tiles must be along *inside perimeter*

- We need to place 22 crossing tiles
- Plus three non-crossing tiles as inner tiles
- Since the 8n-11=13-gon must be on the outside of the knot, and there are 16 *inside perimeter* tiles, all 3 inner noncrossing tiles must be along *inside perimeter*

Where do the 3 non-crossing tiles go?

 ₇C₂=21 ways to place other two non-crossing tiles

- ₇C₂=21 ways to place other two non-crossing tiles
 - Breaks into 6 cases

- ₇C₂=21 ways to place other two non-crossing tiles
- Breaks into 6 cases
- Ex: both on a corner,

₇C₂=21 ways to place other two non-crossing tiles

- Breaks into 6 cases
- Ex: both on a corner,

suitably connected,

but no 5-gon

- ₇C₂=21 ways to place other two non-crossing tiles
- Breaks into 6 cases
- Ex: both on a corner, suitably connected, no 5-gon
- Other 5 cases are similar, either no 5-gon or not suitably connected

The close of Act 3...

• No matter how we tried, we could not get a reduced alternating L_{2n+1} to fit on a (2n+1)-mosaic board.

The close of Act 3...

• We found an infinite family of knots whose mosaic number is only realized when the crossing number is not.

• L₁₂

• $L_{12} - 10$ component link

• $L_{12} - 10$ component link • L_{12}

• $L_{12} - 10$ component link • $L_{12} - 9$ component link

New family of knots (L. & H.J. Lee)

n=6

New family of knots (L. & H.J. Lee)

n=6

• H_{2n}- helix knots

- Alternating knot
- m(H_{2n})=2n

•
$$c(H_{2n}) = 4n^2 - 10n + 7$$
Several families of knots (L. & H.J. Lee)

n=6

n=6

• HL_{2n}

- Alternating knot, but non-alternating diagram
- m(HL_{2n})=2n

•
$$c(HL_{2n}) = 4n^2 - 10n + 6$$

 Mosaic number realized, crossing number not

- Haa_{2n}
 - Almost alternating knot
 - $m(L_{2n})=2n$
 - $c(L_{2n}) = 4n^2 10n + 6$
 - Mosaic number realized, crossing number not

- Haa_{2n}
 - Almost alternating knot
 - $m(L_{2n})=2n$
 - $c(L_{2n}) = 4n^2 10n + 6$
 - Mosaic number realized, crossing number not

- Haa_{2n}
 - Almost alternating knot
 - $m(L_{2n})=2n$
 - $c(L_{2n}) = 4n^2 10n + 6$
 - Mosaic number realized, crossing number not

• What is the mosaic number for (2,q)-torus knots?

- What is the mosaic number for (2,q)-torus knots?
- (p,p+1)-torus knots?

- What is the mosaic number for (2,q)-torus knots?
- (p,p+1)-torus knots?
- Can the crossing number be used for determining the mosaic number?

- What is the mosaic number for (2,q)-torus knots?
- (p,p+1)-torus knots?
- Can the crossing number be used for determining the mosaic number?
- Does there exist a knot whose mosaic number is n, but whose crossing number is only realized on a mosaic board of size n+2?

• Erica, Blake, and Ramin

- Erica, Blake, and Ramin
- Hwa Jeong Lee KAIST

- Erica, Blake, and Ramin
- Hwa Jeong Lee KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu

- Erica, Blake, and Ramin
- Hwa Jeong Lee KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu
- Colin Adams Williams College

- Erica, Blake, and Ramin
- Hwa Jeong Lee KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu
- Colin Adams Williams College
- Denison University Anderson Endowment

- Erica, Blake, and Ramin
- Hwa Jeong Lee KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu
- Colin Adams Williams College
- Denison University Anderson Endowment
- Rich Ligo University of Iowa

- Erica, Blake, and Ramin
- Hwa Jeong Lee KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu
- Colin Adams Williams College
- Denison University Anderson Endowment
- Rich Ligo University of Iowa

Thanks!

References

- Adams, Colin C. <u>The Knot Book: An Elementary Introduction to</u> <u>the Mathematical Theory of Knots.</u> American Mathematical Society: Providence, 2004.
- Bernhard, James A. "Unknotting Numbers and Minimal Knot Diagrams." <u>Journal of Knot Theory and Its Ramifications.</u>Vol.3 No. I (1994) 1-5.
- Kuriya, Takahito. "On a Lomonaco-Kauffman Conjecture.

'www.arxiv.org.arXiv:0811.0710v3.7 Nov 2008.

 Lomonaco, Samuel J. and Louis H. Kauffman. "Quantum Knots and Mosaics." www.arxiv.org. arXiv:0805.0339v1.3 May 2008.

Why care about knots/links?

1961 Frisch & Wasserman

1993 Sauvage (80)

2004 Chichak et al.

Why care about knots/links?

1961 Frisch & Wasserman

1993 Sauvage (80)

2004 Chichak et al.

2007 Fenlon – polyethylene trefoil (63)

Why care about knots/links?

1961 Frisch & Wasserman

2007 Fenlon – polyethylene trefoil (63)

1993 Sauvage (80)

2004 Chichak et al.

2010 nano-knots, two nanometers – around 30,000 times smaller than human hair

UNIVERSITY OF