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� Provide an upper bound for the mosaic 
number of an infinite family of knots 

� Determine the mosaic number for an 
infinite family of knots 

� Conclude with open questions 
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Trefoil Figure 8 

The minimal size mosaic 
board that a knot will fit on 

m(31)=4 m(41)=5 
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�  Is the mosaic number, m(K), related to the 
crossing number, c(K), of a knot K? 
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Arc presentation 
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Arc index,  α(K), minimum 
number of pages required 

- Brunn 1897 
- Birman & Menasco 1990s 
- Cromwell 1990s 
- Recently Heegaard Floer Homology 
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Cromwell grid moves (Dynnikov) 

�  Stabilization and destabilization 
�  Interchanging neighboring edges if their 

pairs of endpoints do not interleave 
� ★Cyclic permutation of vertical 

(horizontal) edges – do not change G(K)
★ 
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In either case… 

So m(K)  =α(K) -1 �
! ! !≤ (c(K)+ 2) -1 
# # #= c(K)+1 �

�

and m(K)  ≤ c(K) -1 if non-alt prime 

Bae & Park  

Jin & Park  
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The mosaic number of an infinite family of 
knots 
�  Is there an infinite family of knots whose mosaic 

number is realized only when the crossing number is 
not? 

�  Why is this interesting? 
�  Unknotting number –  
minimum number of times  

knot must pass through  
itself to unknot 

�  Bernhard 1994, generalized 

 Nakanishi 1983 result – infinite family of knots whose  

unknotting number is realized when the crossing number is NOT! 
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�  Is there an infinite family of knots whose 
mosaic number is realized only when the 
crossing number is NOT? 
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What is our Game Plan? 

�  L7 

�  L11 

•  L9 

•  L13 
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◦  Make reduced alternating, 
remove one crossing 
◦  c(L2n+1)=(2n-1)2-3 

(c(L7)=22) 
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realized, the crossing number is not. 

�  Important fact: L2n+1 is a reduced,  alternating knot 
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Tait Flyping Conjecture: 
Given any two reduced alternating 
diagrams D1 and D2 of an 
oriented, prime alternating knot, D1 
may be transformed to D2 by a 
sequence of flypes. 
(Thistlethwaite & Menasco 1991) 
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� How can the individual versions be placed 

on a mosaic board and maintain their 
crossings? 
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What about m-gons on L2n+1? 

Lucky break 1: 
Only 2-, 3-, 4-, 5-, and (8n-11)-gons AND 
(8n-11) m-gon must be on outside. 

x x x x 

x 
x 

x x x 
x 

x 
x 
x 

x 

n=3 Ex: 2-gon won’t work 



… and another lucky break. 

5
5

Lucky break 2: 
Both reduced alternating projections have a 
5-gon. 
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How can we place the three non-crossing 
tiles? 

a

b

c

d

...

...

...

...

.

..
...

...
...

4 3

21 •  7C2=21 ways to place other 
two non-crossing tiles 

•  Breaks into 6 cases 
•  Ex: both on a corner, 

suitably connected, no       
5-gon 

•  Other 5 cases are similar, 
either no 5-gon or not 
suitably connected 
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�  No matter how we tried, we could not get a reduced 
alternating L2n+1 to fit on a (2n+1)-mosaic board. 



The close of Act 3… 

�  We found an infinite family of knots whose mosaic 
number is only realized when the crossing number is 
not. 

L2n+1 

… 
… 

…
 …
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Open Questions 

�  What is the mosaic number for (2,q)-torus knots? 
�  (p,p+1)-torus knots? 
�  Can the crossing number be used for determining the 

mosaic number? 
�  Does there exist a knot whose mosaic number is n, but 

whose crossing number is only realized on a mosaic 
board of size n+2? 
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