Knot Mosaics:

Results and Open Questions

Lew Ludwig
Denison University

Our program

Our program

- Review of knot mosaics

Our program

- Review of knot mosaics
- Some recent results in knot mosaics

Our program

- Review of knot mosaics
- Some recent results in knot mosaics
- Arc presentation
- Grid diagram

Our program

- Review of knot mosaics
- Some recent results in knot mosaics
- Arc presentation
- Grid diagram
- Provide an upper bound for the mosaic number of an infinite family of knots

Our program

- Review of knot mosaics
- Some recent results in knot mosaics
- Arc presentation
- Grid diagram
- Provide an upper bound for the mosaic number of an infinite family of knots
- Determine the mosaic number for an infinite family of knots

Our program

- Review of knot mosaics
- Some recent results in knot mosaics
- Arc presentation
- Grid diagram
- Provide an upper bound for the mosaic number of an infinite family of knots
- Determine the mosaic number for an infinite family of knots
- Conclude with open questions

What are Knot Mosaics?

What are Knot Mosaics?

- Lomonaco and Kauffman (2008)

What are Knot Mosaics?

- Lomonaco and Kauffman (2008)

What are Knot Mosaics?

- Lomonaco and Kauffman (2008)

What are Knot Mosaics?

- Lomonaco and Kauffman (2008)

Figure 8

- Kuriya (2008), Shebab (2012) tame knot theory and mosaic knot theory are equivalent

Some terminology

Some terminology

- mosaic number of a knot K, denoted $m(K)$

Some terminology

- mosaic number of a knot K, denoted $m(K)$

Some terminology

- mosaic number of a knot K, denoted $m(K)$

The minimal size mosaic board that a knot will fit on

Some terminology

- mosaic number of a knot K, denoted $m(K)$

The minimal size mosaic board that a knot will fit on

Some terminology

- mosaic number of a knot K, denoted $m(K)$

The minimal size mosaic board that a knot will fit on

Some terminology

- mosaic number of a knot K, denoted $m(K)$

The minimal size mosaic board that a knot will fit on

Some terminology

- mosaic number of a knot K, denoted $m(K)$

The minimal size mosaic board that a knot will fit on

Some terminology

- mosaic number of a knot K, denoted $m(K)$

The minimal size mosaic board that a knot will fit on

$$
m\left(3_{1}\right)=4 \quad m\left(4_{1}\right)=5
$$

Question - Lomonaco and Kauffman

Question - Lomonaco and Kauffman

- Is the mosaic number, $m(K)$, related to the crossing number, $c(K)$, of a knot K ?

Recent results:
 (H.J. Lee, K. Hong, H. Lee, and S. Oh)

Recent results:

(H.J. Lee, K. Hong, H. Lee, and S. Oh)

Let K be a nontrivial knot (or a non-split link except the Hopf link and the $\sigma_{3}{ }^{3}$), then

$$
m(K) \leq c(K)+1
$$

Recent results:

(H.J. Lee, K. Hong, H. Lee, and S. Oh)

Let K be a nontrivial knot (or a non-split link except the Hopf link and the $\sigma_{3}{ }^{3}$), then

$$
m(K) \leq c(K)+1
$$

If K is prime and non-alternating, then

$$
m(K) \leq c(K)-1
$$

Some useful tools

(Bae-Park, 2000) Let K be a knot or a nonsplit link, then

$$
\alpha(K) \leq c(K)+2
$$

Some useful tools

(Bae-Park, 2000) Let K be a knot or a nonsplit link, then

$$
\alpha(K) \leq c(K)+2
$$

If K is prime and non-alternating, then

$$
\alpha(K) \leq c(K)+1
$$

Some useful tools

(Bae-Park, 2000) Let K be a knot or a nonsplit link, then

$$
\alpha(K) \leq c(K)+2
$$

If K is prime and non-alternating, then

$$
\alpha(K) \leq c(K)+1
$$

(Jin-Park, 2010) Let K be a non-alternating prime knot or link, then

$$
\alpha(K) \leq c(K)
$$

What is $\alpha(K)$?

Arc presentation
$-z$-axis is binding

- pages are half-planes
- finitely many pages

What is $\alpha(K)$?

Arc presentation
$-z$-axis is binding

- pages are half-planes
- finitely many pages
- each page meets one arc

What is $\alpha(K)$?

Arc presentation
$-z$-axis is binding

- pages are half-planes
- finitely many pages
- each page meets one arc

Arc index, $\alpha(K)$, minimum number of pages required

What is $\alpha(K)$?
 - Brunn 1897
 - Birman \& Menasco 1990s
 - Cromwell 1990s
 - Recently Heegaard Floer Homology

Arc presentation
$-z$-axis is binding

- pages are half-planes
- finitely many pages
- each page meets one arc

Arc index, $\alpha(K)$, minimum number of pages required

Some useful tools

 (Bae-Park, 2000) Let K be a knot or a non-split link, then$$
\alpha(K) \leq c(K)+2
$$

If K is prime and non-alternating, then

$$
\alpha(K) \leq c(K)+1
$$

(Jin-Park, 2010) Let K be a non-alternating prime knot or link, then

$$
\alpha(K) \leq c(K)
$$

One more tool - grid diagrams

One more tool - grid diagrams

- Grid diagrams are $n x n$

One more tool - grid diagrams

- Grid diagrams are $n x n$
- One X in every row (column)

One more tool - grid diagrams

- Grid diagrams are $n x n$
- One X in every row (column)
- One O in every row (column)

One more tool - grid diagrams

- Grid diagrams are $n x n$
- One X in every row (column)
- One O in every row (column)
- Vertical lines are overcrossings

One more tool - grid diagrams

- Grid diagrams are $n x n$
- One X in every row (column)
- One O in every row (column)
- Vertical lines are overcrossings
- Grid Index, $G(K)$, min \# vertical segments

One more tool - grid diagrams

- Grid diagrams are $n \times n$
- One X in every row (column)
- One O in every row (column)
- Vertical lines are overcrossings
- Grid Index, $G(K)$, min \# vertical segments

\star Natural connection to knot mosaics \star

Cromwell grid moves (Dynnikov)

Cromwell grid moves (Dynnikov)

- Stabilization and destabilization

Cromwell grid moves (Dynnikov)

- Stabilization and destabilization
- Interchanging neighboring edges if their pairs of endpoints do not interleave

Cromwell grid moves (Dynnikov)

- Stabilization and destabilization
- Interchanging neighboring edges if their pairs of endpoints do not interleave
- \star Cyclic permutation of vertical (horizontal) edges \star

Cromwell grid moves (Dynnikov)

- Stabilization and destabilization
- Interchanging neighboring edges if their pairs of endpoints do not interleave
- \star Cyclic permutation of vertical (horizontal) edges - do not change $\mathrm{G}(\mathrm{K})$

Keep goal in mind...

Knot K:
$m(K) \leq c(K)+1$
Knot K, prime non-alternating: $m(K) \leq c(K)-1$

Keep goal in mind...

$$
\begin{array}{lc}
\text { Knot } K \text { : } & m(K) \leq c(K)+1 \\
\text { Knot } K \text {, prime non-alternating: } & m(K) \leq c(K)-1
\end{array}
$$

One more connection: grid diagram and arc presentation

Keep goal in mind...

$$
\begin{array}{lc}
\text { Knot } K \text { : } & m(K) \leq c(K)+1 \\
\text { Knot } K \text {, prime non-alternating: } & m(K) \leq c(K)-1
\end{array}
$$

One more connection: grid diagram and arc presentation

Keep goal in mind...

$$
\begin{array}{lc}
\text { Knot } K \text { : } & m(K) \leq c(K)+1 \\
\text { Knot } K \text {, prime non-alternating: } & m(K) \leq c(K)-1
\end{array}
$$

One more connection: grid diagram and arc presentation

Keep goal in mind...

$$
\begin{array}{lc}
\text { Knot } K \text { : } & m(K) \leq c(K)+1 \\
\text { Knot } K \text {, prime non-alternating: } & m(K) \leq c(K)-1
\end{array}
$$

One more connection: grid diagram and arc presentation

\star Arc index $(K)=$ Grid Index $(K) \star$

Now for the proof: $m(K) \leq c(K)+1$

Now for the proof: $m(K) \leq c(K)+1$

Fig. I

Fig. 2

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs:

Fig. I

Fig. 2

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs:

Fig. I

Fig. 2

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.2:

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.2:

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.2:

Reduced the mosaic size by 1

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.I:

Fig. I

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.I:

Fig. I

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.I:

Fig. I

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.I:

Fig. I

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.I:

Fig. I

Now for the proof: $m(K) \leq c(K)+1$

Notice the horizontal arcs Fig.I:

Fig. I

In either case...

So $m(K)=\alpha(K)-1$

$$
\begin{aligned}
& \leq(c(K)+2)-1 \\
& =c(K)+1
\end{aligned}
$$

Bae \& Park
and $m(K) \leq c(K)-1$ if non-alt prime Jin \& Park

A bound on the mosaic number of an infinite family of knots

A bound on the mosaic number of an infinite family of knots

- (L. \& Wu, 2012)

$$
m\left(T_{(p, p+1)}\right) \leq 2 p
$$

A bound on the mosaic number of an infinite family of knots

- (L. \& Wu, 20IO)

$$
m\left(T_{(p, p+1)}\right) \leq 2 p
$$

- (H.J. Lee, K. Hong, H. Lee, and S. Oh)

$$
m\left(T_{(p, q)}\right) \leq p+q-2 \quad|p-q| \neq 1
$$

A bound on the mosaic number of an infinite family of knots

- (L. \& Wu, 20IO)

$$
m\left(T_{(p, p+1)}\right) \leq 2 p
$$

- (H.J. Lee, K. Hong, H. Lee, and S. Oh)

$$
m\left(T_{(p, q)}\right) \leq p+q-2 \quad|p-q| \neq 1
$$

$T_{(5,3)}$

A bound on the mosaic number of an infinite family of knots

- (L. \& Wu, 2010)

$$
m\left(T_{(p, p+1)}\right) \leq 2 p
$$

- (H.J. Lee, K. Hong, H. Lee, and S. Oh)

$$
m\left(T_{(p, q)}\right) \leq p+q-2 \quad|p-q| \neq 1
$$

The mosaic number of an infinite family of knots

The mosaic number of an infinite family of knots

The Question - Adams 2009

- Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?

The mosaic number of an infinite family of knots

- Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?
- Why is this interesting?

The mosaic number of an infinite family of knots

- Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?
- Why is this interesting?
- Unknotting number -
minimum number of times
knot must pass through
itself to unknot

The mosaic number of an infinite family of knots

- Is there an infinite family of knots whose mosaic number is realized only when the crossing number is not?
- Why is this interesting?
- Unknotting number minimum number of times knot must pass through itself to unknot
- Bernhard I994, generalized

Nakanishi 1983 result - infinite family of knots whose unknotting number is realized when the crossing number is NOT!

The mosaic number of an infinite family of knots

- Is there an infinite family of knots whose mosaic number is realized only when the crossing number is NOT?

Our Construction

Knot 6
Number of Crossings: 6 Mosaic Size: 6

Our Construction (Jacob Shapiro, ‘IO)

Knot 61
Number of Crossings: 6
Mosaic Size: 6

Number of Crossings: 7 Mosaic Size: 5

Our Construction

Number of Crossings: 6 Mosaic Size: 6

Number of Crossings: 22
Mosaic Size: 8

Number of Crossings: 7 Mosaic Size: 5

Number of Crossings: 23
Mosaic Size: 7

What is our Game Plan?

- L7

- LII

- L

- L_{13}

Claim: $\mathrm{L}_{2 n+1}$ is the family we seek,

Claim: $\mathrm{L}_{2 n+1}$ is the family we seek,

 Three Acts
Claim: $L_{2 n+1}$ is the family we seek, Three Acts

।. Must compute crossing number for this family.

Claim: $L_{2 n+1}$ is the family we seek, Three Acts

I. Must compute crossing number for this family.
2. Must compute mosaic number for this family.

Claim: $L_{2 n+1}$ is the family we seek, Three Acts

I. Must compute crossing number for this family.
2. Must compute mosaic number for this family.
3. Must show when mosaic number is realized, crossing number is not.

Act I: Crossing Number

Act I: Crossing Number

- $(2 n-I)^{2}$ inner tiles

Act I: Crossing Number

- $(2 n-I)^{2}$ inner tiles
- $(2 n-I)^{2}-2$ crossing tiles

Act I: Crossing Number

- $(2 \mathrm{n}-\mathrm{I})^{2}$ inner tiles
- $(2 n-I)^{2}-2$ crossing tiles

- Make reduced alternating, remove one crossing

Act I: Crossing Number

- $(2 \mathrm{n}-\mathrm{I})^{2}$ inner tiles
- $(2 n-I)^{2}-2$ crossing tiles

- Make reduced alternating, remove one crossing
- $c\left(L_{2 n+1}\right)=(2 n-I)^{2}-3$
$\left(c\left(L_{7}\right)=22\right)$

Act 2: Mosaic Number

L_{7}

Act 2: Mosaic Number

Claim: $m\left(L_{2 n+1}\right)=2 n+1$

L_{7}

Act 2: Mosaic Number

Claim: $m\left(L_{2 n+1}\right)=2 n+1$

- By Act I, need ($2 \mathrm{n}-\mathrm{I})^{2}-3$ crossings

L_{7}

Act 2: Mosaic Number

- Claim: $m\left(L_{2 n+1}\right)=2 n+1$
- By Act I, need ($2 \mathrm{n}-\mathrm{I})^{2}-3$ crossings
- A $2 n$-mosiac board has $(2 n-2)^{2}$ possible crossings

L_{7}

Act 2: Mosaic Number

- Claim: $m\left(L_{2 n+1}\right)=2 n+1$
- By Act I, need ($2 \mathrm{n}-\mathrm{I})^{2}-3$ crossings
- A $2 n$-mosiac board has $(2 n-2)^{2}$ possible crossings

L_{7}

Act 2: Mosaic Number

- Claim: $m\left(L_{2 n+1}\right)=2 n+1$
- By Act I, need ($2 \mathrm{n}-\mathrm{I})^{2}-3$ crossings
- A $2 n$-mosiac board has $(2 n-2)^{2}$ possible crossings
- Since $(2 n-2)^{2}<(2 n-I)^{2}-3$
- $m\left(L_{2 n+1}\right)=2 n+1$

L_{7}

Act 3

- We must show that when the mosaic number is realized, the crossing number is not.

Act 3

- We must show that when the mosaic number is realized, the crossing number is not.
- Important fact: $\mathrm{L}_{2 n+1}$ is a reduced, alternating knot

Why are reduced, alternating Knots a big deal?

Why are reduced, alternating Knots a big deal?

Tait Flyping Conjecture:
Given any two reduced alternating diagrams D_{1} and D_{2} of an oriented, prime alternating knot, $\mathrm{D}_{\text {, }}$ may be transformed to D_{2} by a sequence of flypes.

(Thistlethwaite \& Menasco 1991)

Why are reduced, alternating Knots a big deal?

- Tait Flyping Conjecture

- L_{7} has 1 possible flype

Why are reduced, alternating Knots a big deal?

- Tait Flyping Conjecture

- L_{7} has 1 possible flype

Why are reduced, alternating Knots a big deal?

- Tait Flyping Conjecture

- L_{7} has 1 possible flype

Why are reduced, alternating Knots a big deal?

- Tait Flyping Conjecture
- L_{7} has 1 possible flype

Why are reduced, alternating Knots a big deal?

- Tait Flyping Conjecture

Conclusion...

- There are only two "versions" of $L_{2 n+1}$

Conclusion...

- There are only two "versions" of $L_{2 n+1}$
- How can the individual versions be placed on a mosaic board and maintain their crossings?
m-gons are preserved on sphere

Trefoil
m-gons are preserved on sphere

Trefoil

Trefoil
m-gons are preserved on sphere

Trefoil

Trefoil
m-gons are preserved on sphere

Trefoil

Trefoil

What about m-gons on $L_{2 n+1}$?

Lucky break 1:
Only 2-, 3-, 4-, 5-, and (8n-11)-gons

What about m-gons on $\mathrm{L}_{2 \mathrm{n}+1}$?

Lucky break 1:
Only 2-, 3-, 4-, 5-, and (8n-11)-gons AND (8n-11) m-gon must be on outside.

What about m-gons on $\mathrm{L}_{2 \mathrm{n}+1}$?

Lucky break 1:
Only 2-, 3-, 4-, 5-, and (8n-11)-gons AND ($8 \mathrm{n}-11$) m-gon must be on outside.
... and another lucky break.

Lucky break 2:
Both reduced alternating projections have a 5-gon.

Back to Act 3

- We know a non-reduced, non-alternating L_{7} can fit on a 7×7 board, what about a reduced, alternating version of L_{7} ?

L_{7}

Back to Act 3

- We know a non-reduced, non-alternating L_{7} can fit on a 7×7 board, what about a reduced, alternating version of L_{7} ?

L_{7}

Can a reduced, alternating L_{7} fit on a 7×7 ?

Can a reduced, alternating L_{7} fit on a 7×7 ?

- We need to place 22
crossing tiles

Can a reduced, alternating L_{7} fit on a 7×7 ?

- We need to place 22 crossing tiles

Can a reduced, alternating L_{7} fit on a 7×7 ?

- We need to place 22 crossing tiles
- Plus three non-crossing tiles as inner tiles

Can a reduced, alternating L_{7} fit on a 7×7 ?

- We need to place 22 crossing tiles
- Plus three non-crossing tiles as inner tiles
- Since the $8 \mathrm{n}-\mathrm{II}=13$-gon must be on the outside of the knot, and there are 16 inside perimeter
 tiles, all 3 inner noncrossing tiles must be along inside perimeter

Can a reduced, alternating L_{7} fit on a 7×7 ?

- We need to place 22 crossing tiles
- Plus three non-crossing tiles as inner tiles
- Since the $8 \mathrm{n}-\mathrm{II}=13$-gon must be on the outside of the knot, and there are 16 inside perimeter
 tiles, all 3 inner noncrossing tiles must be along inside perimeter

Where do the 3 non-crossing tiles go?

How can we place the three non-crossing tiles?

How can we place the three non-crossing tiles?

How can we place the three non-crossing tiles?

How can we place the three non-crossing

 tiles?

- ${ }_{7} \mathrm{C}_{2}=21$ ways to place other two non-crossing tiles

How can we place the three non-crossing

 tiles?

- ${ }_{7} \mathrm{C}_{2}=21$ ways to place other two non-crossing tiles
- Breaks into 6 cases

How can we place the three non-crossing

 tiles?

- ${ }_{7} \mathrm{C}_{2}=21$ ways to place other two non-crossing tiles
- Breaks into 6 cases
- Ex: both on a corner,

How can we place the three non-crossing

 tiles?

- ${ }_{7} \mathrm{C}_{2}=21$ ways to place other two non-crossing tiles
- Breaks into 6 cases
- Ex: both on a corner,
suitably connected,
but no 5-gon

How can we place the three non-crossing

 tiles?

- ${ }_{7} \mathrm{C}_{2}=21$ ways to place other two non-crossing tiles
- Breaks into 6 cases
- Ex: both on a corner, suitably connected, no 5-gon
- Other 5 cases are similar, either no 5 -gon or not suitably connected

The close of Act 3...

- No matter how we tried, we could not get a reduced alternating $L_{2 n+1}$ to fit on a $(2 n+1)$-mosaic board.

The close of Act 3...

- We found an infinite family of knots whose mosaic number is only realized when the crossing number is not.

Why not even mosaic boards?

Why not even mosaic boards?

- L_{12}

Why not even mosaic boards?

- L_{12} - 10 component link

Why not even mosaic boards?

- $L_{12}-10$ component link
- L_{12}

Why not even mosaic boards?

- $L_{12}-10$ component link
- $L_{12}-9$ component link

New family of knots (L. \& H.J. Lee)

New family of knots (L. \& H.J. Lee)

Several families of knots (L. \& H.J. Lee)

Family of knot from $\mathrm{H}_{2 n}$ (L. \& H.J. Lee)

Family of knot from $\mathrm{H}_{2 n}$ (L. \& H.J. Lee)

Family of knot from $\mathrm{H}_{2 n}$ (L. \& H.J. Lee)

Family of knot from $\mathrm{H}_{2 n}$ (L. \& H.J. Lee)

Open Questions

Open Questions

- What is the mosaic number for $(2, q)$-torus knots?

Open Questions

- What is the mosaic number for $(2, q)$-torus knots?
- ($\mathrm{p}, \mathrm{p}+\mathrm{I}$)-torus knots?

Open Questions

- What is the mosaic number for $(2, q)$-torus knots?
- ($\mathrm{p}, \mathrm{p}+\mathrm{I}$)-torus knots?
- Can the crossing number be used for determining the mosaic number?

Open Questions

- What is the mosaic number for $(2, q)$-torus knots?
- ($\mathrm{p}, \mathrm{p}+\mathrm{I}$)-torus knots?
- Can the crossing number be used for determining the mosaic number?
- Does there exist a knot whose mosaic number is n, but whose crossing number is only realized on a mosaic board of size $n+2$?

Acknowledgements

- Erica, Blake, and Ramin

Acknowledgements

- Erica, Blake, and Ramin
- Hwa Jeong Lee - KAIST

Acknowledgements

- Erica, Blake, and Ramin
- Hwa Jeong Lee - KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu

Acknowledgements

- Erica, Blake, and Ramin
- Hwa Jeong Lee - KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu
- Colin Adams - Williams College

Acknowledgements

- Erica, Blake, and Ramin
- Hwa Jeong Lee - KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu
- Colin Adams - Williams College
- Denison University Anderson Endowment

Acknowledgements

- Erica, Blake, and Ramin
- Hwa Jeong Lee - KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu
- Colin Adams - Williams College
- Denison University Anderson Endowment
- Rich Ligo - University of lowa

Acknowledgements

- Erica, Blake, and Ramin
- Hwa Jeong Lee - KAIST
- Erica Evans, Joe Paat, Jacob Shapiro, Gary Wu
- Colin Adams - Williams College
- Denison University Anderson Endowment
- Rich Ligo - University of lowa

Thanks!

References

- Adams, Colin C. The Knot Book:An Elementary Introduction to the Mathematical Theory of Knots. American Mathematical Society: Providence, 2004.
- Bernhard, James A. "Unknotting Numbers and Minimal Knot Diagrams." Journal of Knot Theory and Its Ramifications.Vol. 3 No. I (1994) I-5.
- Kuriya,Takahito. "On a Lomonaco-Kauffman Conjecture. " www.arxiv.org. arXiv:08I I.07IOv3. 7 Nov 2008.
- Lomonaco, Samuel J. and Louis H. Kauffman. "Quantum Knots and Mosaics." www.arxiv.org. arXiv:0805.0339vI. 3 May 2008.

Why care about knots/links?

1961 Frisch \& Wasserman

1993 Sauvage (80)

2004 Chichak et al.

Why care about knots/links?

1961 Frisch \& Wasserman

1993 Sauvage (80)

2004 Chichak et al.

FRANKLIN MARSHALL

2007 Fenlon - polyethylene trefoil (63)

Why care about knots/links?

1961 Frisch \& Wasserman

1993 Sauvage (80)

2004 Chichak et al.

FRANKLIN MARSHALL

polyethylene trefoil (63)
2007 Fenlon -

2010 nano-knots, two nanometers - around 30,000 times smaller than human hair

