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ABSTRACT

Lomonaco and Kauffman [Quantum knots and mosaics, Quantum Inf. Process.
7(2–3) (2008) 85–115] introduced the notion of knot mosaics in their work on quantum
knots. It is conjectured that knot mosaic type is a complete invariant of tame knots. In
this paper, we answer a question of C. Adams by constructing an infinite family of knots
whose mosaic number can be realized only when the crossing number is not. That is,
there is an infinite family of non-minimal knots whose mosaic numbers are known.
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1. Introduction

This work answers a question posed by Colin Adams at a knot conference in 2009.
First, we provide the background to the question. In 2008, Lomonaco and Kauffman
[5] introduced knot mosaics in their work on quantum knots. Using the notation
of Lomonaco and Kauffman, we now develop the definition of knot mosaic. Let
T

(u) = {Ti : 0 ≤ i ≤ 10} be the set of 11 symbols called (unoriented) tiles depicted
in Fig. 1. Let n ∈ N, then we define an (unoriented) n-mosaic to be an n×n matrix
M = (Mij) = (Tk(i,j)) of (unoriented) tiles with rows and columns indexed from 1
to n. We denote the set of n-mosaics by M

(n). If we call the midpoint of the edge
of a tile which is also the endpoint of a curve drawn on the tile a connection point,
notice that T0 has zero connection points, T1–T6 have two connection points each,
and T7–T10 each has four connection points. A tile in a mosaic is said to be suitably
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Fig. 1. Tiles T0–T10 respectively.

Fig. 2. The trefoil knot as a 4-mosaic.

connected if all its connection points touch the connection points of contiguous tiles.
An (unoriented) knot n-mosaic is a mosaic in which all tiles are suitably connected.
Let K

(n) denote the subset of M
(n) of all knot n-mosaics. See Fig. 2 for an example

of a trefoil as a 4-mosaic with its corresponding matrix.
In their article, Lomonaco and Kauffman defined Reidemeister-like moves for

knot mosaics and conjectured that knot mosaic type is a complete invariant of
tame knots. A proof of this conjecture has been submitted by T. Kuriya and
O. Shehab [4]. With this in mind, knot mosaic gives yet another way to study
knots. In particular, one important invariant with regard to knot mosaics is the
mosaic number. Define the mosaic number of a knot K to be the smallest integer
n for which K can be represented as a knot n-mosaic, denoted m(K). Lomonaco
and Kauffman asked whether mosaic number is related to crossing number.

At first examination, one may assume that the mosaic number is realized when
the crossing number is realized. This seems intuitively reasonable since the fewest
number of crossing tiles (T9 or T10) is used when the crossing number is realized
and this may in turn minimize the overall number of tiles needed to represent a
given knot. However, a similar notion was disproved when Bernhard [2] produced an
infinite family of knots whose unknotting number was realized only when additional
crossings were added beyond the crossing number. Again, a very counterintuitive
notion. This led Colin Adams to pose the following question:

Does there exist an infinite family of knots such that for each knot, the
mosaic number is realized only when its crossing number is not?

We answer this question in the affirmative. For the remainder of the work, the
reader is referred to Adams [1] for undefined terms or concepts.
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(a) (b)

Fig. 3. The knot 61 as a 5-mosaic and as a 6-mosaic.

2. Prelude to the Construction of the Infinite Family

To develop the construction of our infinite family of interest, we first consider the
special case of the knot 61. By Fig. 3(a), we see the knot 61 represented as a 5-
mosaic, with seven crossings. However 61 cannot be placed on a 4×4 mosaic, because
such a mosaic only has at most four possible crossing tiles, as crossing tiles cannot
be placed on an outer row or column of a mosaic and still be suitably connected.
So the mosaic number of 61 is 5 (i.e. m(61) = 5). However, using an exhaustive
search, Jacob Shapiro of Purdue University showed that no projection of 61 could
be placed on a 5× 5 mosaic with only six crossings. Therefore, the projection of 61

in Fig. 3(a) is our first example of a knot whose mosaic number is realized when its
crossing number is not. Notice that we can project 61 on a 6 × 6 mosaic board so
that its crossing number of six is realized, as shown in Fig. 3(b).

The key difference between the mosaics in Fig. 3 is evident in the upper-left 3×3
submosaic of 61 as a 5-mosaic and the upper-left 3×4 submosaic of 61 as a 6-mosaic
depicted in Fig. 4. Roughly speaking, the grey strand on the mosaic in Fig. 4(a)
is stretched to the grey strand on the mosaic in Fig. 4(b) via an expansion of the

(a) (b)

Fig. 4. Changing the knot 61 from seven to six crossings.
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board and a series of Reidemeister moves. All the other tiles remained fixed. This
will be our strategy in constructing our infinite family. Start with a square board of
odd size, greater than or equal to 7. Take the upper-left 3 × 3 submosaic of 61 and
place it on the board. Fill the remaining inner tiles with alternating crossings and
note that the remaining outside tiles will be forced to produce a unique suitably
connected mosaic, Fig. 6(c).

3. Construction of the Infinite Family

We now construct an infinite family of knot mosaics, L = {L2n+1 : n ∈ N}, such
that for each n ∈ N, the mosaic number of L2n+1 can only be realized when its
crossing number is not. We construct each L2n+1 ∈ L in the following way:

(1) For n = 2, please see Fig. 3(a).
(2) For n > 2, construct L2n+1 on the (2n + 1) × (2n + 1) mosaic board B2n+1 in

the following manner:

(a) Start with the submosaic S4 (see Fig. 5) in the upper-left corner of B2n+1,
then place tile T1 in position (2, n − 1) and tile T3 in position (n − 1, 2) of
B2n+1, see Fig. 6(a).

(b) Place alternating crossing tiles T9 and T10 in the remaining interior posi-
tions, see Fig. 6(b).

(c) Notice that the remaining outer perimeter tiles are now forced in order for
L2n+1 to be suitably connected to arrive at L2n+1, Fig. 6(c).

Fig. 5. Submosaic S4.

Fig. 6. Constructing L2n+1 on B2n+1 from S4.
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Now to show that L is the infinite family we seek, we must:

(1) Compute the crossing number, cr(L2n+1) for each n ≥ 2.
(2) Compute the mosaic number, m(L2n+1) for each n ≥ 2.
(3) Show that when the mosaic number of L2n+1 is realized, the crossing number

is not.

For ease of exposition, unless stated otherwise, we will assume n ≥ 2 when consid-
ering L2n+1. We begin our checklist with the following proposition.

Proposition 3.1. The crossing number of L2n+1 is 4n2 − 4n − 2, that is
cr(L2n+1) = 4n2 − 4n − 2.

Proof. By construction, we see that L2n+1 can be placed on a (2n + 1)-mosaic
board with (2n − 1)2 − 2 crossings. As Fig. 7(a) demonstrates, the construction
of L2n+1 on a (2n + 1)-mosaic is not alternating. Specifically, the crossing tiles in
positions (3, 2) and (3, 3) are non-alternating. However, by expanding the board
and performing a series of Reidemeister moves, we can create a reduced alternating
projection of L2n+1 on a (2n+2)-mosaic board that has one less crossing as depicted
in Fig. 7(b). In 1987, Kauffman [3], Murasagi [8] and Thistlethwaite [9] proved the
following conjecture by Tait: the crossing number of an alternating knot occurs in
a reduced alternating projection. Since the new projection is a reduced alternating
knot, we know its crossing number is realized. That is, cr(L2n+1) = (2n−1)2−3 =
4n2 − 4n − 2.

Proposition 3.2. The mosaic number of L2n+1 is 2n + 1. That is m(L2n+1) =
2n + 1.

Proof. By construction, we see that L2n+1 fits on a (2n+1)-mosaic. Moreover, by
Proposition 3.1, L2n+1 needs 4n2−4n−2 crossing tiles. However, a 2n-mosaic only
has 4n2−8n+4 possible positions for crossing tiles and 4n2−8n+4 < 4n2−4n−2
for n ≥ 2, so m(L2n+1) = 4n2 − 4n − 2.

(a) (b)

Fig. 7. L2n+1 as a (2n + 1)-mosaic with (2n − 1)2 − 2 crossings and as a (2n + 2)-mosaic with
(2n − 1)2 − 3 crossings.
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We have proven two of three components for the main result. We now develop
a series of propositions that will be used to prove our main result: when the mosaic
number of L2n+1 is realized, the crossing number is not. To begin, we first recall
the famous Tait Flyping Conjecture:

Given any two reduced alternating diagrams D1 and D2 of an oriented,
prime alternating knot, D1 may be transformed to D2 by a sequence of
flypes.

A flype consists of twisting a part of knot, a tangle T , by 180 degrees. Figure 8
demonstrates a flype. The Tait Flyping Conjecture was proven by Menasco and
Thistlethwaite using a blend of geometric techniques and polynomials [7]. While
Tait’s original statement dealt with knots on the surface of a sphere, we can think
of the sphere as being significantly large so that our drawings appear on the plane.

Notice that by our construction, any reduced alternating projection of L2n+1

has only one possible flype, for example see Fig. 9. Hence there are only two pro-
jections of L2n+1 that we have to consider which we refer to as D1

2n+1 and D2
2n+1.

For example, for n = 3, D1
7 and D2

7 are depicted in Fig. 9. By considering these

Fig. 8. A flype.

(a) (b)

Fig. 9. Example of the flype in L7.

1350036-6



3rd Reading

June 28, 2013 16:56 WSPC/S0218-2165 134-JKTR 1350036

Infinite Family of Knots in Non-Reduced Projections

Fig. 10. Example of a 2-gon, 3-gon, and 4-gon.

reduced alternating projections, we also have that L2n+1 is prime, so Tait’s con-
jecture applies. L2n+1 is prime due to a result by Menasco [6] that states if a knot
is composite, then this is immediately apparent from any alternating projection of
the knot in which trivial crossings have been eliminated.

Now that we only need to consider two projections of L2n+1, we next consider
the m-gons formed in these projections. Please see Fig. 10 for an example of a 2-
gon, 3-gon and 4-gon. We see that the types of m-gons in any embedding of L2n+1

is completely determined as established by our next proposition.

Proposition 3.3. Every reduced alternating projection of L2n+1, n ≥ 3, is solely
composed of at least one 2-gon, 3-gon, 4-gon and 5-gon and only one (8n−11)-gon.

Proof. As L2n+1 has only two knot projections, we need only to consider projec-
tions D1

2n+1 and D2
2n+1 of L2n+1 as in Fig. 9. Notice with these two projections,

for any n ≥ 3, the upper-left 5 × 5 submosaic remains unchanged for each of these
projections. These 5 × 5 submosaics contain at least one 2-gon, 3-gon, 4-gon and
5-gon. Moreover, the region outside the 5 × 5 submosaic is comprised of crossing
tiles (T9 or T10), quarter circle tiles (T1–T4) or T5. By construction, these tiles will
only produce 2-gons, 3-gons, or 4-gons.

The last m-gon to consider is the m-gon that creates the perimeter D1
2n+1 and

D2
2n+1 as depicted in Fig. 9. We proceed by induction starting with n = 2. In

this case, we simply count the perimeter m-gon of the projection of L5 on B6, see
Fig. 3(b), and note it is a 5-gon. Assume that the perimeter of D1

2n+1 (or D2
2n+1) is

an m-gon on B2n+2, where m = 8n−11. To create a reduced alternating projection
of L2n+3 on B2n+4, we add two rows to the bottom and two columns to the right
side of our (2n + 1) × (2n + 1) mosaic board. L2n+3 will then have two additional
rows and columns of crossings, which will increase the number of edges appearing
in perimeter m-gon of L2n+3 by a total of 8 — two new edges for each of the four
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Fig. 11. The inner boundary of a 7 × 7 mosaic board.

“sides” of the m-gon. Hence, m = 8n − 11 + 8 = 8(n + 1) − 11 for the perimeter
m-gon of a reduced alternating projection of L2n+3 on B2n+4.

Before our next proposition, we provide a definition for ease of exposition. Con-
sider a (2n+1)× (2n+1) mosaic board, by inner boundary, we are referring to the
tile positions {(2, m) : 2 ≤ m ≤ 2n} ∪ {(2n, m) : 2 ≤ m ≤ 2n} ∪ {(m, 2) : 2 ≤ m ≤
2n} ∪ {(m, 2n) : 2 ≤ m ≤ 2n}, see Fig. 11.

Proposition 3.4. If the outside perimeter of a projection of L2n+1 is determined
by an m-gon, there are at most m crossing tiles on the inner boundary of L2n+1.

Proof. Assume there is an m-gon defining the outer perimeter for a projection of
L2n+1 and that there are k > m crossing tiles on the inside boundary of L2n+1.
When a crossing tile is placed on the inner boundary, it will contribute two concur-
rent edges to the m-gon. If we sum all these edges, we note each is counted twice,
so there are exactly k such edges along perimeter of L2n+1, a contradiction.

We can now make a useful observation. By Propositions 3.3 and 3.4, if a reduced
alternating projection of L2n+1 can be placed on a (2n + 1)-mosaic board, it must
be the case that the (8n− 11)-gon forms the outer perimeter of the projection and
the inner boundary of this mosaic board must have (8n − 11) crossing tiles.

Before we prove our main result, we need two other observations. First, no
reduced, alternating projection of L2n+1 can have an entire row or column of cross-
ing tiles along the inner boundary. If it did, it would not be reduced. Secondly, a
simple counting argument shows that any r × s submosaic S of a knot mosaic K

has an even number of connection points to K\S. For referencing purposes, we now
state these observations as lemmas.

Lemma 3.5. No reduced, alternating projection of L2n+1 can have an entire row
or column of crossing tiles on the inner boundary.
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Lemma 3.6. Any r × s submosaic S of a knot mosaic K has an even number of
connection points to K\S.

We now state and prove the main result.

Theorem 3.7. For all L2n+1 ∈ L, m(L2n+1) can only be realized when cr(L2n+1)
is not.

Proof. The case of L5 has already been established, so consider n ≥ 3. In this case
by Propositions 3.1 and 3.2, cr(L2n+1) = 4n2 − 4n − 2 and m(L2n+1) = 2n + 1.
So it is sufficient to show that L2n+1 cannot be realized on a (2n + 1) × (2n + 1)
mosaic board with 4n2− 4n− 2 crossings. We now construct a reduced, alternating
projection of L2n+1 and argue that the crossing number cannot be attained.

Notice that for a (2n + 1) × (2n + 1) mosaic board the inner boundary has
8n − 8 tiles. By our observation following Proposition 3.4, 8n − 11 of these tiles
must be crossing tiles (T9 or T10). So if we are going to construct L2n+1 with
exactly 4n2 − 4n − 2 crossing tiles, we must have three non-crossing tiles on the
inner boundary. We show that this cannot be the case.

To satisfy Lemma 3.5 and insure the projection is reduced, exactly one of these
non-crossing tiles must be placed in a corner of the inner boundary. Without loss
of generality, we place the non-crossing tile T2 in position (2, 2), or location one in
Fig. 12. Figure 12 labels the regions where the other two non-crossing tiles can be
placed. There are seven regions to place two non-crossing tiles, so we will consider
the 21 combinations of placing these two non-crossing tiles in the next six cases.

Case 1: {a, d}, {a, 3}, {a, b}, {a, 2}, {a, c}, {b, 2}, {c, 3}, {d, 2}, {d, b},
{d, c}, {d, 3}. If the other two non-crossing tiles are placed in any of these pairs
of locations, there will be a row or column of crossing tiles on the inner boundary,
contradicting Lemma 3.5.

Fig. 12. Possible locations for the non-crossing tiles.
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Case 2: {2, 3}, {2, 4}, {3, 4}. This arrangement can be suitably connected along
the outside perimeter in a unique way so as to create a reduced, alternating knot.
However, such a construction does not produce a 5-gon, contradicting Proposi-
tion 3.3.

Case 3: {b, c}. If we try to place the non-crossing tiles in region b or c, both of
the two available positions in these regions will be surrounded on three sides by
crossing tiles, contradicting Lemma 3.6.

Case 4: {3, b}, {2, c}. This case is similar to Case 3.

Case 5: {4, b}, {4, c}. If the two non-crossing tiles are placed in either of these
pairs of regions, there is only one way to suitably connect the projection so it is
reduced, alternating. However, this projection does not contain a 5-gon, contradict-
ing Proposition 3.3.

Case 6: {4, a}, {4, d}. This case is similar to Case 5.

Therefore there does not exist a valid way of placing three non-crossing tiles
along the inside perimeter in an attempt to create L2n+1. Therefore c(L2n+1) cannot
be realized on a (2n + 1) × (2n + 1) mosaic and our result is established.

4. Questions

We close with several questions that are natural extensions of this work.

(1) Are there other infinite class of knots for which we can compute the mosaic
number? (2, q)-torus knots? Pretzel knots?

(2) Can the mosaic number for all knots of 10 or fewer crossings be determined?
(3) Can the crossing number be used as a bound for determining mosaic number?
(4) Does there exist a knot whose mosaic number is n, but whose crossing number

is only realized on a mosaic board of size n + 2?
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