Intrinsic linking and knotting in straight-edge embeddings of complete graphs

Lew Ludwig

Denison University Granville, Ohio

International Workshop on Spatial Graphs 2010 Waseda University, Tokyo, JAPAN August, 2010

- 4 周 ト - 4 月 ト - 4 月 ト

Outline

1 Background

- **2** Project One: *K*₆ Links
- **3** Project Two: K_7 Links
- **4** Project Three: K_7 Knots
- **5** Project Four: K₉

6 Further Work

-

=

Project One - Started it all...

1983-4: Conway and Gordon, and Sachs: *K*₆ is *intrinsically linked*

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Project One - Started it all...

1983-4: Conway and Gordon, and Sachs: *K*₆ is *intrinsically linked*

A.

Interesting side note...

Characterization ("Kura-cterization") 1993: Robertson, Seymour, and Thomas:

A graph is *intrinsically linked* iff it contains one of the *Petersen graphs* as a *minor*

Background

Project One: K₆ Links Project Two: K₇ Links Project Three: K₇ Knots Project Four: K₉ Further Work

What next?

Examining linking and knotting in more complex or specialized structures:

< 67 ▶

Further Work

What next?

Examining linking and knotting in more complex or specialized structures:

• Every embedding contains *two* disjoint links

- 3 - 4 3

What next?

Examining linking and knotting in more complex or specialized structures:

- Every embedding contains two disjoint links
- Links with three or more components (complexity - mnl(G))

What next?

Examining linking and knotting in more complex or specialized structures:

- Every embedding contains two disjoint links
- Links with three or more components (complexity - mnl(G))
- Certain types of graphs (-partite)

- E - - E

What next?

Examining linking and knotting in more complex or specialized structures:

- Every embedding contains *two* disjoint links
- Links with three or more components (complexity - mnl(G))
- Certain types of graphs (-partite)
- *Straight-edge* embeddings of graphs

- E - - E

Background

Project One: K₆⁻ Links Project Two: K₇ Links Project Three: K₇ Knots Project Four: K₉ Further Work

Why straight-edge embeddings?

Ξ

《口》《聞》《臣》《臣》

Why straight-edge embeddings?

<ロト <同ト < 国ト < 国

Why straight-edge embeddings?

Polyethylene - linear/cyclic, 63 to 78 backbone atoms

< 17 ▶

Project 1: The motivating question

2004: Workshop with Colin Adams

< 17 ▶

Image: A Image: A

Project 1: The motivating question

2004: Workshop with Colin Adams

(D. Hunt, ONU) How many linked components occur in a straight-edge embedding of K_6 ?

Recall, this number must be odd...

Project 1 results

(2006, Hughes) (2007, Huh and Jeon)

< 17 ▶

Image: A Image: A

Project 1 results

```
(2006, Hughes)
(2007, Huh and Jeon)
```

Every straight-edge embedding of K_6 has 1 or 3 two-component links

Project 1 results

```
(2006, Hughes)
(2007, Huh and Jeon)
```

Every straight-edge embedding of K_6 has 1 or 3 two-component links

Project 1 results

```
(2006, Hughes)
(2007, Huh and Jeon)
```

```
Every straight-edge
embedding of K_6
has 1 or 3
two-component
links
```


Project 1 results

```
(2006, Hughes)
(2007, Huh and Jeon)
```

Every straight-edge embedding of K_6 has 1 or 3 two-component links

Project 1 results

(2004: Hughes and Ludwig (2006)) (2007: Huh and Jeon)

Every straight-edge embedding of K_6 has 1 or 3 two-component links

Now what?

< □ > < □ > < □ > < □ > < □ > < □ >

Ξ

Project 2: 2006: Arbisi and Ludwig (2010)

- 4 □ + 4 □

The good ...

 K_7^1

イロト イポト イヨト イヨト

The bad ...

(3-3) links: 7 or 9(3-4) links: 14 or 18

< □ > < □ > < □ >

The ugly ...

The ugly ... the INTERESTING!

<ロ> <同> <同> < 同> < 同>

イロト イボト イヨト イヨト

Counting links in K_7^5

<ロト <同ト < 国ト < 国

Counting links in K_7^5

< 17 ▶

- 4 ∃ >

Counting links in K_7^5

- 《圖》 《문》 《문》

Counting links in K_7^5

(3-3) links: 13, 15, 17

< 17 ▶

Counting links in K_7^5

(3-3) links: 13, 15, 17 (3-4) links: 26, 30, (x)

< 17 ▶

1

Counting links in K_7^5

(3-3) links: 13, 15, 17
(3-4) links: 26, 30, (x)
(3-4) links: 23, 27, 31

- 4 同 ト - 4 目 ト

What next?

Lew Ludwig Straight-edge links and knots

< □ > < □ > < □ > < □ > < □ > < □ >

Ξ

What next?

Examine larger structures...?

< 17 ▶

What next?

Examine larger structures...?

 K_8 has 14 distinct convex hull embeddings, each with a possible

- $\binom{8}{3}\binom{5}{3} = 560$ (3-3) links (140)
- $\binom{8}{4}\binom{4}{3} = 280$ (3-4) links (70)

•
$$\binom{8}{4} = 70$$
 (4-4) links

•
$$\binom{8}{5} = \frac{56}{5-3}$$
 links

What next?

Examine larger structures...?

 K_8 has 14 distinct convex hull embeddings, each with a possible

- $\binom{8}{3}\binom{5}{3} = 560$ (3-3) links (140)
- $\binom{8}{4}\binom{4}{3} = 280$ (3-4) links (70)

 K_9 has <u>219</u> distinct convex hulls!

What about knots?

In 1983, Conway and Gordon also showed that K_7 is *intrinsically knotted*.

For K_7 , how many possible knots are there?

What about knots?

In 1983, Conway and Gordon also showed that K_7 is *intrinsically knotted*.

For K_7 , how many possible knots are there?

- There are 6!/2=360 Hamiltonian cycles of length 7.
- There are $7 \cdot 5!/2 = 420$ Hamiltonian cycles of length 6.

< A ▶

Project 3 - 2007: Grotheer and Ludwig (2009, Foisy and Ludwig)

Internal Edges	Cycles	Knots	Cycles	Knots	Cycles	Knots	Cycles	Knots	Cycles	Knots
0	14	0	18	0	17	0	24	0	30	0
1	80	0	72	0	92	0	96	0	90	0
2	164	0	174	0	143	0	123	0	120	0
3	88	1	78	1,3	91	0,1	90	2,3	90	1, 2, 3, 4, 5
4	14	0	18	0,2	16	0, 1, 2	24	0,1	20	2,4
5	0	0	0	0	1	0, 1	3	0	10	1, 5
6	0	0	0	0	0	0	0	0	0	0
	K ₇ ¹		K ₇ ²		K_{7}^{3}		K ₇ ⁴		K ₇ ⁵	

- 4 同 1 - 4 回 1 - 4 回 1

Э

Internal Edges	Cycles	K _{nots}	Cycles	Knots	Cycles	Knots	Cycles	Knots	Cycles	Knots
0	14	0	18	0	17	0	24	0	30	0
1	80	0	72	0	92	0	96	0	90	0
2	164	0	174	0	143	0	123	0	120	0
3	88	1	78	1,3	91	0,1	90	2,3	90	1, 2, 3, 4, 5
4	14	0	18	0,2	16	0, 1, 2	24	0,1	20	2, 4
5	0	0	0	0	1	0, 1	3	0	10	1, 5
6	0	0	0	0	0	0	0	0	0	0
	K ₇ ¹		K ₇ ²		K ₇ ³		K ₇ ⁴		K ₇ ⁵	

Ξ

590

Project Four - 2008: Behrend and Ludwig

Recall we only looked at embeddings where all vertices were on the external hull: two for K_6 , five for K_7 , fourteen for K_8 , and so on...

Project Four - 2008: Behrend and Ludwig

Recall we only looked at embeddings where all vertices were on the external hull: two for K_6 , five for K_7 , fourteen for K_8 , and so on...

Question:

Given K_n with m external vertices and k = n - m internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?

The idea

Ξ

590

The idea

Ξ

The idea

Ξ

The idea

Ξ

Further work

 Given K_n with m external vertices and k = n - m internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?

4 3 5 4

Further work

- Given K_n with m external vertices and k = n m internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?
- Given K_n how many (k, m) links does it contain? $3 \le k \le n-3, \ 3 \le m \le n-k?$

A B F A B F

Further work

- Given K_n with m external vertices and k = n m internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?
- Given K_n how many (k, m) links does it contain? $3 \le k \le n-3, \ 3 \le m \le n-k$?
- Upper/lower bounds?

A B F A B F

Further work

- Given K_n with m external vertices and k = n m internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?
- Given K_n how many (k, m) links does it contain? $3 \le k \le n-3, \ 3 \le m \le n-k$?
- Upper/lower bounds?
- Is every *straight-edge* embedding of K₉ triple-linked?

- 4 同 1 - 4 回 1 - 4 回 1

Is every *straight-edge* embedding of K_9 triple-linked?

- 4 同 1 - 4 回 1 - 4 回 1

Is every *straight-edge* embedding of K_9 triple-linked?

(2001: Flapan, Naimi, and Pommershein) K_{10} is intrinsically triple-linked.

不足下 不足下

K_9 is NOT intrinsically triple-linked.

<ロト <同ト < 三ト < 三ト

Э

K_9 is NOT intrinsically triple-linked.

<ロト <同ト < 三ト < 三ト

K_9 is NOT intrinsically triple-linked.

Is every *straight-edge* embedding of K₉ triple-linked?

.∃ >

Thanks...

- Colleen Hughes ('06)
- Pam Arbisi ('07)
- Rachel Grotheer ('08)
- Sam Berhend ('09)
- Clay Crocker and Matt Gibson ('13)
- Anderson Research Endowment

< ∃ >

P

Thanks...

- Colleen Hughes ('06)
- Pam Arbisi ('07)
- Rachel Grotheer ('08)
- Sam Berhend ('09)
- Clay Crocker and Matt Gibson ('13)
- Anderson Research Endowment

< ∃ >

P