Intrinsic linking and knotting in straight-edge embeddings of complete graphs

Lew Ludwig
Denison University
Granville, Ohio

International Workshop on Spatial Graphs 2010
Waseda University, Tokyo, JAPAN
August, 2010

Outline

(1) Background
(2) Project One: K_{6} Links
(3) Project Two: K_{7} Links
(4) Project Three: K_{7} Knots
(5) Project Four: K_{9}
(6) Further Work

Project One - Started it all. . .

1983-4: Conway and Gordon, and Sachs:

K_{6} is intrinsically linked

Project One - Started it all. . .

1983-4: Conway and Gordon, and Sachs:
K_{6} is intrinsically linked

Interesting side note...

Characterization ("Kura-cterization")
1993: Robertson, Seymour, and Thomas:
A graph is intrinsically linked iff it contains one of the Petersen graphs as a minor

What next?

Examining linking and knotting in more complex or specialized structures:

What next?

Examining linking and knotting in more complex or specialized structures:
(1) Every embedding contains two disjoint links

What next?

Examining linking and knotting in more complex or specialized structures:
(1) Every embedding contains two disjoint links
(2) Links with three or more components (complexity - mnl(G))

What next?

Examining linking and knotting in more complex or specialized structures:
(1) Every embedding contains two disjoint links
(2) Links with three or more components (complexity - mnl(G))
(3) Certain types of graphs (-partite)

What next?

Examining linking and knotting in more complex or specialized structures:
(1) Every embedding contains two disjoint links
(2) Links with three or more components (complexity - mnl(G))
(3) Certain types of graphs (-partite)
(4) Straight-edge embeddings of graphs

Why straight-edge embeddings?

Why straight-edge embeddings?

Why straight-edge embeddings?

Polyethylene - linear/cyclic, 63 to 78 backbone atoms

Project 1: The motivating question

2004: Workshop with Colin Adams

Project 1: The motivating question

2004: Workshop with Colin Adams
(D. Hunt, ONU)

How many linked components occur in a straight-edge embedding of K_{6} ?

Recall, this number must be odd...

Project 1 results

(2006, Hughes)
(2007, Huh and Jeon)

Project 1 results

(2006, Hughes)
(2007, Huh and Jeon)
$K_{6}^{2}:[4,4,4,4,4,4]$
Every straight-edge embedding of K_{6}
has 1 or 3
two-component
links

Project 1 results

(2006, Hughes)
(2007, Huh and Jeon)

$$
K_{6}^{2}:[4,4,4,4,4,4]
$$

Every straight-edge embedding of K_{6}
has 1 or 3
two-component
links

Project 1 results

(2006, Hughes)
(2007, Huh and Jeon)

$$
K_{6}^{2}:[4,4,4,4,4,4]
$$

Every straight-edge embedding of K_{6}
has 1 or 3
two-component
links

Project 1 results

(2006, Hughes)
(2007, Huh and Jeon)
$K_{6}^{2}:[4,4,4,4,4,4]$
Every straight-edge embedding of K_{6}
has 1 or 3
two-component
links

Project 1 results

(2004: Hughes and Ludwig (2006))
(2007: Huh and Jeon)

$$
K_{6}^{1}:[3,3,4,4,5,5]
$$

Every straight-edge embedding of K_{6}
has 1 or 3
two-component
links

Now what?

Project 2: 2006: Arbisi and Ludwig (2010)

K

The good...

K_{7}^{1}

(3-3) links: 7
(3-4) links: 14
$K_{7}^{2} \quad\left(K_{7}^{3}\right)$

(3-3) links: 7 or 9
(3-4) links: 14 or 18

The ugly ...

The ugly . . . the INTERESTING!

The ugly ... the INTERESTING!
K_{7}^{4}

K_{7}^{5}

Counting links in K_{7}^{5}

Counting links in K_{7}^{5}

Counting links in K_{7}^{5}

Counting links in K_{7}^{5}

(3-3) links: $13,15,17$

Counting links in K_{7}^{5}

(3-3) links: $13,15,17$
(3-4) links: 26, 30, (x)

Counting links in K_{7}^{5}

(3-3) links: $13,15,17$
(3-4) links: 26, 30, (x)
(3-4) links: $23,27,31$

What next?

What next?

Examine larger structures...?

What next?
Examine larger structures...?
K_{8} has 14 distinct convex hull embeddings, each with a possible

- $\binom{8}{3}\binom{5}{3}=560$ (3-3) links (140)
- $\binom{8}{4}\binom{4}{3}=280$ (3-4) links (70)
- $\binom{8}{4}=70(4-4)$ links
- $\binom{8}{5}=56(5-3)$ links

What next?
Examine larger structures...?
K_{8} has 14 distinct convex hull embeddings, each with a possible

- $\binom{8}{3}\binom{5}{3}=560$ (3-3) links (140)
- $\binom{8}{4}\binom{4}{3}=280$ (3-4) links (70)
- $\binom{8}{4}=70(4-4)$ links
- $\binom{8}{5}=56(5-3)$ links
K_{9} has $\underline{219}$ distinct convex hulls!

What about knots?

In 1983, Conway and Gordon also showed that K_{7} is intrinsically knotted.

For K_{7}, how many possible knots are there?

What about knots?

In 1983, Conway and Gordon also showed that K_{7} is intrinsically knotted.

For K_{7}, how many possible knots are there?

- There are $6!/ 2=360$ Hamiltonian cycles of length 7 .
- There are $7 \cdot 5!/ 2=420$ Hamiltonian cycles of length 6 .

Project 3－2007：Grotheer and Ludwig（2009，Foisy and Ludwig）

		迄		殓		佥	$\stackrel{y y y y}{\breve{心}}$	敛	$\stackrel{y y y y}{\breve{心}}$	気
0	14	0	18	0	17	0	24	0	30	0
1	80	0	72	0	92	0	96	0	90	0
2	164	0	174	0	143	0	123	0	120	0
3	88	1	78	1，3	91	0，1	90	2，3	90	1，2，3，4，5
4	14	0	18	0，2	16	0，1，2	24	0，1	20	2，4
5	0	0	0	0	1	0， 1	3	0	10	1， 5
6	0	0	0	0	0	0	0	0	0	0
	K_{7}^{1}		K_{7}^{2}		K_{7}^{3}		K_{7}^{4}		K_{7}^{5}	

	$\stackrel{\mathscr{L}}{\stackrel{心}{心}}$	佥	$\stackrel{凶 y}{\stackrel{0}{心}}$	佥	$\stackrel{y}{\stackrel{y}{心}}$	佥	$\stackrel{\mathscr{L}}{\stackrel{心}{心}}$	$\stackrel{\substack{0 \\ 5}}{0}$	$\stackrel{\mathscr{4}}{\stackrel{心}{心}}$	E气
0	14	0	18	0	17	0	24	0	30	0
1	80	0	72	0	92	0	96	0	90	0
2	164	0	174	0	143	0	123	0	120	0
3	88	1	78	1，3	91	0，1	90	2，3	90	1，2，3，4， 5
4	14	0	18	0，2	16	0，1，2	24	0，1	20	2， 4
5	0	0	0	0	1	0， 1	3	0	10	1， 5
6	0	0	0	0	0	0	0	0	0	0
	K_{7}^{1}		K_{7}^{2}		K_{7}^{3}				K_{7}^{5}	

Project Four - 2008: Behrend and Ludwig

Recall we only looked at embeddings where all vertices were on the external hull: two for K_{6}, five for K_{7}, fourteen for K_{8}, and so on...

Project Four - 2008: Behrend and Ludwig

Recall we only looked at embeddings where all vertices were on the external hull: two for K_{6}, five for K_{7}, fourteen for K_{8}, and so on...

Question:

Given K_{n} with m external vertices and $k=n-m$ internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?

The idea

The idea

The idea

The idea

Further work

- Given K_{n} with m external vertices and $k=n-m$ internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?

Further work

- Given K_{n} with m external vertices and $k=n-m$ internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?
- Given K_{n} how many (k, m) links does it contain? $3 \leq k \leq n-3,3 \leq m \leq n-k$?

Further work

- Given K_{n} with m external vertices and $k=n-m$ internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?
- Given K_{n} how many (k, m) links does it contain? $3 \leq k \leq n-3,3 \leq m \leq n-k$?
- Upper/lower bounds?

Further work

- Given K_{n} with m external vertices and $k=n-m$ internal vertices, is that embedding always ambient isotopic to an embedding with n external vertices?
- Given K_{n} how many (k, m) links does it contain? $3 \leq k \leq n-3,3 \leq m \leq n-k$?
- Upper/lower bounds?
- Is every straight-edge embedding of K_{9} triple-linked?

Is every straight-edge embedding of K_{9} triple-linked?

Is every straight-edge embedding of K_{9} triple-linked?

(2001: Flapan, Naimi, and Pommershein) K_{10} is intrinsically triple-linked.

K_{9} is NOT intrinsically triple-linked.

K_{9} is NOT intrinsically triple-linked.

K_{9} is NOT intrinsically triple-linked.

Is every straight-edge embedding of K_{9} triple-linked?

Thanks. . .

- Colleen Hughes ('06)
- Pam Arbisi ('07)
- Rachel Grotheer ('08)
- Sam Berhend ('09)
- Clay Crocker and Matt Gibson ('13)
- Anderson Research Endowment

Thanks. . .

- Colleen Hughes ('06)
- Pam Arbisi ('07)
- Rachel Grotheer ('08)
- Sam Berhend ('09)
- Clay Crocker and Matt Gibson ('13)
- Anderson Research Endowment

