
2016 Denison Spring Programming Contest
Granville, Ohio

27 February, 2016

Rules:

1. There are six problems to be completed in four hours.

2. All questions require you to read the test data from standard input and write results to standard
output. You cannot use files for input or output. Additional input and output specifications can
be found in the General Information Sheet.

3. No whitespace should appear in the output except between printed fields.

4. All whitespace, either in input or output, will consist of exactly one blank character.

5. The allowed programming languages are C, C++, Python 2, Python 3, and Java.

6. All programs will be re-compiled prior to testing with the judges’ data.

7. Non-standard libraries cannot be used in your solutions. The Standard Template Library (STL)
and C++ string libraries are allowed. The standard Java API is available, except for those
packages that are deemed dangerous by contestant officials (e.g., that might generate a security
violation).

8. The input to all problems will consist of multiple test cases.

9. Programming style is not considered in this contest. You are free to code in whatever style you
prefer. Documentation is not required.

10. All communication with the judges will be handled by the PC2 environment.

11. Judges’ decisions are to be considered final. No cheating will be tolerated.



2016 Denison Spring Programming Contest 1

Problem A: Dan’s Presents

Dan likes to give presents within nested boxes. Say that his present is in a box of size x× y× z (where
z is the height of the box) and his biggest box is of size a × b × c (where c is the height of the box).
When he nests a box inside another, the tops are both oriented up, but the inner box may be oriented
in either edge-parallel way (see figure below) so that the sides of the inner box are strictly smaller than
the sides of the outer one. So, a 2× 3× 4 box will fit in a 4× 3× 5 box, but not in a 3× 3× 5 box or a
3× 4× 4 box.

top view

4 x 4 4 x 4

3 x 1 1 x 3

Figure 1: A box may fit inside another in either orientation as long as all dimensions are strictly smaller

Dan wants to nest precisely d boxes between the present and the biggest box. How many ways can he
do this, assuming that all boxes have positive integer sides? Note that the top must be oriented up, but
we ignore the length/width orientation of boxes nested within each other; that is, we count a 1× 2× 3
box fitting inside a 3× 4× 4 in only one way, even though it can be placed in either orientation.

For example, if Dan wants to nest one box in between a 2× 3× 4 present and a 5× 6× 6 box, he can
do it in four ways: with a 3× 4× 5, a 3× 5× 5, a 4× 4× 5, or a 4× 5× 5 box.

If Dan wants to nest two boxes between a 2× 3× 4 present and a 5× 7× 7 box, he can do it in three
ways:

1. using a 3× 4× 5 and a 4× 5× 6 box,

2. using a 3× 4× 5 and a 4× 6× 6 box, or

3. using a 3× 5× 5 and a 4× 6× 6 box.

Input

Each input will be on a single line with seven integers separated by spaces: x y z a b c d, where the
present has dimensions x× y× z, the biggest box has dimension a× b× c, and d is the number of boxes
that will be in between (1 ≤ x, y, z, a, b, c ≤ 20, 1 ≤ d ≤ 10). The input cases will be terminated by a
single line with seven 0s.



2016 Denison Spring Programming Contest 2

Output

For each case, you should output the case number followed by the number of ways that the boxes can
be nested in the manner described above. All cases will be such that the answer does not exceed two
billion.

Sample Input

2 3 4 3 3 5 1

2 3 4 4 5 6 1

2 3 4 5 6 6 1

2 3 4 5 7 7 2

1 1 1 20 20 20 3

0 0 0 0 0 0 0

Sample Output

Case 1: 0

Case 2: 1

Case 3: 4

Case 4: 3

Case 5: 161303616



2016 Denison Spring Programming Contest 3

Problem B: D-closed Sets

A finite set of positive integers S is division-closed (D-closed) if for all a, b ∈ S, a/b (integer division)
and a mod b (division remainder) are in S ∪ {0, 1}. For example, it is easy to verify that {2, 3, 4, 5} is
D-closed, as is {2, 3, 4, 5, 7, 9, 14, 29}. However, {3, 4, 5} is not D-closed since 5 mod 3 = 2 is not in the
set. Given a number of integers, you will find the size of the smallest D-closed set that contains them.

Input

Each input will be on a single line, with n (the number of integers, n > 1) followed by n integers
(1 < a1 < a2 < a3 < . . . < an ≤ 100) on a single line separated by spaces. The input will be terminated
by a single line containing a 0.

Output

For each case, you should output the case number followed by the size of the smallest D-closed set that
contains the input numbers.

Sample Input

2 2 3

2 4 5

3 3 4 5

0

Sample Output

Case 1: 2

Case 2: 2

Case 3: 4



2016 Denison Spring Programming Contest 4

Problem C: Jumper

For an arbitrary finite sequence of integers, we can play the following game:

• We start at the first integer and move that many positions to the right in the sequence. If the
integer is negative, then we move that many positions to the left.

• Repeat the above process at whatever integer we land on and continue the same process.

• The process will end when you fall off the sequence on the left or right, or it could continue forever.

Your task is to determine which of the three possibilities happens for each input case. For example, for
the sequence

2 -2 -1

we will go from 2 to -1 to -2 and then fall off the left of the sequence. For

1 2 3 -1

we go from 1 to 2 to -1 to 3 and then fall off the right of the sequence. Finally, for

3 2 -1 -1

we go from 3 to the second -1 to the first -1 to 2 and then we loop back to the second -1, thus running
forever.

Input

Each input will be on a single line. The first integer n (1 ≤ n ≤ 1000000) will be the length of the
sequence. The following n integers (a1 a2 . . . an, where each −n < ai < n), will be the sequence itself.
The input will be terminated by a line with a single 0.

Output

For each case, you should output the case number followed by whether you fall off the “Left” or “Right”
or “Neither” (i.e., you loop forever).

Sample Input

3 2 -2 -1

4 1 2 3 -1

3 2 -1 -1

0

Sample Output

Case 1: Left

Case 2: Right

Case 3: Neither



2016 Denison Spring Programming Contest 5

Problem D: Lethal

The goal of the game HearthstoneTM is to use your minions and spell cards to reduce your opponent hero
below one health. Even professional Hearthstone players sometimes forget to check for “lethal”—the
ability to finish off your opponent—so you will write a program to check this for them.

On a turn, you inflict damage on your opponent hero with your minions and any spell cards you play.
You will be given a list of all your minions that are able to damage the opponent hero. The minions
will not cost anything to play. You will also have a list of spell cards that are available for you to use.
Each spell has a crystal cost as well as a damage value. Your task is to determine whether you have
enough damage between your minions and spell cards to win the game.

For example, if your opponent hero has 10 health and you have 3 minions (with 1, 1, and 2 damage)
as well as two spells that each cost 2 crystals and do 4 damage and you have a 5 crystal limit, then
you have lethal since your minion damage (1 + 1 + 2 = 4) plus your spell damage playable (4 + 4 = 8)
exceeds your opponent’s health. If you had only one 2 crystal, 4 damage spell in your hand, then you
would not have lethal. Also, if you had two spells that did 5 damage and cost 5 crystals each, you
wouldn’t have lethal since you could only play one of the spells.

Input

Each input will consist of three lines. The first line will have the number of minions you have in play,
the number of spells in your hand, the number of crystals you have to spend, and the opponent hero’s
health (m s c h, where 1 ≤ m ≤ 7, 0 ≤ s ≤ 10, 1 ≤ c ≤ 10, 1 ≤ h ≤ 30). The second line will have m
positive integers indicating the attack damage of each of your minions (d1 d2 d3 . . . dm, 1 ≤ di ≤ 10 for
all i). The third line will have pairs of the damage and cost of your spells D1 C1 D2 C2 D3 C3 . . . Ds Cs,
where 1 ≤ Di ≤ 10 for all i, and 0 ≤ Cj ≤ 10 for all j. A line with 4 0s will indicate end of all inputs.

Output

For each input, you should output the case number followed by the string “Lethal” or “No lethal”
depending on whether it is possible to defeat your opponent on this turn.

Sample Input

3 2 5 10

1 1 2

4 2 4 2

3 1 5 10

1 1 2

4 2

3 2 5 10

1 1 2

5 5 5 5

0 0 0 0

Sample Output

Case 1: Lethal

Case 2: No lethal

Case 3: No lethal



2016 Denison Spring Programming Contest 6

Problem E: Onesies Twosies

Erin doesn’t like doing laundry. She wants to dress her baby in as many matched onesie and pant
combinations as possible (wearing each article of clothing at most once) before having to do a wash.
The catch is that not every onesie and pant pair match and she doesn’t want to take her baby out of
the house looking like her dad dressed her.

For this problem, you have to determine the size of the largest collection of pairs of onesies and pants
such that each pair is matched and none is used more than once.

For example, if we have that onesie 1 matches pants 1 and 2, onesie 2 matches pants 2 and 3, and onesie
3 matches pants 2 and 3 (see figure below), then Erin can dress her baby in three non-overlapping outfits
without doing laundry by matching 1-1, 2-2, 3-3 (or 1-1, 2-3, 3-2).

1

2

3

1

2

3

Input

Each input will consist of multiple lines. The first line will have the number of onesies, the number of
pants, and the number of matched pairs (k m n, where 1 ≤ k ≤ 100, 1 ≤ m ≤ 100, 1 ≤ n ≤ km).
The following n lines will consist of possible matching onesie/pant pair separated by a single space.
The onesies will be numbered 1, . . . , k and the pants will be numbered 1, . . . ,m. A line with 0 0 0 will
terminate all the inputs.

Output

For each input, you should output the case number followed by the number of onesie/pant pairs that
can be worn before Erin has to do laundry.

Sample Input

3 3 6

1 1

1 2



2016 Denison Spring Programming Contest 7

2 2

2 3

3 2

3 3

3 3 5

1 2

2 2

2 3

3 2

3 3

3 3 2

1 2

3 2

0 0 0

Sample Output

Case 1: 3

Case 2: 2

Case 3: 1



2016 Denison Spring Programming Contest 8

Problem F: Pandemic

In the board game Pandemic LegacyTM, you have a number of connected cities in which you are trying
to stop the spread of deadly diseases. Any time a city that already has three disease cubes gets infected,
it has an outbreak and brings you closer to losing the game. When an outbreak occurs, all the cities
connected to the outbreak city get infected, adding another disease cube if it has fewer than three or
causing an outbreak if it has three. This can cause outbreaks to cascade across the board in a chain
reaction. To protect against outbreaks, players can choose to “quarantine” one city each turn; this
prevents that city from having an outbreak. In this problem, you will determine which city should be
quarantined.

At the beginning of a turn, each city has between zero and three disease cubes in it. During the turn,
the player can put a quarantine on any city on the board. At the end of the turn, a disease cube will
be added to a random city, so it is important to place the quarantine strategically.

When an outbreak occurs in a city, the infection is spread to all the cities it is connected with that have
not had an outbreak yet this turn. Note that a city can only have one outbreak per turn, preventing
indefinite chain reactions. However, it is possible for a city to get multiple disease cubes in a turn.
Consider the following example:

Suppose an outbreak hits London. This causes outbreaks in Essen and Paris. The outbreaks in Essen
and Paris both cause cubes to be added to Milan (which will now have a total of 3 cubes). Note,
however, that the outbreaks in Essen and Paris don’t cause outbreaks in London or one another again
(since they have all had outbreaks this turn). Hence, there will have been a total of three outbreaks
from London getting hit.

If Essen gets hit first, then there will be outbreaks in London and Paris, also for a total of three
outbreaks. Similarly, Paris will cause three outbreaks. Milan getting hit doesn’t cause any outbreaks
since it only has one cube.

Your goal is to determine which city would cause the largest number of outbreaks if it gets hit at the
end of the turn. This is the city you’d probably want to quarantine.



2016 Denison Spring Programming Contest 9

Input

Each input will consist of multiple lines. The first line will have two integers n m (1 ≤ n ≤ 100,
1 ≤ m ≤ n(n − 1)/2) indicating the number of cities and the number of connections between cities.
The cities will be numbered from 1 to n. The following n lines will have integers between 0 and 3
inclusive indicating how many disease cubes there are at each city. The next m lines will consist of pairs
of adjacent cities given by their numbers separated by a space. Note that the adjacency connections
between cities will go both ways, even though it will only be listed in one way (i.e., as an undirected
edge). A line with 0 0 will terminate the input cases.

Output

For each input, you should output the case number followed by the number of the city that should be
quarantined (breaking ties by selected the lowest numbered city) as well as the number of outbreaks
that would occur if it were the one to be initially infected.

Sample Input

4 5

3

3

3

1

1 2

1 3

2 3

2 4

3 4

3 3

2

2

2

1 2

1 3

2 3

3 3

2

2

3

1 2

1 3

2 3

0 0

Sample Output

Case 1: 1 3

Case 2: 1 0

Case 3: 3 1


