ReSoLVe Workshop

Need to explain Resolve. Usually we explain new ideas in terms of familiar ones.
South Pacific “There is nothing like a dame.”
There is nothing like Resolve.
There’s been nothing to evolve that is anything like Resolve.
Active for more than 30 years
Other approaches: example Larch web last modified 1996
Resolve website probably modified yesterday.

Some History:
1983: Bruce and STILE, Bill and data structures course concerned that textbooks said good things in the first 1 or 2 chapters and then reverted to the same old ignoring of the stated principles about formal reasoning.
30 years ago, our founding fathers brought forth on the campus of the Ohio State University a new approach to software.
Bill wrote his own course notes and used a new bold approach.
	
	Beginning of RSRG as 788
2 requirements for reusing software:
 1. Clear specification of what the software does.
2. The software is correct.

Need for name: ReFormS Reusable Formally Specified Software
	
	Reforms doesn’t say anything about verification.
Other suggested names: VerPL		Verifying Programming Language
			VerSoft		Verifiable Software
			PLM			Programming Language with Mathematics

Late 1980’s: serious discussion in Robinson Lab northwest corner room. (Robinson—graduate offices on the 4th floor. 2 students stuck in elevator for a holiday weekend.
Bruce led the discussion, Bill on sabbatical. No google+, no skype, email barely beginning, not effective.
The group decided “We resolve to come up with a name for our project.”
Someone said “How about RESOLVE?”
Mutterings about carpet cleaners,
Re: reusable
So: software
L: language
with
Verification
Perfect!

Verifying compiler at Clemson
Resolve Parts:

Formal (Mathematical) Specifications
Separation of Concerns: Math Units, Concepts, Realizations, Facilities

Library: Syntactically written Math theories including proofs
		Precis
Concepts and Realizations already proven correct
Proof Checker
Compiler
Collection of Proof Rules that extend mathematical logic with rules that automatically convert programming constructs to mathematical assertions

Example:

Assume ;

	;

	if then abs := z
	 else abs := -z
	endif;

Confirm abs = ;
code: Assume B; code1; Confirm Q;

code; Assume B; code2; Confirm Q;

code; If B then code1 else code2; endif; Confirm Q;

(1) Assume ;

 ;

 Assume ;
 abs := z;

 Confirm abs = ;

(2) Assume ;

 ;

 Assume ;
 abs := z;

 Confirm abs = ;

code; Confirm Q;
--
code; x := exp; Confirm Q;

(1) Assume y 0;
 z := w/y;

 Assume z 0;

 Confirm z = ;

(2) Assume y 0;
 z := w/y;

 Assume ;

 Confirm –z = ;

We now need a rule for Assume statements:

code; Confirm P Q;

code; Assume P; Confirm Q;

Applying the rule for Assume, we obtain:

(1) Assume ;
 z := w/y;

 Confirm z 0 z = ;

(2) Assume y 0;
 z := w/y;

 Confirm z < 0 -z = ;
Now we apply the assignment rule to each branch:

(1) Assume y 0;

 Confirm w/y 0 w/y = ;

 (2) Assume ;

 Confirm ;

Another application of the Assume rule yields:
(1)

Confirm y 0 ;
(2)

Confirm y 0 ;
To complete the proof we need a rule for Confirm:
 Q

Confirm Q;
Applying the Confirm rule produces the following mathematical propositions:
(1)

y 0
(2)

y 0
[bookmark: _GoBack]

Verifier
	Verification Condition (VC) generator
	Prover

oleObject3.bin

image4.wmf
w/y

oleObject4.bin

image5.wmf
Ø

oleObject5.bin

image6.wmf
0

y

¹

oleObject6.bin

image7.wmf
w/y

:

z

=

oleObject7.bin

image8.wmf
0

z

³

oleObject8.bin

image9.wmf
w/y

oleObject9.bin

image10.wmf
0

y

¹

oleObject10.bin

image11.wmf
w/y

:

z

=

oleObject11.bin

image12.wmf
(

)

0

z

³

Ø

oleObject12.bin

image13.wmf
w/y

oleObject13.bin

image14.wmf
[

]

exp

®

x

oleObject14.bin

image15.wmf
¹

oleObject15.bin

image16.wmf
³

oleObject16.bin

image17.wmf
w/y

oleObject17.bin

image18.wmf
¹

oleObject18.bin

image19.wmf
(

)

0

z

³

Ø

oleObject19.bin

image20.wmf
w/y

oleObject20.bin

image21.wmf
Þ

oleObject21.bin

image22.wmf
0

y

¹

oleObject22.bin

image23.wmf
³

image1.wmf
0

y

¹

oleObject23.bin

image24.wmf
Þ

oleObject24.bin

image25.wmf
w/y

oleObject25.bin

image26.wmf
¹

oleObject26.bin

image27.wmf
Þ

oleObject27.bin

image28.wmf
w/y

oleObject1.bin

oleObject28.bin

image29.wmf
¹

oleObject29.bin

image30.wmf
³

oleObject30.bin

image31.wmf
Þ

oleObject31.bin

image32.wmf
w/y

oleObject32.bin

image33.wmf
0

y

¹

image2.wmf
w/y

:

z

=

oleObject33.bin

image34.wmf
w/y

w/y

-

0

w/y

=

Þ

<

oleObject34.bin

image35.wmf
¹

oleObject35.bin

image36.wmf
Þ

oleObject36.bin

image37.wmf
(

)

w/y

 w/y

0

w/y

=

Þ

³

oleObject37.bin

image38.wmf
¹

oleObject2.bin

oleObject38.bin

image39.wmf
Þ

oleObject39.bin

image40.wmf
(

)

w/y

-

 w/y

0

w/y

=

Þ

<

oleObject40.bin

image41.wmf
¹

oleObject41.bin

image42.wmf
Þ

oleObject42.bin

image43.wmf
(

)

w/y

 w/y

0

w/y

=

Þ

³

image3.wmf
0

z

³

oleObject43.bin

image44.wmf
¹

oleObject44.bin

image45.wmf
Þ

oleObject45.bin

image46.wmf
(

)

w/y

w/y

-

0

w/y

=

Þ

<

oleObject46.bin

