<u>Search</u> versus Search for <u>Collapsing</u> Electoral <u>Control</u> Types

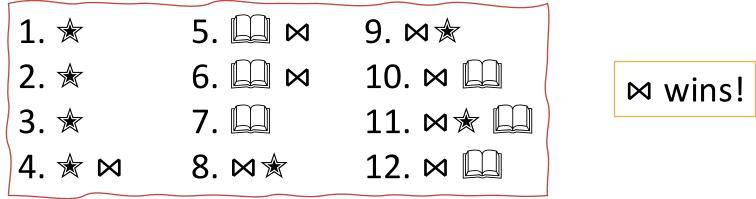
B. CARLETON¹, **MICHAEL C. CHAVRIMOOTOO²**, L. HEMASPAANDRA³, D. NARVÁEZ⁴, C. TALIANCICH⁵, H. WELLES³

- EUMAS 2024

¹:CORNELL UNIVERSITY, ²:DENISON UNIVERSITY, ³:UNIVERSITY OF ROCHESTER, ⁴:VIRGINIA TECH, ⁵:PROPERTY MATRIX

Example of an Election

- Context: The chair of the CS department is *hiring one of three faculty candidates*. They've gathered the preferences of the CS faculty and will conduct an *approval election*^{*} to select a candidate.
- Candidates: ★ (star researcher), □□ (exceptional teacher), ⋈ (well-rounded applicant).
- Each voter (of 12) states the candidates that they approve of.



*: Each voter approves a subset of the candidates. A candidate receives one point for each vote that approves them. A winner is a candidate with maximal score.

Election System (aka Voting Rule)

An **election system** is a function that maps a set of candidates *C* and a set of votes *V* to a subset (aka winner set) of *C*.

- (*C*, *V*) is called an **election**.
- Informally, it describes how to select from C given some preferences (votes).
- E.g., approval voting, plurality, majority, ranked choice, etc.

There are **different types of votes**. Common ones are approval ballots (i.e., sets of "approved" candidates) and linear orders.

- E.g., An approval ballot over {Harris, Trump, Kennedy} is {Harris, Kennedy}.
- E.g., A linear order over {Harris, Trump, Kennedy}, is Harris > Kennedy > Trump.

Control by Partitioning of Voters

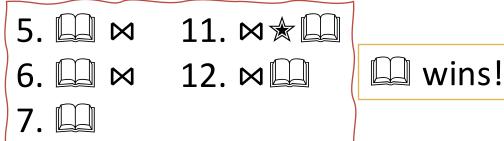
The Chair sees that \bowtie wins, but wants to hire *, so they partition the voters.

First Round: Voters are separated, and each subcommittee runs a subelection with all three candidates.

• Subcommittee 1:

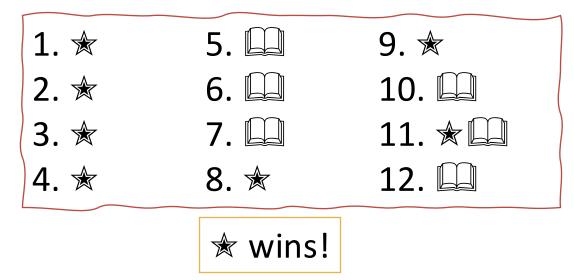
		-
1. 🛣	8. ⋈★	
2. 🖈	9. ⋈★	🖈 wins!
3. 🖈	10. 🖂 🛄	× wins:
4. ★ ⊠		

• Subcommittee 2:



Second/Final Round: First-round winners* compete in final round.

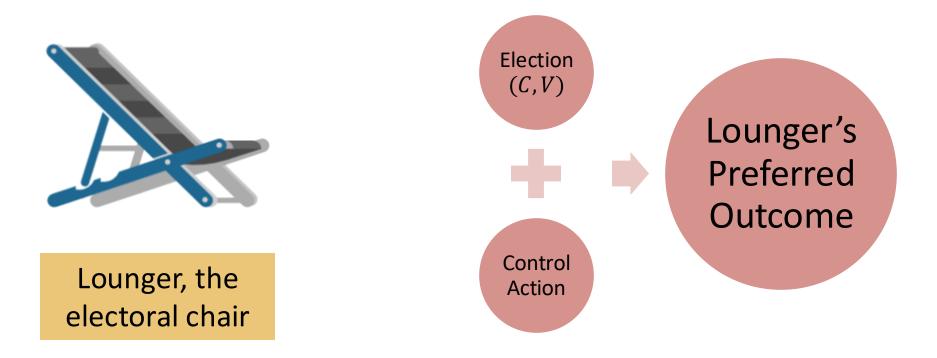
- Candidates (2): * and
- Voters (12) with preferences over the remaining candidates:



Electoral Control (Informally)

When an election chair can **alter the structure** of an election to yield their preferred outcome (make a candidate win/not win).

• Common actions to alter structure are add/delete/partition candidates/voters.



The Standard* Control Types in COMSOC

Two Main Categories: Nonpartition-Based and Partition-Based *These are the longstanding models since Bartholdi et al. (1992) and Hemaspaandra et al. (2007).

The 24 Partition-Based Types

Outcome	 Constructive (CC): Make a specified candidate win. Destructive (DC): Prevent a specified candidate from winning. 	
Action	 Partition of Voters (PV): Partition the votes to form two subelections, whose winner(s) compete in a final round. Partition of Candidates (PC): Partition the candidates to form one subelection whose winner(s) compete against the remaining candidates. Run-Off Partition of Candidates (RPC): Like PV, but partition candidates. 	
Tie-Handling	 Ties Eliminate (TE): Tied winners of a subelection are eliminated. Ties Promote (TP): Promote every subelection winner. 	
Winner Model	 Unique Winner (UW): At most one candidate can be a winner. Nonunique Winner (NUW): Multiple candidates can be winners. 	

The 20 Nonpartition-Based Types

Outcome	 Constructive (CC): Make a specified candidate win. Destructive (DC): Prevent a specified candidate from winning.
Action	 Unlimited Adding Candidates (UAC) Adding Candidates (AC) Adding Votes (AV) Deleting Candidates (DC) Deleting Votes (DV)
Winner Model	 Unique Winner (UW): At most one candidate can be a winner. Nonunique Winner (NUW): Multiple candidates can be winners.

The Typical Model

Decision Model

• Questions with Yes/No answers; Standard in Theoretical Computer Science.

Approval-CC-PV-TE-UW (Informally)

- Inputs: Candidate set C, vote set V, focus candidate p.
- Question: Is there a partition of V such that p is the *unique winner* of the two-stage election where the surviving winners of the subelections compete in a final round.

Using our toy example

- $C = \{ \bigstar, \square, \bowtie \}, \lor = \{ ... \}$
- $(C, V, \bigstar) \in \text{Approval-CC-PV-TE-UW.}$

Collapsing Control Types

Hemaspaandra et al. (2020) and Carleton et al. (2024)

For each election system \mathcal{E} ,

- Destructive control using the TE model yields the same outcomes for each candidate partitioning and both winner models.
- Destructive control using the TP + NUW models is the same for both types of $\binom{4}{2} = 6$ pairs candidate partitioning.

When looking at specific election systems:

- There is <u>one more</u> collapsing pair under veto.
- There are <u>14 more</u> collapsing pairs under approval.
- We also know of certain collapses that follow from <u>axiomatic properties</u>.

Same decision complexity (e.g., in P or NP-complete, etc.)

1 pair

Do Collapsing Types Share Search Complexity?

Why Consider Search Complexity?

In practice: One wants algorithms to compute "solutions", not just determine their existence.

• We can often leverage "self-reducibility", but can we always?

Membership in P <u>does not guarantee</u> a polynomial-time search algorithm!

- True under reasonable assumptions.
- I.e., if two problems have the same *decision* complexity, they may have witness schemes with <u>different *search* complexity</u>.

Insight: A Surprising "Separation" of Search and Decision

<u>Borodin and Demers (1976)</u>: There is a set $A \subseteq$ SAT where $A \in$ P, but no polynomial-time algorithm can always find a satisfying assignment.

• Assuming $P \neq NP \cap coNP$, often considered reasonable.

<u>Hemaspaandra et al. (2020)</u>: There are decision control problems that are in P and yet no polynomial-time algorithm can compute a successful attack.

• They embed the technique of Borodin and Demers and give more general results, about manipulative actions.

Search versus Search

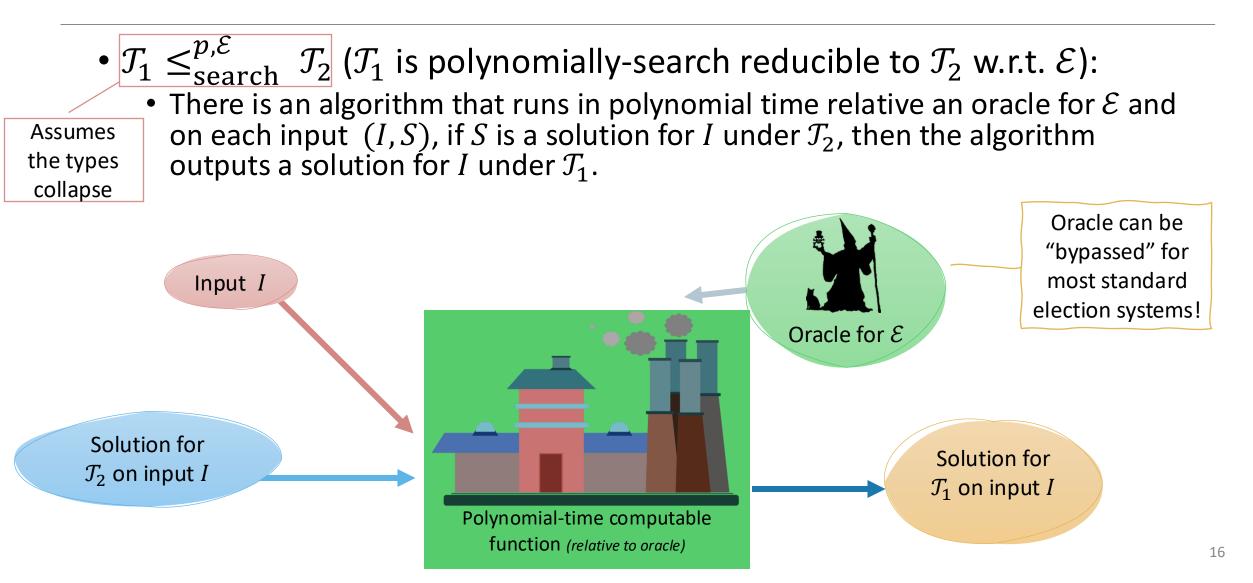
Search can separate from search

• Using the technique of Borodin and Demers, you can give a certificate scheme for Σ^* that has no polynomial-time algorithm.

Our Question: Can it be that two control types \mathcal{T}_1 and \mathcal{T}_2 collapse as decision problems, and yet their search complexities differ?

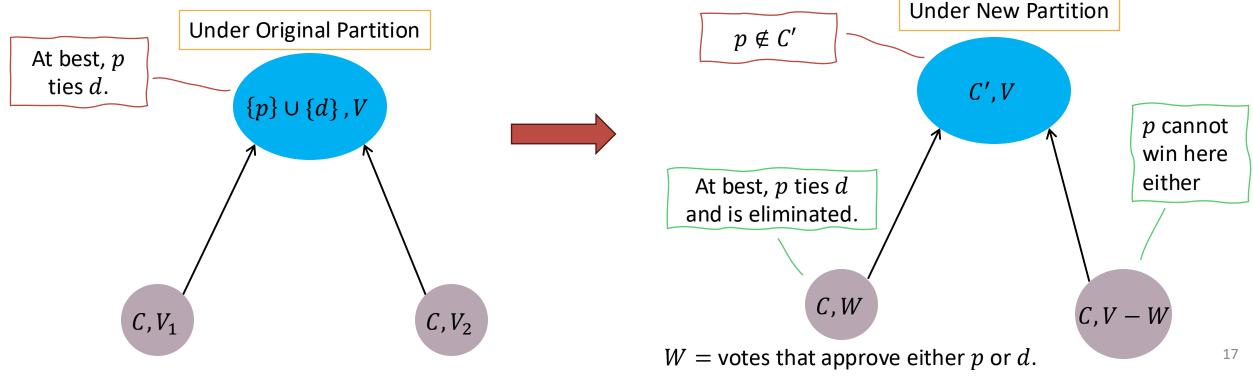
• For all the known collapses, we prove **NO** by developing a framework.

Our Search Reductions



Sketch: Approval-DC-PV-TE-NUW \leq_{search}^{p} Approval-DC-PV-TE-UW

- Assume: Given input (C, V) and solution (V_1, V_2) such that p is not the unique winner of the two-stage election $\therefore (C, V, p) \in \text{Approval}-\text{DC}-\text{PV}-\text{TE}-\text{UW}$.
 - Let us look at one case: if p is in the final election under (V_1, V_2) .
- Prove: There is a voter partition such that *p* is not present in the final election, i.e., construct a solution under DC-PV-TE-NUW.



Our Main Findings I: Search-Relationships

For each **known** <u>collapsing</u> electoral control types \mathcal{T}_1 , \mathcal{T}_2 that are about \mathcal{E} :

- $\mathcal{T}_1 \equiv_{\text{search}}^p \mathcal{T}_2$: If \mathcal{E} is polynomial-time computable <u>or</u> \mathcal{E} satisfies Property Unique- α^* .
 - \mathcal{E} satisfies Unique- α if p being the unique winner of election (C, V) implies that p is the unique winner of every election (C', V), where $p \in C' \subseteq C$.
- $\mathcal{T}_1 \equiv_{\text{search}}^{p, \mathcal{E}} \mathcal{T}_2$: Otherwise.

Our reductions "transfer" "easiness/hardness".

• If two problems are "poly. search-equivalent" (search-reduce to each other) and one is "easy"/"hard", then so is the other.

Our Main Findings II: Concrete Complexities

Give a notion of "SAT-equivalence".

• Captures the notion of being "as hard" as SAT from a search complexity perspective.

For each known collapsing control problem, we determine polynomialtime computability or "SAT-equivalence".

- New polynomial-time algorithms, sometimes via immunity arguments.
- Implicit algorithms via search algorithms!
- New "bridge theorem" that connects NP-completeness and SAT-equivalence for

Plurality-DC-PC-TP-NUW (= Plurality-DC-RPC-TP-NUW) is NP-complete.

Future Directions

Provide concrete examples or sufficient conditions to separate <u>search from search</u>.

"Relax" the assumptions in our bridge theorem.

Explore conditions under which SAT-equivalence implies NPcompleteness of the respective decision problems.

Provide dichotomy theorems for polynomial-time computability vs. SAT-equivalence.

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

LOCATION: RODRIGUES ISL, MAURITIUS