

Volume 42, Number 3 April 2008

SPECIAL TOPIC Computer Forensics

GUEST EDITORS Ewa Huebner and Frans Henskens

The Role of Operating Systems in Computer Forensics
Ewa Huebner (University of Western Sydney), Frans Henskens (University of Newcastle)

1

A Program Behavior Matching Architecture for Probabilistic File System Forensics
Ying Xia, Kevin Fairbanks, Henry Owen (Georgia Institute of Technology)

4

A Proposal for an Integrated Memory Acquisition Mechanism
Eugene Libster, Jesse D. Kornblum (ManTech International Corporation)

14

Reconstructing System State for Intrusion Analysis
Ashvin Goel, Kamran Farhadi, Kenneth Po (University of Toronto), Wu-chang Feng (Portland State University)

21

Software Issues in Digital Forensics
J. Todd McDonald, Yong C. Kim (Air Force Institute of Technology), Alec Yasinsac (Florida State University)

29

An Authentication and Validation Mechanism for Analyzing Syslogs Forensically

Steena D. S. Monteiro, Robert F. Erbacher (Utah State University)

42

Seeing the Invisible: Forensic Uses of Anomaly Detection and Machine Learning
Federico Maggi, Stefano Zanero, Vincenzo Iozzo (Politecnico di Milano)

52

A Normality Based Method for Detecting Kernel Rootkits
Doug Wampler (Indiana Department of Correction), James H. Graham (University of Louisville)

60

Acquiring Volatile Operating System Data: Tools and Techniques
Iain Sutherland (University of Glamorgan), Jon Evans (Gwent Police), Theodore Tryfonas, Andrew Blyth (University of Glamorgan)

66

Forensics Examination of Volatile System Data Using Virtual Introspection

Brian Hay, Kara Nance (University of Alaska Fairbanks)

75

Remote Detection of Virtual Machine Monitors with Fuzzy Benchmarking
Jason Franklin, Mark Luk, Jonathan M. McCune, Arvind Seshadri, Adrian Perrig (Carnegie Mellon University),

Leendert van Doorn (Advanced Micro Devices)

84

The Impact of Full Disk Encryption on Digital Forensics
Eoghan Casey, Gerasimos Stellatos (Stroz Friedberg)

94

Passive Network Forensics: Behavioral Classification of Network Hosts Based on Connection Patterns
John McHugh (Dalhousie University), Ron McLeod (TARA), Vagishwari Nagaonkar (Wipro Technologies)

100

Computer Forensics In Forensis
Sean Peisert, Matt Bishop (University of California, Davis), Keith Marzullo (University of California, San Diego)

113

SOSP 2007
Chairs’ Report on the Twenty-First ACM Symposium on Operating Systems Principles
Thomas Bressoud (Denison University), M. Frans Kaashoek (MIT)

124

Report on the 2007 SOSP Shadow Program Committee
Rebecca Isaacs (Microsoft)

128

Policies for the SIGOPS Hall of Fame Award
Jeffrey C. Mogul (Hewlett-Packard)

132

Session Scribe Notes for the Twenty-First ACM Symposium on Operating Systems Principles
Thomas Bressoud (Denison University)

136

C1_C4_yellowbanner_top:C1_C4_yellowbanner_top 4/10/08 1:19 PM Page 1 (Black plate)

OPERATING SYSTEMS REVIEW

A Publication of the ACM Special Interest Group on Operating Systems

SIGOPS Chair

Doug Terry
Microsoft Research

1065 La Avenida

Mountain View, CA 94043 USA

+1-650-693-2651

doug.terry@acm.org

SIGOPS Vice Chair

Frank Bellosa
Department of Computer Science

University of Karlsruhe

Am Fasanengarten 5

76131 Karlsruhe

GERMANY

+49-721-608-4053
bellosa@ira.uka.de

SIGOPS Secretary-Treasurer

Editor, Operating System Review

Jeanna Matthews
Department of Computer Science

Clarkson University

8 Clarkson Avenue, MS 5815
Potsdam, NY 13699 USA

+1-315-268-6288

jnm@clarkson.edu

Information Director

Stefan Saroiu
Dept. of Computer Science
University of Toronto

Bahen Center, BA5226

40 St. George Street

Toronto, ON, M5S 2E4 Canada

+1-416-946-7069

stefan@cs.toronto.edu

Associate Editor, Operating

Systems Review

Thomas Bressoud
Dept. of Mathematics and Computer

Science

Denison University

Granville, OH 43023 USA

+1-740-587-5630

bressoud@denison.edu

Individual Submission Editors

John Chandy, Coordinator
University of Connecticut

Antônio Fröhlich
Federal Univ. of Santa Catarina

Ashvin Goel
University of Toronto

OPERATING SYSTEMS REVIEW is a publication of the ACM Special Interest Group on Operating Systems

(SIGOPS), whose scope of interest includes: Computer operating systems and architecture for multiprogramming,
multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and

security of data; communications among computing processors; and computer system modeling analysis.

Membership in SIGOPS (at $15 per annum) is open to ACM members and associate members, and student
members (at $5 per annum). Non-members of ACM may subscribe to OPERATING SYSTEMS REVIEW at $30

per year. All SIGOPS members receive OPERATING SYSTEMS REVIEW. SIGOPS membership application

forms are available from ACM Headquarters, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, telephone +1-

212-869-7440. Changes of address and other matters pertaining to the SIGOPS mailing list should be directed to
ACM Headquarters, not to any of the SIGOPS officers.

Contributions to OSR: Several types of contributions to OSR are solicited from the operating systems community.

First, many issues of OSR will be organized around a special topic or theme. Guest editors are sought to solicit,
review, select and coordinate articles related to the special topic. If you are interested in suggesting a special topic

or in serving as a guest editor, contact the OSR editor. Second, contributions related to upcoming special topics are

requested. Such contributions should be sent to the guest editor for the issue of interest. Calls for participation in

upcoming special topics issues will be posted on the OSR web page (http;//www.acm.org/sigops/osr.html) and
announced via the SIGOPS mailing list. Finally, individual submissions not related to specific special topics are

welcome. Proposals for individual submissions should be sent to the OSR editor for review and to discuss possible

publication dates. Each proposal should clearly say how the submission would be of interest to the SIGOPS
community.

To Contributing Authors to SIG Newsletters: By submitting your article for distribution in this Special Interest

Group publication, you hereby grant to ACM the following non-exclusive, perpetual, worldwide rights:
• to publish in print on condition of acceptance by the editor

• to digitize and post your article in the electronic version of this publication

• to include the article in the ACM Digital Library

• to allow users to copy and distribute the article for noncommercial, educational or research purposes
However, as a contributing author, you retain copyright to your article and ACM will make every effort to

refer requests for commercial use directly to you.

OPERATING SYSTEMS REVIEW (ISSN 0163-5980) is published four times a year (January, April, July, and
October) by the Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701.

Periodicals postage paid at New York, NY 10001, and at additional mailing offices. POSTMASTER: Send address

changes to OPERATING SYSTEMS REVIEW, ACM, 2 Penn Plaza, Suite 701, New York, NY 10121-0701.

Chairs’ Report on
Twenty-First ACM Symposium on Operating Systems

Principles

Thomas C. Bressoud
General Chair

Department of Mathematics and Computer
Science

Denison University
Granville, OH 43023

bressoud@denison.edu

M. Frans Kaashoek
Program Chair

Department of Electrical Engineering and
Computer Science

MIT
Cambridge, MA 02139

kaashoek@csail.mit.edu

1. INTRODUCTION
The 21st ACM Symposium on Operating Systems Principles
(SOSP 2007) was held at the Skamania Lodge in Stevenson,
Washington, USA from October 14th to October 17th 2007.
The conference site is located in the Columbia River Gorge
National Scenic Area, a spectacular canyon along the bor-
der between Oregon and Washington States in the Pacific
Northwest, where the Columbia River cuts through the Cas-
cades mountain range. Delegates were treated to breathtak-
ing views of the gorge and mountains from the lodge’s rustic
and warm common areas and the weather cooperated for the
arrival and early parts of the conference, though the rains
came in force in the latter part of the conference.

1.1 Delegate Composition
The number of delegates totaled 491, ranking only behind
SOSP 2003 in Lake George in attendance, where there were
495 delegates. Attendance was up roughly 25% from SOSP
2005 in Brighton, England (398 delegates), which was rep-
resentative in size of other recent SOSPs. Table 1 shows the
attendance of the last five SOSP conferences.

Table 1: SOSP Attendance
Year Location Delegates

1999 Kiawah Island, SC, USA 396
2001 Lake Louise, Banf, CA 351
2003 Bolton Landing, NY, USA 495
2005 Brighton, England 398
2007 Stevenson, WA, USA 491

Consistent with past SOSPs, almost half of the delegates
were students, numbering 230 (47%). Among the remain-
ing non-student delegates (261), over half (157) were from
industry, with the rest (104) from academia. The ratio of
industry delegates to academia delegates in this non-student
subgroup showed a shift toward industry over prior SOSPs,
where the ratio had been close to 50-50. SOSP 2007 also
showed an increase in the number of institutions represented.
Even in high-attendance years, like at Lake George, the
number of institutions had been relatively stable around 100,
with the attendance differences coming in the form of larger
delegations per institution. This year, some 126 institutions

were represented. The largest delegations were from MIT
and Microsoft, with UCSD, Cornell, Google, and UT Austin
following with sizable delegations. By geographic region,
just about 400 of the delegates came from North America
(81%), with European countries accounting for more than
70 delegates (15%) and the remaining 20 delegates came
from Asia and Australia. By contrast (and to be expected),
the European participation was down from SOSP 2005 in
England, where there were 120 delegates, but was up signif-
icantly from SOSP 2003 in NY, USA, when there were only
50 European delegates.

1.2 Delegate Feedback
An online survey was conducted following the conference
to solicit feedback from the attending delegates. Feedback
categories were scored on a scale of 1 (boring/inedible/too-
little/never-go-again) to 10 (exciting/gourmet quality/too-
much/super). Response rate was 56% (272 respondents).
Table 2 presents the results of this survey.

Table 2: SOSP Feedback Survey
Category Average Score

Paper Quality 7.2
WiPS 6.0
Posters 6.1
Food 7.2

Site: Lodge 8.0
Site: Location 8.4

Interaction 6.2

Overall 8.4

2. TECHNICAL PROGRAM
2.1 Paper Selection
The technical program included 25 papers selected from
among 131 submissions. By comparison, SOSP 2005 had 155
submissions and SOSP 2003 had 120 submisions. Selecting
these 25 papers was difficult because so many of the submis-
sions were of high quality. To make the selection process as
fair and as consistent as possible the program committee em-
ployed a different process than used by previous SOSPs (but

123

used successfully by other conferences such as SIGCOMM).
The program committee consisted of 13 “heavy”-load and
13 “light”-load members. The heavy-load members reviewed
about 34 submissions each and attended the face-to-face PC
meeting in Cambridge, MA USA. The light-load members
reviewed about 24 papers each and did not attend the PC
meeting. In contrast, recent SOSPs used a small number of
PC members (12-15) who read a large fraction of all sub-
missions, sometimes assisted by external reviewers. SOSPs
before that required all PC members to read all submissions.

The goal of the new process was to resolve the tension be-
tween having high-quality, consistent reviews, a large num-
ber of submissions (it has been steadily growing over the
years), and a productive face-to-face meeting. With more
PC members the PC did not have to rely on external re-
views, which can be inconsistent because the external re-
viewers see only a small sample of the submissions, yet the
workload for the individual PC members was manageable,
allowing thorough reviewing. By having a subset of the PC
members meet in person, the PC was able to have in-depth
discussion and reach consensus through discussion (rather
than voting). The larger overall PC also allowed a broader
group of people to participate in the decisions.

Paper selection was a three round process, with multiple re-
views by the PC generated in each round and with reviewers
targeted by subject expertise. The first two rounds reduced
the pool of considered papers by 50%. The 62 remaining
papers produced another two reviews apiece and all 705 re-
views were assessed in preparation for the PC meeting. At
the PC meeting, the 62 papers were ranked by review scores
for discussion order and each assigned a champion to sum-
marize content and strengths and to lead the discussion on
individual papers. The PC discussion for each paper fol-
lowed until consensus was reached. Throughout the pro-
cess anonymity was maintained and conflicts of interest pre-
cluded by removing authors or those with direct association
with an author from the discussion. In the final selection, 3
papers were co-authored by heavy-load PC members, and 6
were co-authored by light-load PC members.

Independent of the regular program committee, Rebecca
Isaacs of Microsoft Research Cambridge organized a shadow
program committee for SOSP 2007. This educational expe-
rience is reported on later in this issue in a separate article.

2.2 Program
The program presented important results in a wide range of
areas, continuing the recent SOSP trend of technical breadth
as exhibited by the nine session topic areas:

· Web Meets Operating Systems
· Concurrency
· Byzantine Fault Tolerance
· Software Robustness
· Distributed Systems
· System Maintenance
· Energy
· Storage
· Operating System Security

All nine of the sessions were “scribed” by student volunteers

to capture the question and answers following each paper
presentation. These scribe notes, along with the paper ab-
stracts to set context, are included in a following article in
this issue. For the full papers, the reader is encouraged
to read the proceedings. Copies of the presented slides are
also available on the conference web site under the Techincal
Program link at http://www.sosp2007.org.

Through the support of ACM, all presentations were also
video-recorded. These videos, which include captures of the
slides as well as the speakers, is part of an effort by the ACM
Digital Media Capture initiative for demonstrating capture
and delivery of conference presentations and will be available
along with the papers in the ACM digital library. As part of
this initiative, the presentations are also currently available
on the web at http://dmcc.acm.org/sosp2007/.

SOSP 2007 offered opportunities to learn about the state
of the art in systems research through Work-in-Progress
(WiP) presentations and through a Poster Session. A to-
tal of 12 WiP talks were accepted and can be found, along
with PowerPoint and/or PDF of the slide presentations at
http://www.sosp2007.org/wip-program.html. There were
24 posters presented at the conference, most with accom-
panying demonstrations. The list of posters can be found
at http://www.sosp2007.org/poster-program.html These
two forums gave delegates the opportunity to meet and share
ideas with some of the brightest young researchers in the
field.

3. AWARDS
Three papers were distinguished with the“Best Paper”award:

• Secure Web Applications via Automatic Partitioning by
Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, Kr-
ishnaprasad Vikram, Lantian Zheng, and Xin Zheng

• Zyzzyva: Speculative Byzantine Fault Tolerance by Ramakr-
ishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement,
and Edmund Wong

• Sinfonia: A New Paradigm for Building Scalable Distributed
Systems by Marcos K. Aguilera, Arif Merchant, Mehul Shah,
Alistair Veitch, and Christos Karamanolis

In addition, during the conference, the audience voted on
the papers/presentations that they enjoyed the most. The
“audience choice” papers selected by this process were:

• TxLinux: Using and Managing Hardware Transactional
Memory in the Operating System by Christopher J. Ross-
bach, Owen S. Hoffman, Donald E. Porter, Hany E. Ra-
madan, Aditya Bhandari, and Emmett Witchel

• Dynamo: Amazon’s Highly Available Key-Value Store by
Guiseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swami Sivasubramanian, Peter Vosshall, and Werner Vo-
gels

• Generalized File System Dependencies by Christopher Frost,
Mike Mammarella, Eddie Kohler, Andrew de los Reyes,
Shant Hovsepian, Andrew Matsuoka, and Lei Zhang

• Secure Virtual Architecture: A Safe Execution Environ-
ment for Commodity Operating Systems by John Criswell,
Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve

124

SOSP 2007 provided the opportunity to honor some of the
field’s most significant research and researchers. Continu-
ing its inaugural at SOSP 2005, the SIGOPS Hall of Fame
awards were presented at the conference. Five awards were
presented, bringing the total awards conferred to ten. The
following papers received awards:

• Leslie Lamport, Time, Clocks, and the Ordering of
Events in a Distributed System, Communications of
the ACM 21(7):558-565, July 1978.

• Andrew D. Birrell and Bruce Jay Nelson, Implement-
ing Remote Procedure Calls, ACM Transactions on
Computer Systems 2(1):39-59, Feb 1984.

• J. H. Saltzer, D. P. Reed, and D. D. Clark, End-To-
End Arguments in System Design, ACM Transactions
on Computer Systems 2(4):277-288, Nov 1984.

• Michael Burrows, Martin Abadi, and Roger Needham,
A Logic of Authentication, ACM Transactions on Com-
puter Systems 8(1):18-36, Feb 1990.

• Fred B. Schneider, Implementing Fault-Tolerant Ser-
vices Using the State Machine Approach: a tutorial,
ACM Computing Surveys 22(4):299-319, Dec 1990.

The Hall of Fame awards and the policies governing their
selection are explained in another article in this issue.

At the banquet, the prestigious Mark Weiser award was pre-
sented. The Mark Weiser Award was created in 2001 by
ACM SIGOPS, to be given to a young individual who has
demonstrated creativity and innovation in operating systems
research. The selection committee choses the recipient based
on: “contributions that are highly createive, innovative, and
possibly high-risk, in keeping with the visionary spirit of
Mark Weiser.” Peter Chen is the outstanding young re-
searcher that was the recipient of the 2007 Mark Weiser
award.

4. WOMEN’S WORKSHOP
The Systers electronic community was born at SOSP in
1987. In recognition of Systers’ 20th anniversary, we held
a workshop in conjunction with SOSP 2007. The workshop
was targeted to women students at the graduate and se-
nior undergraduate levels who have interests in computer
systems research as well as early career women faculty and
researchers. Workshop attendees also attended the SOSP
conference. The workshop ran from the late afternoon of
Saturday, October 13 through Sunday, October 14 at Ska-
mania Lodge.

The workshop was designed as a community-building event,
serving both to educate more women about the opportuni-
ties in systems research and to support women who have
started working in the field. The content of the sessions en-
hanced the attendees’ appreciation and understanding of the
technical papers presented at SOSP. The workshop served
as a friendly first meeting ground for junior members of the
community to meet each other and more experienced re-
searchers.

The list of speakers in the workshop program included: Carla
Ellis, Sharon Perl, Barbara Liskov, Dilma da Silva, Cynthia
Dwork, Susan Eggers, Rebecca Isaacs, Kim Keeton, Jinyang
Li, Margaret Martonosi, Luiba Shrira, and Yuanyuan Zhou.

The workshop was a wonderful success. The number of stu-
dent attendees numbered 63, and the non-student attendees
added an additional 16 for a total of 79 participants in the
workshop. Feedback from the women delegates was consis-
tently glowing with much gratitude conveyed for the decision
to include the Women’s Workshop as part of SOSP 2007 and
the great benefit from the content of the program itself. The
organizers would like to particularly thank CRA-W, HP, and
Google, who sponsored the workshop as well as the indus-
try benefactors cited below that enabled so many student
women to attend the workshop and SOSP.

5. SCHOLARSHIPS AND BENEFACTORS
One of the aspects of SOSP that makes the conference great
is the participation of students. The students that are coau-
thors on papers, the students presenting WiP results, and
the students presenting posters combine with the other at-
tending students to make a very rich experience and to cre-
ate a synergy with experienced researchers in discussing the
latest results and directions in the systems field. With stu-
dent participation consistently reaching levels of nearly half
the delegate population, it is clear that the pipeline of future
researchers in our field is strong and vital.

This level of student participation would, quite literally, not
be possible without the help of both industry and govern-
ment support. In past iterations of the conference, industry
and the National Science Foundation (NSF) have combined
to help fund the travel, shared lodging, and registration for
fifty to sixty-some students (these are reprsentative num-
bers from 1999 through 2005), with total benefactor contri-
butions amounting to US$50,000 to $75,000.

Beyond the “normal” level of student support, SOSP 2007
wished to support all of the student women participating
in the Women’s Workshop and to increase funding specifi-
cally to help underrepresented minorities in our field. This
involved going to our benefactors and asking, not for a re-
distribution of their contribution to help in these areas, but
additional funding, so that we could continue to support the
level of students we have in the past as well.

SOSP 2007 succeeded beautifully! Scholarship contribu-
tions from our industry and governement benefactors to-
talled US$157,000 and supported 117 students. This is over
half of the attending students. What is more, 51 of those
scholarships were for women and underrepresented minori-
ties. This helped to bring the overall ratio of women at the
conference up to nearly 20%, and within the student popu-
lation, the proportion of women was a full 30%. We need to
make this a trend, and not just a data point. This can be
accomplished by continuing some of the efforts initiated at
SOSP 2007, including the Women’s Workshop.

The following organizations gave generously to support these
student scholarhips:

125

Table 3: Scholarship Benefactors
InfoSys
National Science Foundation
Hewlett-Packard
Sun Microsystems
Microsoft
Google

Additional donations also helped fund the conference and
keep registration costs from escalating. These benefactors
include SIGOPS, Intel, VMware, IBM Research, and Yahoo!
Research.

6. APPRECIATION
That SOSP 2007 was a success, there is no doubt. This
was due to an excellent technical program as well as to the
conference site and logistics. The credit goes to so many
volunteers who gave so much of their time and their talent
to plan and execute and to attend to the thousands of de-
tails required to carry off a successful conference. It is like
a complex design process that proceeds from the concept
stages to the detailed implementation. These people share
the vison of this conference, SOSP, as one that is special,
and worth the additional effort to see it continue as one of
the very best.

From the general chair: I must begin by thanking the pro-
gram chair of the conference, Frans Kaashoek. Frans went
far beyond just the care and creation of the technical pro-
gram. He worked closely with the “general” side of the plan-
ning. He struck a excellent balance in offering advice when
I sought it, pitching in when the need arose, and in using
his influence to bring people in our community to help when
needed. I very much appreciate all of his help. Thanks.

From the program chair: Big thanks to Tom for running
a fantastic conference. Tom picked the location, ran the
logistics of the conference, put the team together, managed
the finances, interfaced with ACM, and in general worried
about every detail. Tom had help from a wonderful team of
people, but in the end the buck stopped with Tom. As can
been seen from Table 2 in section 1.2, the site and conference
overall were ranked very high by the attendance. On behalf
of the SIGOPS community, Tom, Thanks!

And from both chairs: Likewise, we must also single out Jon
Walpole, our local arrangements chair. At the onset of con-
ference planning, none of us fully appreciated the amount of
work required for local arrangements, with all of the“behind
the scences” things that need to be done. Jon did a superb
job and deserves all of our thanks. He has ours.

The team that together put on SOSP 2007 has our deep
thanks. Jacob Lorch worked very hard (and successfully)
raising scholarship monies, and giving Robbert van Renesse
and Hakim Weatherspoon the resources for thier job of se-
lecting the scholarship recipients. With additional advertis-
ing, and with additional dollars to spend, we also had record
numbers of scholarship applicants making their job, in fact,
more difficult. Michael Kozuch handled registration, and

this went remarkably smoothly under his capable charge.
We would like to thank Scooter Morris for initiating video
capture of the SOSP sessions and to Rama Ramasubrama-
nian for overseeing and executing the process. Our thanks
also to Jason Flinn for handling publicity and getting our
web site up. Jeremy Stribling served as our web master and
was always helpful and responsive to our many requests for
updates and changes. Our thanks to Jeremy for his many
efforts.

The Program Committee for SOSP 2007 did an excellent
job. This work involved much time and effort and a fervent
desire to see the very best papers selected and presented.
It is the high quality program that is the foundation for a
good conference. We offer our sincere thanks to all of the
members of the program committee.

The women’s workshop was also a success due to the help
of many. We would like to particularly thank Carla Ellis for
her passion and efforts. She really served as both general
and program chairs for the workshop. Also on the subject
of the women’s workshop, we would like to thank Sharon
Perl and Jeff Mogul. They also had a passion for this ef-
fort and worked to see its successful outcome, including the
involvement of their companies and the financial backing of
Google and HP.

Respectfully submitted,

Thomas C. Bressoud
M. Frans Kaashoek

126

Report on the 2007 SOSP Shadow Program Committee

Rebecca Isaacs

October 2007

1 Introduction

Since its recent establishment, the European chap-
ter of SIGOPS (EuroSys) has initiatied a number of
activities to “increase the visibility and quality of sys-
tems research in Europe”1. This report describes one
such activity, a shadow program committee for SOSP
that was open to junior systems researchers based
anywhere in the world. Feedback from the partic-
ipants confirms that the experience was worthwhile
and enjoyable, and it is my belief that a shadow PC
also has long term benefits for the wider systems re-
search community, as explained further below.

The model for the exercise was the Sigcomm
shadow PC that Anja Feldmann organised in 2005 [2].
The shadow PC behaves to a large extent exactly as a
real PC: members are assigned papers, write reviews
giving feedback to authors, and then attend a meet-
ing to choose a program. However after this point
the shadow PC activities diverge from the usual PC
behaviour. Firstly the shadow PC program is not
made public, and secondly, the PC spends some time
at the meeting discussing the peer-review process it-
self. This discussion typically covers how to write a
systems paper, how to review one, the dynamics of
choosing a conference program, and direct compar-
isons with reviews written by real PC members.

The primary purpose of a shadow PC is educa-
tional. For many junior systems researchers, the top
conferences seem inaccessible and remote, appearing
to be dominated by a small number of mainly US
institutions. There is a sense of exclusion on three
fronts:

• Those who do not understand the criteria that
1http://www.eurosys.org/

characterise a good systems paper often lack the
wherewithal to even submit a paper, let alone
one with a serious chance of acceptance.

• Without a strong publication record or a proac-
tive mentor finding a place on that first PC can
be difficult. Thus the opportunities to learn
reviewing skills and to publically demonstrate
competence in that regard are limited.

• A lack of involvement in the ongoing peer re-
view process can lead to appreciating neither the
value of feedback from peers, nor the variable na-
ture of program selection.

The shadow PC exercise itself explicitly addresses the
first two points. By participating in a PC, and hav-
ing a subsequent group discussion to reflect on the
experience, participants should acquire a much bet-
ter appreciation of how to get papers published. The
non-threatening and voluntary nature of the shadow
PC provides a way to start to tackle the second prob-
lem.

The final point is addressed somewhat more in-
directly, with the hope that the shadow PC exer-
cise will stimulate a number of self-sustaining activ-
ities that will help to improve the situation. These
might include discovering groups with mutual inter-
ests leading to visits, internships and collaborations,
attaching value to attending SOSP rather than just
reading the proceedings, and providing an opportu-
nity, that might not otherwise arise, for young people
to demonstrate their abilities and knowledge outside
their home environment, and to find the confidence
to start to engage with the community.

Any of these outcomes will broaden and strengthen
the systems research community generally. The moti-

127

vation for EuroSys in particular to sponsor a shadow
PC is that these concerns resonate with observations
about the state of systems research in Europe, many
of which are articulated in the EuroSys white pa-
per [1]. Because researchers everywhere, not just
in Europe, also share these concerns, applications to
take part in the SOSP shadow PC were invited from
all systems researchers.

SOSP was chosen to be the conference to shadow
because it is the top operating systems conference,
ensuring exposure to the highest quality papers, and
it has relevance right across the community unlike
some others that are perceived as more specialized
(eg NSDI). For the shadow PC participants there is
a trade-off with achieving the same benefits by being
on a real PC of a minor conference, where that is
an option. Members of the SOSP Shadow PC volun-
teered with the expectation that the positive effects
would outweigh the costs of the extra work.

In the remainder of this report I will briefly cover
the organisation and logistics of the shadow PC, and
then try to summarise the lessons learnt from the
experience, both for the participants themselves, as
well as about PCs in general in light of the differences
between the shadow PC and the real PC.

2 Participation

The shadow PC was advertised on the Eurosys mem-
bers mailing list, on the Sigops announcements list,
and on the SOSP 2007 web site. Any systems re-
searcher was invited to apply, with the advertisement
stating that “ideally he or she is a post doc or recently
appointed faculty member that has not yet been a
member of PCs such as SOSP, OSDI, NSDI.” I also
contacted several senior people asking for recommen-
dations, as well as writing to a few people directly.
The goal was to have a shadow PC that was larger
than the real one, and to try and ensure balance,
breadth, sufficient maturity to do the job, and fair
representation (e.g. not 10 people from the same in-
stitution).

The end result was 30 participants, about half of
whom are researchers in industry or academia, with
the remainder split evenly between faculty members

and PhD students (most of whom finished, or intend
to finish, during 2007). Around half of the PC mem-
bers came from seven countries in Europe, and the
remainder from the US and Canada.

SOSP submissions were not automatically made
available to the shadow PC, but instead authors were
asked to “opt-in” via a checkbox on the paper sub-
mission page. Of 131 submissions, 101 authors agreed
to let the shadow PC review their papers. The real
PC members were also asked whether they were pre-
pared to share their reviews (anonymously) with the
shadow PC, and all agreed to do so. As was the
case with SOSP itself, all reviewing proceeded on a
double-blind basis. Throughout the exercise it was
made very clear to the shadow PC that they had the
same obligations of confidentiality and respect for the
double-blind reviewing process as the real PC. Au-
thors were sent the shadow PC reviews a couple of
weeks after the decisions of the real PC had been
communicated.

Although the shadow PC was intended to be
a practical learning experience, members were not
thrown into the reviewing task completely without
help. Before the reviewing period began, the shadow
PC were given two documents with advice on reading
papers [3] and on writing reviews [4].

3 Organisation

In order to maximise opportunities to learn, review-
ing was organised slightly unconventionally. In the
first round, each member reviewed 10 papers. Then
in the second round, instead of eliminating the low-
est ranked papers, assignments were made to ensure
that each person reviewed at least one of the highly-
ranked papers and at least one from the set with the
lowest scores. Between three and four papers were al-
located for the second round. The intent was to give
the ample scope for calibration, while maintaining a
relatively light reviewing load. The shadow PC used
the same reviewing software as the real PC, making
the experience as close to authentic as possible.

All but four members were able to attend the PC
meeting in Cambridge and in addition, two members
of the real PC were present in an advisory capacity.

128

The target number of papers for the program was
18, and the PC discussed 40 papers, leaving around
an hour to reflect on the experience of being on a
PC and on the process of choosing a program. To
explore how the shadow PC compared with the real
PC we compared the reviews from both committees
for one paper that had been discussed earlier in the
day. Although the meeting overran with a lively and
informative discussion, fortunately we were not too
late to go the pub before having a group meal.

From its batch of 101 papers the shadow PC se-
lected 16 for its program. Of the 25 papers accepted
by the real PC, the shadow PC had access to 18, of
which nine were accepted by both committees, and a
further four discussed but not accepted by the shadow
PC.

4 Experiences

Examining the reviews of the nine papers that were
accepted by the real PC but rejected by the shadow
PC, it is apparent that the shadow PC was strongly
influenced by poor presentation and prone to con-
cerns as to whether the contribution is novel. In
contrast to the reviews of the real PC, the shadow
PC tended to adopt a non-commital viewpoint, most
likely reflecting a lack of self-confidence.

Some of the differences between the programs re-
sulted from the format of the shadow PC meeting.
Unlike the real PC, the shadow PC did not have a
single, specific goal (to choose a program), but the
intention was also to contrive a situation where the
mechanisms of a PC could be better understood, as
well as to gain an appreciation of how papers are re-
ceived by reviewers and what sort of papers tend to be
judged favourably. Therefore, rather than consider-
ing each paper in strict order based on review scores,
there was some jumping around, and of course the
shadow PC covered far fewer papers. Inexperience
played a big part—members did not know, for exam-
ple, how much detail to include when introducing a
paper for discussion. Most people erred on the side
of too much.

I conducted an anonymous survey of the shadow
PC participants after the meeting, which had 27 re-

spondents. In answer to the question “was the ex-
perience worthwhile”, 25 chose “very much so” (the
most positive rating), and two “somewhat” (the sec-
ond most positive). The shadow PC members ap-
peared to have found the experience itself beneficial,
although it remains to what extent it addresses any of
the broader concerns highlighted in the introduction
section.

Some other interesting points that came out of the
survey included:

• The most useful part of the experience was par-
ticipating in a PC meeting, with seeing papers
submitted to SOSP and reviewing papers sub-
mitted to SOSP a close joint second.

• 80% thought the PC dinner was important, in
particular the opportunity to get to know people
at a similar career stage from different places.

• Only half of the respondents felt they had ade-
quate time to prepare for the PC meeting. This
was most likely caused by a combination of not
knowing what to expect at the meeting, com-
bined with some last-minute preparation by the
PC chair (which is not uncommon at real PC
meetings too!)

• Aspects most enjoyed include meeting new peo-
ple, reading and discussing the papers, the PC
dinner, finding out how a PC meeting works and
gaining insight into how to write papers and
hearing comments from the real PC members
who were present.

• Suggestions for future shadow PCs: “encourage
the shadow PC to read more papers than they
are assigned”! Provide more structured ques-
tions for reviewers, e.g. “Does this paper present
anything new in its field?” The PC chair is ad-
vised to keep the PC meeting on schedule and
give more advance notice of paper discussion
leads. Members would like to have more real
PC members present. A preliminary session the
night before the meeting would help to prepare
for the meeting itself.

On the day of the meeting the decisions of the real
PC were not yet known to the shadow PC, and so

129

we did not compare the two programs in our discus-
sion. However by the time of completing the survey,
the shadow PC had seen the final SOSP program
and were asked to suggest reasons for the differences
between the real and shadow PC programs. The an-
swers are revealing. Below is a representative subset:

• “At the shadow PC meeting, I felt that only the
members who reviewed were making any use-
ful contributions to the discussion...With review-
ing/reading more papers, I feel the PC meeting
will be a more informed discussion ground”.

• “The decision making during shadow PC seemed
to be very much driven by the discussion leader
and champion. Something more structured, even
merely some check-boxes, should be of help.”

• “The shadow PC seemed overly critical of papers
on topics they understood and overly awed by
papers on unfamiliar topics”.

• “We were easily swayed to accept (or at least
take into consideration) papers that were really
out of scope or not of sufficient quality”.

• “Most of the difference can be explained by ex-
perience and a real need to dispense with per-
functory advice to the authors and cut to the
heart of the matter”.

• “It was hard for the shadow PC to judge what
was fixable in terms of writing and experimen-
tation in the shepherding process”.

• “There are some areas the shadow PC simply
does not have adequate knowledge of”.

• “Fewer reviews than the real PC, probably lead-
ing to somewhat greater randomness in our re-
sults”.

5 Lessons learned

Although each individual will have taken something
different from the experience, there were five points
that came out in the discussion and the survey as
being of particular value to many of the participants:

• The consequences of giving a low or high review
score before the meeting. It often happens that
papers with uniformly low scores are rejected
without discussion. If you think a paper should
be at least discussed, then you need to take a
stand.

• The way that reviews are read and weighted by
other PC members. A review is expected to
rapidly convey information about the paper to
rest of the PC, as well as provide feedback to
the author.

• The importance of preparation when arguing for
or against a paper. Spending time on your own
reviews and reading other people’s reviews in ad-
vance of the meeting will help to crystallize your
arguments. If you want to make a useful contri-
bution to the program selection process, do not
underestimate the value of preparation!

• The benefit of having at least skimmed some of
the papers you didn’t review. Your perception of
a particular paper may change in the context of
other submissions, for example knowing whether
any other papers consider the same topic.

• The impact of persuasive, articulate people at
the meeting. More often than not, these people
are persuasive because they have prepared well.

Lessons were also learned from the point of view of
being an author, not least the need to write your
paper in a way that someone at the PC meeting can
argue for it, and an appreciation of the standard of
writing and research contribution for SOSP.

For future shadow PC chairs some of the issues
caused by reviewer inexperience could be addressed
by appointing both an advocate and a detractor for
each paper discussed rather than just a single dis-
cussion lead, thus forcing more debate to take place.
Other improvements might include providing a gen-
erous amount of preparation time in advance of the
meeting, and being specific about details such as tim-
ing (for example: “you will be asked to summarize
the paper in two minutes or less”).

To conclude, a high standard of research is reliant
on an equally high standard for the mechanisms used

130

to judge the quality of that research. I believe that
a key factor in maintaining excellence in the peer re-
view process is the opportunity to learn the skills
required. The primary benefit of a shadow PC, both
for the individual participants and for the community
at large, is in providing an effective way of training
those skills.

6 Acknowledgements

Thanks to Frans Kaashoek, the real PC Chair, for
his support, encouragement and practical assistance,
and thanks to Timothy Roscoe and S. Keshav for
transcribing their extensive experience of reading and
reviewing to document form. I am grateful to Eu-
roSys, whose board proposed the idea of a shadow
PC and who paid for the PC dinner, and to Mi-
crosoft Research for providing the room and refresh-
ments throughout the day. Mike Schroeder and Paul
Barham were the SOSP PC members who attended
the shadow meeting and their presence was very much
appreciated. A number of people gave valuable feed-
back on earlier drafts of this report, in particular
Andy Warfield. Finally, thanks also to the shadow
PC members who were extremely diligent, very en-
thusiastic, and somehow found the means to attend
the meeting in Cambridge and make the experience
a success.

References
[1] Peter Druschel, Rebecca Isaacs, Thomas Gross, and Marc

Shapiro. Fostering systems research in Europe. A White
Paper by EuroSys, the European Professional Society in
Systems, April 2006.

[2] Anja Feldmann. Experiences from the Sigcomm 2005 Euro-
pean shadow PC experiment. ACM SIGCOMM Computer
Communication Review, 35(2):97–102, July 2005.

[3] S. Keshav. How to read a paper. ACM SIGCOMM Com-
puter Communication Review, 37(3):83–84, July 2007.

[4] Timothy Roscoe. Writing reviews for systems conferences,
March 2007. http://people.inf.ethz.ch/troscoe/pubs/

review-writing.pdf.

131

Policies for the SIGOPS Hall of Fame Award

Jeffrey C. Mogul
jeffmogul@acm.org

1. INTRODUCTION
The SIGOPS Hall of Fame Award was established in 2005
to recognize “the most influential Operating Systems papers”
of the past. See http://www.sigops.org/awards/
hall-of-fame.html for the Web page that describes the
award.

The initial specification of the award turned out to have some prob-
lems in practice, which have become visible in the process of grant-
ing these awards over the past three years. This article describes the
evolution of the award’s specification.

At the SIGOPS business meeting, held as usual at SOSP 2007, we
discussed the policies for the Hall of Fame Award. Generally the
attendees agreed that the policies established for 2007 should be
retained.

The rest of this article discusses the policy issues in more detail.

2. POLICY ISSUES
I will address the following policy issues:

• What papers are eligible?
• Who should decide which papers win?
• What are the conflict-of-interest rules?
• How many awards per year?
• How do the rules get changed?

2.1 What papers are eligible?
In the original specification of the award, eligibility was limited to
SOSP papers at least 20 years old. This raised at least two ques-
tions:

• SIGOPS sponsors two major operating systems conferences,
SOSP and OSDI. In recent years, the community has viewed
these as of approximately equivalent quality, and it seemed
reasonable to grant Hall of Fame awards at OSDI. However,
since the first OSDI was held in 1994, no OSDI papers would
be eligible under the “20 year” rule until 2014. Handing out
awards at OSDI when no OSDI papers were eligible seemed
a little odd. It also wasn’t clear whether a paper really needed
20 years to demonstrate its lasting value.

• Many of the seminal operating systems papers, especially in
the early years of the field, were published outside of SOSP
or OSDI. Many people felt the limitation to papers published
in just one or two conferences was unnecessarily arbitrary.

Of course, any award of this kind is necessarily arbitrary with re-
spect to eligibility; an awards limited to the “most influential SOSP

paper at least 20 years old” would still be quite an honor. But after
some discussion among the members of the 2006 OSDI Program
Committee (PC), among members of the 2007 SOSP PC, and at the
2007 SIGOPS business meeting, the community consensus seems
to be that our award should have a broader scope: “operating sys-
tems papers that have appeared in the peer-reviewed literature at
least ten years in the past.”

We expect future award committees, however, will usually favor
older papers, since the authors of these papers deserve recognition
while they are still active in the field.

Another question arose because the specification says
“[n]ominations will be solicited of the SIGOPS membership
via email.” Does this mean that only papers so nominated are eli-
gible? In particular, can committee members nominate papers that
were not nominated by SIGOPS members outside the committee?
Generally this seems acceptable, and in fact has been the practice
given that the general membership has not submitted that many
nominations. This seems to cause no harm, and the community
nominations often come with much more detailed rationales, so
they are not at a significant disadvantage.

2.2 How many awards per year?
The original specification said “[to] bootstrap the award, up to five
awards will be given at SOSP 2005 and SOSP 2007.” In fact, at
SOSP 2005 only four papers received awards. The consensus fol-
lowing the 2007 award process was that, while the backlog of mer-
itorious older papers is decreasing, if we continue at a rate of only
one award per year, it will be a long time before we catch up –
perhaps too long.

This is another arbitrary decision. Strictly limiting the number of
future awards to one per year might increase the prestige value of
the award, but might also lead to perceived unfairnesses as authors
of highly influential papers may have to wait for many years before
being recognized.

The consensus at the 2007 SIGOPS business meeting was some-
what vague, but my sense was that people were willing to give fu-
ture award committees some latitude to confer more than one award
per year. This might continue either until the award committees
decide that they have caught up, or until the community decides
to impose a strict limit because the committees have become too
generous.

132

2.3 Who should decide which papers win?
Originally, the task of deciding on award winners was given to the
SOSP (or OSDI) PC for that year. Both the SOSP 2005 and OSDI
2006 PC chairs discovered that this did not work very well; most
PC members were already burned out from the heavy review load,
as well as the tasks of shepherding papers and picking best-paper
awards for the current year. As a result, PC members tended not
to participate with sufficient enthusiasm in the process of choosing
Hall of Fame award winners.

For SOSP 2007, we instituted a new model, in which the award
committee chair (chosen by the current PC chair) constitutes a com-
mittee from the chairs of the most recent four SOSPS and one co-
chair from the most recent four OSDIs. This approach provides
some load balancing (assuming that these “retired” chairs aren’t
as burned-out as current PC members), while also providing some
continuity year to year. The somewhat arbitrary decision to use
former SOSP and OSDI chairs was based on an assumption that
these people have already been chosen for their good judgement
and familiarity with the OS literature.

Since it might be impossible to convince an eligible former chair to
participate in the committee during a given year, the new model al-
lows the award-committee chair to substitute as necessary to come
up with enough committee members. For example, in 2007, John
Wilkes (chair of SOSP 1999) graciously agreed to participate.

2.4 What are the conflict-of-interest rules?
The original specification did not explain how committee mem-
bers should decide if they were conflicted with nominated papers.
Since members of our PCs have learned to be highly cautious about
declaring conflicts for the papers that they review, our norms are
quite strict. This approach generally does not work for determining
conflicts for the Hall of Fame process, since authors of influen-
tial, older papers tend to have made connections with many other
researchers over the intervening years – especially with the well-
connected researchers who end up on PCs. Conflicts also arise
from same-institution relationships, which can also multiply over
the years. (There is also some possibility that overburdened PC
members declared conflicts so as to avoid having to participate in
the process.) When only a few award-committee members are able
to vote on a nomination, and especially when the eligible voters
for two nominations do not overlap, it becomes very hard to make
good decisions.

In 2007, we decided on an explicit conflict policy before consid-
ering any nominations, and tried to balance the level of strictness
so that the process could be seen as fair without running the risk
of running too low on voters. The policy declares a conflict if the
committee member was or is:

1. Involved in writing nominated paper

2. Currently from same institution as paper’s author(s)

3. Same institution at time nominated paper was writ-
ten/published

4. Relative of author of nominated paper

Note that these rules are generally analogous to the classic ISCA
rules [1] but are not nearly as strict.

Even with these relaxed rules, in 2007 we discovered that at least
one nominated paper had three rule-2 conflicts (currently from the
same institution as an author of the paper). This left us with just
five voters (out of eight committee members) who could vote on
this paper. We realized that we had failed to determine in advance
how many votes would be required in such a case. For example, a
majority of the eligible voters (3 of 5) would not have been a major-
ity of the whole committee, so this paper might have been accepted
with fewer votes than a conflict-free paper whose nomination was
rejected by a 5 to 3 majority. We therefore decided to condition
acceptance on a positive vote total equal to an actual majority of
the entire committee, allowing only the unconflicted voters to vote.
In this case, that required all five voters to approve.

Rule-1 conflicts (a committee member involved in writing the nom-
inated paper) are likely to arise, given that the award committee is
composed of people who have some seniority in the OS commu-
nity and are therefore likely to have written some influential papers
during their careers. For this kind of nomination, we of course ex-
cluded the affected member(s) from all discussions and voting. We
also set a high standard; we agreed not to approve such nominations
unless we unanimously believed that they were clearly superior to
all alternative papers.

Such a high standard does disadvantage committee members who
have written possibly award-winning papers and who might be on
the award committee for many years, which is a potential flaw in
the current model for composing the committee.

2.5 How do the rules get changed?
SIGOPS does not have a well-defined process for changing the
rules for this award. In fact, the rules have been different in each
of the first three years, which is mostly my fault: as a co-chair
of OSDI 2006, I hastily instigated a change that allowed nomina-
tion of previous OSDI papers, and as the award committee chair
in 2007, I somewhat more carefully instigated the changes that are
described in this article. In both cases, I obtained the approval of
the current SIGOPS chair, but that process lacked community input
and transparency, and in 2006 led to some criticism.

The current rules were discussed and generally approved at the
2007 SIGOPS business meeting, but that was not a truly demo-
cratic process (especially since at least half of the SOSP attendees
spent the time drinking some excellent local wines instead of at the
business meeting). The consensus seems to be that the award com-
mittee should be trusted to make necessary and modest changes
on its own, with approval from the SIGOPS chair, but that larger
changes demand further discussion with the membership.

3. SUMMARY
The SIGOPS Hall of Fame Awards have become a significant
honor, and an opportunity for the community to recognize the pub-
lications that have had lasting influence on our field. We have to
balance the need to preserve the prestige of the Awards against the
need to recognize a broad range of significant work. Stable poli-
cies that gain community consensus will maintain the value of this
award.

4. REFERENCES
[1] Mark Hill. Program Chair’s Message. In Proc. International

Symp. on Computer Architecture (ISCA), 2005.

133

APPENDIX

A. HISTORY OF THE AWARD
The first awards were made at SOSP 2005. The awards were chosen
by the SOSP PC, from the set of SOSP papers published at least 20
years earlier (that is, in or prior to SOSP 1985). That committee
was authorized to choose five papers, but decided to give out only
four awards.

SIGOPS co-sponsors the OSDI conference, in even-numbered
years. For OSDI 2006, the official rules did not seem to apply,
since the first OSDI was held in 1994. The OSDI co-chairs (my-
self and Brian Bershad) contacted the SIGOPS chair for guidance,
and we ended up improvising modified rules: for 2006, the Hall
of Fame award would be given to one paper published in OSDI at
least 10 years earlier (that is, in 1994 or 1996). Again, the PC chose
the award paper. These rules led to some complaints.

For SOSP 2007, the PC chair asked me to handle the Hall of Fame
Award. After discussion among the SOSP PC members and with
the new SIGOPS chair, we tried to rationalize the process with rules
that seem to have achieved consensus: We would again give out up
to five awards (the last chance to give out more than one, under
the original design); we would consider any peer-reviewer paper
in the operating systems literature at least 10 years old; and the
award committee would consist of eight recent chairs or co-chairs
of SOSP and OSDI. In 2007, five papers were chosen to receive
awards; the youngest was from 1990 (17 years old) and not all of
them were originally published in SOSP.

B. PAST AWARDS AND CITATIONS
Here is a list of the Hall of Fame awards to date, along with the
statements prepared by the Award committee that describes why
each paper was selected.

Links to all award papers are available via http://www.
sigops.org/awards/hall-of-fame.html

B.1 2005 Awards
Edsger W. Dijkstra, The Structure of the THE Multiprogramming
System, Proceedings of the First ACM Symposium on Operating
Systems Principles, October 1967, Gatlinburg, TN, USA.

The first paper to suggest that an operating system be
built in a structured way. That structure was a series of
layers, each a virtual machine that introduced abstrac-
tions built using the functionality of lower layer. The pa-
per stimulated a great deal of subsequent work in build-
ing operating systems as structured systems.

Peter J. Denning, The Working Set Model for Program Behavior,
Proceedings of the First ACM Symposium on Operating Systems
Principles, October 1967, Gatlinburg, TN, USA.

This paper introduced the working set model, which has
became a key concept in understanding of locality of
memory references and for implementing virtual mem-
ory. Most paging algorithms can trace their roots back
to this work.

Dennis M. Ritchie and Ken Thompson, The UNIX Time-Sharing
System, Proceedings of the Fourth ACM Symposium on Operating
Systems Principles, October 1973, Yorktown Heights, NY, USA.

At a time when operating systems were trending towards
complexity, UNIX emerged as a hallmark of elegance
and simplicity.

Butler Lampson, Hints for Computer System Design, Proceedings
of the Ninth ACM Symposium on Operating Systems Principles,
pp. 33-48, October 1983, Bretton Woods, NH, USA.

A classic study of experience building large systems,
distilled into a cookbook of wisdom for the operating
systems researcher. As time has passed, the value of
these hints has only grown and the range of systems to
which they apply enlarged.

B.2 2006 Award
George C. Necula and Peter Lee, Safe Kernel Extensions Without
Run-Time Checking, Proceedings of the Second USENIX Sympo-
sium on Operating Systems Design and Implementation, October
1996, Seattle, WA.

This paper introduced the notion of proof carrying code
(PCC) and showed how it could be used for ensuring
safe execution by kernel extensions without incurring
run-time overhead. PCC turns out to be a general ap-
proach for relocating trust in a system; trust is gained
in a component by trusting a proof checker (and using
it to check a proof the component behaves as expected)
rather than trusting the component per se. PCC has be-
come one of the cornerstones of language-based secu-
rity.

B.3 2007 Awards
Leslie Lamport, Time, Clocks, and the Ordering of Events in a Dis-
tributed System, Communications of the ACM 21(7):558-565, July
1978.

Perhaps the first true "distributed systems" paper, it in-
troduced the concept of "causal ordering", which turned
out to be useful in many settings. The paper proposed
the mechanism it called "logical clocks", but everyone
now calls these "Lamport clocks."

Andrew D. Birrell and Bruce Jay Nelson, Implementing Re-
mote Procedure Calls, ACM Transactions on Computer Systems
2(1):39-59, February 1984.

This is *the* paper on RPC, which has become the stan-
dard for remote communication in distributed systems
and the Internet. The paper does an excellent job laying
out the basic model for RPC and the implementation op-
tions.

134

J. H. Saltzer, D. P. Reed, and D. D. Clark, End-To-End Argu-
ments in System Design, ACM Transactions on Computer Systems
2(4):277-288, November 1984.

This paper gave system designers, and especially Inter-
net designers, an elegant framework for making sound
decisions. A paper that launched a revolution and, ulti-
mately, a religion.

Michael Burrows, Martin Abadi, and Roger Needham, A Logic of
Authentication, ACM Transactions on Computer Systems 8(1):18-
36, February 1990.

This paper introduced to the systems community a
logic-based notation for authentication protocols to pre-
cisely describe certificates, delegations, etc. With this
precise description a designer can easily reason whether
a protocol is correct or not, and avoid the security flaws
that have plagued protocols. "Speaks-for" and "says"
are now standard tools for system designers.

Fred B. Schneider, Implementing Fault-Tolerant Services Using the
State Machine Approach: a tutorial, ACM Computing Surveys
22(4):299-319, December 1990.

The paper that explained how we should think about
replication ... a model that turns out to underlie Paxos,
Virtual Synchrony, Byzantine replication, and even
Transactional 1-Copy Serializability.

135

Session Scribe Notes for
Twenty-First ACM Symposium on Operating Systems

Principles

Editor
Thomas C. Bressoud

Department of Mathematics and Computer Science
Denison University

Granville, OH 43023
bressoud@denison.edu

INTRODUCTION
The following article is divided into nine sections, one for
each of the sessions presented at SOSP 2007. For each ses-
sion, two student volunteers took notes at the conference,
capturing the questions and answers following each of the
papers presented in that session. Note that the session or-
der follows the program as given at the conference which,
due to logistic necessity, differs slightly from the order in
the proceedings.

In each section, we give the scribe volunteers authorship
credit and then follow with each of the papers. These notes
are as captured by the scribe, and have not been reviewed
by either the paper presenter nor the delegate questioner for
accuracy.

In some cases, the scribes summarized the presentation, and
that summary is included. In all cases, we include the pa-
pers’ abstracts to help set the subject context before the
presentation of the questions and answers.

Many thanks to the student scribe volunteers for their efforts
and help in capturing this aspect of SOSP 2007.

SESSION 1: WEB MEETS OPERATING
SYSTEM
Scribes for this session were Celina Gibbs (University of Vic-
toria) and Alana Libonati (NYU).

Protection and Communication Abstractions for
Web Browsers in MashupOS
by Helen J. Wang (Microsoft Research), Xiaofeng Fan (Mi-
crosoft Research), Jon Howell (Microsoft Research), and
Collin Jackson (Stanford University)

Abstract: Web browsers have evolved from a single-prin-
cipal platform on which one site is browsed at a time into a
multi-principal platform on which data and code from mu-
tually distrusting sites interact programmatically in a sin-
gle page at the browser. Today’s “Web 2.0” applications (or
mashups) offer rich services, rivaling those of desktop PCs.
However, the protection and communication abstractions of-

fered by today’s browsers remain suitable only for a single-
principal system—either no trust through complete isolation
between principals (sites) or full trust by incorporating third
party code as libraries. In this paper, we address this de-
ficiency by identifying and designing the missing abstrac-
tions needed for a browser-based multi-principal platform.
We have designed our abstractions to be backward compati-
ble and easily adoptable. We have built a prototype system
that realizes almost all of our abstractions and their associ-
ated properties. Our evaluation shows that our abstractions
make it easy to build more secure and robust clientside Web
mashups and can be easily implemented with negligible per-
formance overhead.

Presentation by Helen J. Wang

Greg Minshal, unaffiliated
Q: Has this research area reached an end or are we still ex-
ploring the design space?
A: Still in the exploration phase.
Q: What are the open questions?
A: Our solution is complete. But, looking for all browsers
to realize the sandbox approach. We don’t see the transition
path as hard.
Q: What is the future work?
A: The key challenge is to make isolation boundaries flaw-
less. Need to develop tools to detect if browser extensions
violate the protection model.

Micah Brodsky, MIT CSAIL
Q: In terms of unauthorized content, why the design choice
of “not mine - don’t trust” instead of fine-grained authoriza-
tion?
A: It is up to the integrator to decide. Not necessarily will
they all allow the same set. Sometimes you don’t care, you
just don’t want those resources to be accessed. This may dif-
fer for different services, the goals of the user for one service
may not apply to another service (other integrators may not
care). In certain cases you may not want this information
revealed.

Joshua Triplett, Portland State University
Q: Have you considered integrating intra-browsers with
WHAT-WG standard for cross domain http requests?
A: Yes, this is part of the current work.

136

AjaxScope: A Platform for Remotely Monitor-
ing the Client-side Behavior of Web 2.0 Appli-
cations
by Emre Kiciman (Microsoft Research) and Benjamin Livshits
(Microsoft Research)

Abstract: The rise of the software-as-a-service paradigm
has led to the development of a new breed of sophisticated, in-
teractive applications often called Web 2.0. While web appli-
cations have become larger and more complex, web applica-
tion developers today have little visibility into the end-to-end
behavior of their systems. This paper presents AjaxScope,
a dynamic instrumentation platform that enables cross-user
monitoring and just-in-time control of web application be-
havior on end-user desktops. AjaxScope is a proxy that per-
forms on-the-fly parsing and instrumentation of JavaScript
code as it is sent to users’ browsers. AjaxScope provides fa-
cilities for distributed and adaptive instrumentation in order
to reduce the client-side overhead, while giving fine-grained
visibility into the code-level behavior of web applications.
We present a variety of policies demonstrating the power
of AjaxScope, ranging from simple error reporting and per-
formance profiling to more complex memory leak detection
and optimization analyses. We also apply our prototype to
analyze the behavior of over 90 Web 2.0 applications and
sites that use large amounts of JavaScript.

Presentation by Emre Kiciman

Fred Schneider, Cornell University
Q: Did you think about addressing user privacy on the client
side?
A: Yes, I thought about it. Everything is limited by the
javascript sandbox with no extra privileges. Future work
will look at marking sensitive information that will be sent
out to the webserver.

Tom Roeder, Cornell University
Q: This seems much like aspect-oriented programming, have
you considered using this approach?
A: Yes, currently the implementation uses CSharp to ma-
nipulate the AST.

Secure Web Applications via Automatic Parti-
tioning
by Stephen Chong (Cornell), Jed Liu (Cornell), Andrew C.
Myers (Cornell), Xin Qi (Cornell), Krishnaprasad Vikram
(Cornell), Lantian Zheng (Cornell), and Xin Zheng (Cornell)

Abstract: Swift is a new, principled approach to building
web applications that are secure by construction. In modern
web applications, some application functionality is usually
implemented as client-side code written in JavaScript. Mov-
ing code and data to the client can create security vulnera-
bilities, but currently there are no good methods for deciding
when it is secure to do so.

Swift automatically partitions application code while provid-
ing assurance that the resulting placement is secure and ef-
ficient. Application code is written as Java-like code anno-
tated with information flow policies that specify the confi-
dentiality and integrity of web application information. The

compiler uses these policies to automatically partition the
program into JavaScript code running in the browser, and
Java code running on the server. To improve interactive
performance, code and data are placed on the client side.
However, security-critical code and data are always placed
on the server. Code and data can also be replicated across
the client and server, to obtain both security and perfor-
mance. A max-flow algorithm is used to place code and data
in a way that minimizes client-server communication.

Presentation by Stephen Chong

Marvin Theimer, Amazon
Q: Large programs are typically restructured to use batch-
ing. This seems to be missed with your fine grained message
approach.
A: Future work of reordering of source for better perfor-
mance.

Jay Lepreau, University of Utah
Q: Your conclusion is that Swift makes it easy to write these
applications, but when sizes reach 70,000 LOC. I am skepti-
cal that this will scale to real applications, unless the model
is simple. It would be great if it works.
A: Large applications have no significant problems with per-
formance.
Q: I am not worried about performance, I am worried about
human time.
A: Annotations are required, but the number of annotations
are proportional to the security concerns of the system. Ap-
plications with moderate security concerns will scale.

Petros Maniatis, Intel Research
Q: This has a close connection with label based taint track-
ing, runtime integrity variables, control paths: is this com-
patible?
A: We do static analysis, not runtime since runtime analysis
may miss implicit flows
Q: Is this too conservative?
A: No it is fine.

Atul Adya, Microsoft
Q: Do you consider server crashes?
A: No, we don’t handle fault tolerance.

Emere Kiciman, Microsoft Research
Q: In terms of persistent states, do you have labels to han-
dle state?
A: In the shopping cart example, we are connecting to a
mysql database for persistance. Persistence annotations are
part of planned future work.

Derrick Coetzee, Microsoft Research
Q: It seems there are a lot of constraints here that must be
declaratively specified, isn’t this a problem? Isn’t it possi-
ble to accidentally write a program that cannot be split to
client and server partitions? Do you provide any help with
this case?
A: One possible solution is to partition everything on the
server but, efficiency is harmed.

John Dunagan, Microsoft
Q: How many times do I have to be careful in partitioning?
Do I have to think about every variable?

137

A: Not all variables must be annotated. The compiler deals
with inference and not all variables in the application will
impact security.

SESSION 2: CONCURRENCY
Scribes for this session were Eric Eide (University of Utah)
and Diwaker Gupta (UCSD).

TxLinux: Using and Managing Hardware Trans-
actional Memory in the Operating System
by Christopher J. Rossbach (UT Austin), Owen S. Hoff-
man (UT Austin), Donald E. Porter (UT Austin), Hany E.
Ramadan (UT Austin), Aditya Bhandari (UT Austin), and
Emmett Witchel (UT Austin)

Abstract: TxLinux is a variant of Linux that is the first op-
erating system to use hardware transactional memory (HTM)
as a synchronization primitive, and the first to manage HT-
Min the scheduler. This paper describes and measures Tx-
Linux and discusses two innovations in detail: cooperation
between locks and transactions, and the integration of trans-
actions with the OS scheduler. Mixing locks and transactions
requires a new primitive, cooperative transactional spinlocks
(cxspinlocks) that allow locks and transactions to protect the
same data while maintaining the advantages of both synchro-
nization primitives. Cxspinlocks allow the system to attempt
execution of critical regions with transactions and automat-
ically roll back to use locking if the region performs I/O.
Integrating the scheduler with HTM eliminates priority in-
version. On a series of real-world benchmarks TxLinux has
similar performance to Linux, exposing concurrency with as
many as 32 concurrent threads on 32 CPUs in the same
critical region.

Presentation by Chris Rossbach

Ken Birman from Cornell noted that some things are just
inherently hard to implement correctly (in particular, long-
running and nested transactions). He asked if the authors
had observed any problematic locking patterns in their anal-
ysis of the Linux code, and whether those occurrences sug-
gest better design patterns for handling certain types of con-
currency. The speaker responded in the affirmative, giving
the example of long-running transactions in Bonnie++ that
can cause overflow in the transactional hardware, leading to
performance problems. The cxspinlock API can be used to
partially work around this problem, by using locks instead
of transactions.

Gilles Muller from EMN asked that if one were to start
from the ground up, how would one redesign the lock API?
That is, instead of coming up with a replacement for spin-
locks and xspinlocks (for practical reasons), is an inherently
better API possible? Further, moving forward, how much
more do developers need to learn about transactional locks?
The speaker remarked that undoubtedly a better API was
possible, should one design from scratch. He expressed hope
that programmers should not have to learn much more in
terms of new concepts. However, programmers still need
to design and code carefully in order to maximumize per-

formance, and programmers also need better support for
system tuning and debugging.

Andrew Black from Oregon State University asked about
the evaluation: since all the reported numbers are from sim-
ulations, how are they normalized against simulator perfor-
mance? That is, how much is performance impacted by the
parameters of the simulation? In response, a fundamental
assumption behind the work was pointed out: that the pa-
rameters of the simulation are chosen based on where the
architecture and memory systems seem to be headed.

Finally, Marc Shapiro from INRIA asked about the cost
of making the described changes to the contention manager
and some other components of the system. The presenter
replied that the unique features of the TM system that they
utilized should not be expected to cost much more than
basic TM hardware. In some cases, contention manager can
indeed get a little complex, but hopefully even in those cases
the cost is bounded.

MUVI: Automatically Inferring Multi-Variable
Access Correlations and Detecting Related Se-
mantic and Concurrency Bugs
by Shan Lu (University of Illinois), Soyeon Park (University
of Illinois), Chongfeng Hu (University of Illinois), Xiao Ma
(University of Illinois), Weihang Jiang (University of Illi-
nois), Zhenmin Li (University of Illinois), Raluca A. Popa
(MIT), and Yuanyuan Zhou (University of Illinois)

Abstract: Software defects significantly reduce system de-
pendability. Among various types of software bugs, seman-
tic and concurrency bugs are two of the most difficult to
detect. This paper proposes a novel method, called MUVI,
that detects an important class of semantic and concurrency
bugs. MUVI automatically infers commonly existing multi-
variable access correlations through code analysis and then
detects two types of related bugs: (1) inconsistent updates –
correlated variables are not updated in a consistent way, and
(2) multi-variable concurrency bugs – correlated accesses are
not protected in the same atomic sections in concurrent pro-
grams.

Presentation by Shan Lu

George Candea from EPFL began the discussion by ob-
serving that system programmers typically just throw up
their hands when they run into false positives, since it is
non-trivial to track them down. He wondered how hard it
is for programmers to deal with false positives in MUVI.
Lu replied that in MUVI, it should be very easy for pro-
grammers to recognize false positives, because of the context
information in MUVI. Other tools such as RacerX have dif-
ferent sources of false positives, and it is hard to say which
class of false positives are easier to track down than others,
but in general it should not be too hard. Still, they are
trying to reduce the rate of false positives from MUVI.

Bjoern Doebel of TU Dresden addessed the ability of
MUVI to handle complex code: multiple branches, func-
tions, and so on. Lu re-emphasized that MUVI does flow-

138

insensitive analysis, so it lose some precision. In that sense
MUVI will be more conservative, and it may miss some con-
ditional correlations.

Finally, Zhe Zhang from NC State University noted that
variable correlations may not be one-to-one, but might in-
stead be more complex. For instance, there might be a vari-
able which holds the sum of several other variables. Lu
pointed out that MUVI breaks multi-variable correlations
into two-variable correlations, and even otherwise, their data-
mining technique is capable of detecting multi-variable cor-
relations, so this shouldn’t pose a problem.

SESSION 3: BYZANTINE FAULT
TOLERANCE
Scribes for this session were Francis David (UIUC) and Fabio
Oliveira (Rutgers University).

Zyzzyva: Speculative Byzantine Fault Tolerance
by Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong (UT Austin)

Abstract: We present Zyzzyva, a protocol that uses specu-
lation to reduce the cost and simplify the design of Byzantine
fault tolerant state machine replication. In Zyzzyva, replicas
respond to a client’s request without first running an expen-
sive three-phase commit protocol to reach agreement on the
order in which the request must be processed. Instead, they
optimistically adopt the order proposed by the primary and
respond immediately to the client. Replicas can thus become
temporarily inconsistent with one another, but clients detect
inconsistencies, help correct replicas converge on a single
total ordering of requests, and only rely on responses that
are consistent with this total order. This approach allows
Zyzzyva to reduce replication overheads to near their theo-
retical minima.

Presentation by Ramakrishna Kotla

Summary: Ramakrishna started by stating the main aim
of the work: to make it easier to incorporate reliability
into high-performance distributed systems, without sacri-
ficing performance. In light of the complexity in the design
space of BFT-based reliable systems due to the non-obvious
tradeoff between throughput and latency, Ramakrishna mo-
tivated the need for a new BFT protocol that outperforms
existing approaches in terms of both throughput and latency.
He then introduced speculative BFT replication as the key
insight behind Zyzzyva, the proposed protocol. By means of
speculation, the replicas execute the requests with no agree-
ment, relieving the system from the associated overhead.

The Zyzzyva protocol performs the output commit at the
clients. Client-side output commit supports the notion of
speculative request execution by having the clients deter-
mine if the system is consistent. Only after determining
that a reply is stable will a client commit. The history of
requests sent along with a reply allows the client to verify
if the reply is stable. There are 3 cases to consider. (1) If
all responses (3f + 1) match, the client can commit. (2) If
the client gathers 2f + 1 matching responses, it sends com-

mit certificates to all replicas and commits after receiving
2f + 1 matching ACKs. (3) If the client receives fewer than
2f + 1 matching responses, the client retransmits the re-
quest, making the system change its current view. Liveness
is guaranteed because correct clients ensure system progress.
Safety is guaranteed because faulty clients cannot forge re-
quest histories and two valid commit certificates cannot have
varying prefixes.

Next, Ramakrishna commented on some optimizations and
introduced the Zyzzyva5 protocol, a variant that uses 2f + 1
additional replicas to make the faulty case faster. Then, he
showed the results of the evaluation, comparing Zyzzyva to
existing protocols. Zyzzyva has a significant throughput im-
provement. In terms of latency, Zyzzyva outperforms other
approaches, but Q/U is 15that is optimal for Q/U. Zyzzyva
was shown to approach the optimal performance expected
from a BFT protocol, with a performance comparable to
that of an unreplicated service.

During the Question and Answer session, Petros Maniatis,
from Intel, stated that he liked the work. Then, in light of
the original Zyzzyva protocol and the Zyzzyva5 variant, he
wanted to know what the final word was, i.e., which protocol
(Zyzzyva and Zyzzyva5) is better for which? Ramakrishna
responded that, in choosing the protocol, one needs to con-
sider the tradeoff between space and time. He said that,
in case of failures, Zyzzyva5 is better; otherwise, Zyzzyva is
more desirable. He added that they are essentially the same
protocol, the only difference being the number of replicas.
Petros then asked how should one decide on the number of
replicas. Ramakrishna answered that one should start with
Zyzzyva and, later on, if there are failures, the system should
switch to Zyzzyva5. Another person then asked:“if H/Q
overlapped its 1st and 2nd phases, wouldn’t its throughput
be comparable to that of Zyzzyva” Ramakrishna said that
this overlapping is only applicable to Zyzzyva.

Tolerating Byzantine Faults in Database Sys-
tems using Commit Barrier Scheduling
by Benjamin Vandiver (MIT), Hari Balakrishnan (MIT),
Barbara Liskov (MIT), and Sam Madden (MIT)

Abstract: This paper describes the design, implementation,
and evaluation of a replication scheme to handle Byzan-
tine faults in transaction processing database systems. The
scheme compares answers from queries and updates on mul-
tiple replicas which are unmodified, off-the-shelf systems, to
provide a single database that is Byzantine fault tolerant.
The scheme works when the replicas are homogeneous, but it
also allows heterogeneous replication in which replicas come
from different vendors. Heterogeneous replicas reduce the
impact of bugs and security compromises because they are
implemented independently and are thus less likely to suffer
correlated failures.

The main challenge in designing a replication scheme for
transaction processing systems is ensuring that the different
replicas execute transactions in equivalent serial orders while
allowing a high degree of concurrency. Our scheme meets
this goal using a novel concurrency control protocol, com-
mit barrier scheduling (CBS). We have implemented CBS in

139

the context of a replicated SQL database, HRDB (Heteroge-
neous Replicated DB), which has been tested with unmodified
production versions of several commercial and open source
databases as replicas. Our experiments show an HRDB con-
figuration that can tolerate one faulty replica has only a mod-
est performance overhead (about 17% for the TPC-C bench-
mark). HRDB successfully masks several Byzantine faults
observed in practice and we have used it to find a new bug
in MySQL.

Presentation by Ben Vandiver

Summary: Ben motivated the work through the observa-
tion that more than half of reported bugs on database sys-
tems exhibit a non-crash behavior; therefore, a Byzantine
fault model would be more appropriate than the currently
assumed fail-stop behavior. Ben pointed out that a hetero-
geneous database replication scheme, where the replicas run
different DBMS versions would be paramount to guarantee-
ing failure independence among the replicas. The proposed
replication scheme, called HRDB (Heterogeneous Replicated
DataBase), assumes that the database replicas provide se-
rializable isolation and strict two-phase locking. HRDB is
meant to give users the abstraction of a single-copy serializ-
able view of the database.

Next, Ben pointed out the main weakness of traditional solu-
tions to Byzantine Fault Tolerance: globally ordering client
requests and having the replicas execute them in the agreed
order limits concurrency. He stated that, besides the need
for correctness, HRDB must perform replica coordination
via a mechanism that is able to extract concurrency. That
mechanism is called CBS (Commit Barrier Scheduling).

Ben then described the architecture of HRDB. The clients
interact with a front-end, called the shepherd, which coordi-
nates the unmodified back-end database replicas and makes
ordering decisions about the client requests. The database
replicas vote on the result of the issued SQL queries. The
system needs at least f + 1 matching votes, where f is the
maximum number of faulty replicas HRDB tolerates. In the
sequel, Ben introduced CBS, the proposed scheme for replica
coordination. CBS operates under a primary-secondary
scheme in which all transactions are first run on the pri-
mary. The order at which the queries are executed on the
primary is then enforced on the secondary replicas. Correct
execution is guaranteed because the statements belonging to
a particular transaction are executed in order and all replicas
commit transactions in the same order: the one determined
by the shepherd. The main goal of CBS in issuing queries
to the secondaries is to explore concurrency while avoiding
conflicts between queries belonging to different transactions.
Only one scenario can create conflicts and prevent the ex-
ploitation of concurrency: when a statement from a certain
transaction is executed by the primary after the commit of
another transaction. CBS guarantees full concurrency at the
primary, relying on the available two-phase commit proto-
col, and allows many statements to run in parallel on the
secondaries.

Ben finally talked briefly about the prototype implementa-
tion and delved into the evaluation. He showed that the
overhead of running SQL queries through the HRDB shep-

herd was 17% for the TPC-C benchmark. Also, it was shown
that a faulty replica is able to catch up with the system af-
ter it recovers. HRDB was also able to unveil a new bug in
MySQL. Ben concluded by noting that HRDB was a prac-
tical BFT database as well as a tool for finding database
bugs.

During the Question and Answer session, a person from the
audience asked if it would be appropriate to just send queries
that do not modify the database to the replicas, instead of
waiting the response from the primary. Ben answered that
the main concern of the work was with the ordering correct-
ness and that he did not think more about other ways of
relaxing the constraints. Next, Emery Berger, from the
University of Massachusetts, asked how the authors actu-
ally found the bugs. Ben’s response was that the bugs were
found by accident. Ken Birman, from Cornell, asked if the
primary could possibly prevent the secondaries from making
progress. Ben said that this cannot happen; the only impact
is an increased latency.

Low-Overhead Byzantine Fault-Tolerant
Storage
by James Hendricks (Carnegie Mellon University), Greg Gan-
ger (Carnegie Mellon University), and Mike Reiter (UNC at
Chapel Hill)

Abstract: This paper presents an erasure-coded Byzan-
tine fault-tolerant block storage protocol that is nearly as
efficient as protocols that tolerate only crashes. Previous
Byzantine fault-tolerant block storage protocols have either
relied upon replication, which is inefficient for large blocks
of data when tolerating multiple faults, or a combination of
additional servers, extra computation, and versioned stor-
age. To avoid these expensive techniques, our protocol em-
ploys novel mechanisms to optimize for the common case
when faults and concurrency are rare. In the common case,
a write operation completes in two rounds of communication
and a read completes in one round. The protocol requires a
short checksum comprised of cryptographic hashes and ho-
momorphic fingerprints. It achieves throughput within 10%
of the crash-tolerant protocol for writes and reads in failure-
free runs when configured to tolerate up to 6 faulty servers
and any number of faulty clients.

Presentation by James Hendricks

Summary: James Hendricks motivated the need for a Byzan-
tine fault-tolerant storage system by pointing out that, as
modern systems grow in size, they should learn to cope with
more faults as well as more types of faults. He proceeded
to describe an erasure-coded Byzantine fault-tolerant block
storage protocol that is almost as efficient as protocols that
tolerate only crashes. 3f+1 servers are required to tolerate
f failures. This is an improvement over a PASIS, a previous
design that required 4f+1 servers. The low overhead in the
new protocol is due to the fact that, in the common case,
the protocol uses just two rounds of communication for a
write and one round of communication for a read. A write
request has a prepare and a commit phase. A read request
returns fragments and associated timestamps in the same
round. The amount of computation is also reduced by only

140

partially encoding a block for most write operations. This
involves the creation of 2f+1 fragments, which is the same
number encoded by a non-Byzantine fault-tolerant erasure-
coded protocol. Since servers don’t see the entire block,
a technique called homomorphic fingerprinting is used to
ensure that a fragment is consistent. Random nonce val-
ues provided by servers and aggregated by clients during a
write are used to ensure that reads return the most recently
written block. The generation and verification of crypto-
graphic data provides an additional source of overhead for
write operations and verification of checksums adds to the
overhead of read operations. Experimental evaluation shows
that larger fragment sizes can be used to keep write band-
width close to a benign erasure-coded protocol that only
tolerates crash faults. Write latency is less than twice that
of the benign protocol when tolerating upto 10 faults. Read
throughput is close to the benign protocol. Read latency is
again within within twice that of the benign protocol.

Allen Clement, UT Austin
Q: Your performance charts show a significant improvement
over state machine replication. Is that comparison fair, given
your system is only supporting reads and writes, while state
machine replication is supporting arbitrary operations?
A: Your observation is correct. One of the points of this
work is to show that BFT storage is a weaker problem than
state machine replication, and the performance gain is at-
tained by exploiting that difference in strength.

Attested Append-Only Memory: Making Ad-
versaries Stick to their Word
by Byung-Gon Chun (UC Berkeley), Petros Maniatis (Intel
Research, Berkeley), Scott Shenker (UC Berkeley), and John
Kubiatowicz (UC Berkeley)

Abstract: Researchers have made great strides in improv-
ing the fault tolerance of both centralized and replicated sys-
tems against arbitrary (Byzantine) faults. However, there
are hard limits to how much can be done with entirely un-
trusted components; for example, replicated state machines
cannot tolerate more than a third of their replica population
being Byzantine. In this paper, we investigate how minimal
trusted abstractions can push through these hard limits in
practical ways. We propose Attested Append-Only Memory
(A2M), a trusted system facility that is small, easy to im-
plement and easy to verify formally. A2M provides the pro-
gramming abstraction of a trusted log, which leads to protocol
designs immune to equivocation —the ability of a faulty host
to lie in different ways to different clients or servers —which
is a common source of Byzantine headaches. Using A2M, we
improve upon the state of the art in Byzantine-fault tolerant
replicated state machines, producing A2M-enabled protocols
(variants of Castro and Liskov’s PBFT) that remain cor-
rect (linearizable) and keep making progress (live) even when
half the replicas are faulty, in contrast to the previous upper
bound. We also present an A2M-enabled single-server shared
storage protocol that guarantees linearizability despite server
faults. We implement A2M and our protocols, evaluate them
experimentally through micro- and macro-benchmarks, and
argue that the improved fault tolerance is cost-effective for a
broad range of uses, opening up new avenues for practical,
more reliable services.

Presentation by Byung-Gon Chun

Summary: Byung-Gon Chun started the talk by presenting
the central problem addressed by his work: equivocation in
the domain of replicated servers providing a service. In such
a system, there is a need for linearizability and liveness in
the presence of cases where servers may be equivocating to
other servers and clients. The goal is to see if the number of
servers required in such a Byzantine faulty environment can
be reduced to below 3f+1 where f is the number of faults.

A2M (Attested Append-Only Memory) is a primitive that
provides a guard against equivocation. A2M provides a set
of trusted, undeniable and numbered logs where each entry
has a sequence number, a stored value and an incremental
cryptographic digest of all log entries. The A2M primitive
may be implemented using several approaches: a 3rd party
service, software isolation, a virtual machine or using trusted
hardware. A2M can be used to improve fault-tolerance by
forcing servers to commit to a single history of operations.
As a demonstration, a couple of A2M enabled versions of
PBFT were built. A2M-PBFT-E only uses A2M in the last
execute phase and A2M-PBFT-EA uses A2M during both
agreement and execution. A2M-PBFT-E guarantees safety
and liveness using 3f+1 replicas, whereas A2M-PBFT-EA
requires only 2f+1 replicas. Macro-benchmark experiments
with NFS show that the A2M enabled versions of PBFT us-
ing MACs for authentication have performance close to that
of plain PBFT. Byung-Gon noted that the broader implica-
tion of this work is that small trusted primitives can help
make systems better.

In response to a question about the strength of the cryptog-
raphy used, Byung-Gon replied that the key lengths are the
same as used in previous research publications. Robbert
van Renesse of Cornell University pointed out that sim-
ulated authenticated broadcasts attempt to solve the same
problem.

SESSION 4: SOFTWARE ROBUSTNESS
Scribes for this session were John McCullough (UCSD) and
Rohini Prinja (University of Minnesota).

Bouncer: Securing Software by Blocking Bad
Input
by Manuel Costa (Microsoft Research), Miguel Castro (Mi-
crosoft Research), Lidong Zhou (Microsoft Research), Lin-
tao Zhang (Microsoft Research), and Marcus Peinado (Mi-
crosoft)

Abstract: Attackers exploit software vulnerabilities to con-
trol or crash programs. Bouncer uses existing software in-
strumentation techniques to detect attacks and it generates
filters automatically to block exploits of the target vulnerabili-
ties. The filters are deployed automatically by instrumenting
system calls to drop exploit messages. These filters introduce
low overhead and they allow programs to keep running cor-
rectly under attack. Previous work computes filters using
symbolic execution along the path taken by a sample exploit,
but attackers can bypass these filters by generating exploits
that follow a different execution path. Bouncer introduces

141

three techniques to generalize filters so that they are harder
to bypass: a new form of program slicing that uses a combi-
nation of static and dynamic analysis to remove unnecessary
conditions from the filter; symbolic summaries for common
library functions that characterize their behavior succinctly
as a set of conditions on the input; and generation of alter-
native exploits guided by symbolic execution. Bouncer filters
have low overhead, they do not have false positives by design,
and our results show that Bouncer can generate filters that
block all exploits of some real-world vulnerabilities.

Presentation by Miguel Castro

George Candea, EPFL
Q: How far in the path do you have to go to trace the fail-
ure?
A: Some paths are relatively long, depends on attack. The
techniques are still useful to find the root cause: Can find
the first place where malloc corrupts the memory structures.
Q: What if the exploit manifests out of something longer?
The environment - not the inputs - memory overflow?
A: Answer taken offline.

Eric Eide, Utah
Q: Did you consider trading off the false-positive rate for
higher throughput?
A: We don’t want to give up on no false positives. It is bad
if you deploy this automatically and it blocks something in-
advertantly. We need to be stringent.

Vikram Adve, UIUC
Q: When you get false negatives, what is it that the filter
cannot handle?
A: There can be many paths from where the message is
received to where the vulnerability is. If the data format
is variable, static analysis gives an overlarge result and it is
difficult to simplify the filter to a practical size.

Ken Birman, Cornell University
Q: Is it reasonable to be rejecting messages instead of cor-
recting them? The assumption that your techniques are
triggered by an attack is not obvious.
A: We are working on something for correcting input.

Triage: Diagnosing Production Run Failures at
the User’s Site
by Joseph Tucek (University of Illinois), Shan Lu (University
of Illinois), Chengdu Huang (University of Illinois), Spiros
Xanthos (University of Illinois), and Yuanyuan Zhou (Uni-
versity of Illinois)

Abstract: Diagnosing production run failures is a chal-
lenging yet important task. Most previous work focuses on
offsite diagnosis, i.e. development site diagnosis with the
programmers present. This is insufficient for production-
run failures. To address production-run failures, we pro-
pose a system, called Triage, that automatically performs
onsite software failure diagnosis at the very moment of fail-
ure. It provides a detailed diagnosis report, including the
failure nature, triggering conditions, related code and vari-
ables, the fault propagation chain, and potential fixes. Triage

achieves this by leveraging lightweight reexecution support to
efficiently capture the failure environment and repeatedly re-
play the moment of failure, and dynamically—using different
diagnosis techniques—analyze an occurring failure. Triage
employs a failure diagnosis protocol that mimics the steps
a human takes in debugging. This extensible protocol pro-
vides a framework to enable the use of various existing and
new diagnosis techniques. We also propose a new failure di-
agnosis technique, delta analysis, to identify failure related
conditions, code, and variables.

Presentation by Joseph Tucek

Butler Lampson, MSR
Q: What happens if the program doesn’t crash, but just
returns wrong answers.
A: It is very hard to detect semantic bugs. If you could in-
clude them as part of the failure detector and our technique
would work.
Q: If you have a wrong answer, you would have to look
back further?
A: These are hard, needs more work.

Marvin Theimer, Amazon
Q: You chose a 200ms checkpoint interval. Is this the right
length? Hard bugs are ones that started a long time ago.
A: There have been some studies on bug propagation. Most
are very short. In practice, we’ve found that the worst was
2 checkpoints back. If you have a bug that is a very long
propagation, you need to think about how to go back fur-
ther. Alternatively we could write the checkpoints to disk if
the propagation is very long.

Preston Crow, EMC
Q: Is there any assumption that you have source code on
the customer’s site?
A: We do not need the actual source code, we operate on
the binary. Could use obfuscated debugging symbols or send
back a binary dump.

Dushyanth Narayanan, MSR
Q: You looked only at the code branches, is this the best
way to characterize the failing runs? Some have proposed
inserting random predicates.
A: We talked about looking differences in the values. Diff-
ing value variations would be possible, but they are more
expensive. You could certainly use random predicates as a
diagnosing technique to extend Triage.
Q: If you are using data values, are there any privacy is-
sues?
A: It is harder to represent the data in an error report in a
transparent way, but it is better than the core dump, which
is hard to read and probably contains private information.

Jay Lepreau, Utah
Q: Why was the time for diffing not included as part of the
time for the error reports?
A: It is not part of the active diagnostic process.

/* iComment: Bugs or Bad Comments? */
by Lin Tan (University of Illinois), Ding Yuan (University of
Illinois), Gopal Krishna (University of Illinois), and Yuan-
yuan Zhou (University of Illinois)

142

Abstract: Commenting source code has long been a com-
mon practice in software development. Compared to source
code, comments are more direct, descriptive and easy-to-
understand. Comments and source code provide relatively
redundant and independent information regarding a program’s
semantic behavior. As software evolves, they can easily grow
out-of-sync, indicating two problems: (1) bugs - the source
code does not follow the assumptions and requirements spec-
ified by correct program comments; (2) bad comments - com-
ments that are inconsistent with correct code, which can con-
fuse and mislead programmers to introduce bugs in subse-
quent versions. Unfortunately, as most comments are writ-
ten in natural language, no solution has been proposed to
automatically analyze comments and detect inconsistencies
between comments and source code.

This paper takes the first step in automatically analyzing
comments written in natural language to extract implicit pro-
gram rules and use these rules to automatically detect in-
consistencies between comments and source code, indicating
either bugs or bad comments. Our solution, iComment, com-
bines Natural Language Processing (NLP), Machine Learn-
ing, Statistics and Program Analysis techniques to achieve
these goals.

Presentation by Lin Tan

Ken Birman, Cornell
Q: Do you view this as a successful methodology? If you
compare the time the humans spend on the templates com-
pared to finding the bugs manually.
A: You can use our tool with the built-in templates and do
not necessarily need to build your own. It can take devel-
opers days or months to find these bugs without assistance,
the results are still valuable.

Preston Crow, EMC
Q: Is there spell checking on the comments? Ours have lots
of typos.
A: We found this as well, but our analysis techniques were
not sensitive to these typos.

Josh Triplet, Portland State U
Q: Would code annotations help this technique?
A: The annotations make the analysis much easier. iCom-
ment is important in their absence.

Butler Lampson, MSR
Q: Can you turn it around and generate code annotations
from comments?
A: That is future work.

SESSION 5: DISTRIBUTED SYSTEMS
Scribes for this session were Medha Bhadkamkar (Florida In-
ternational University) and Kiran Muniswamy-Reddy (Har-
vard University).

Sinfonia: A New Paradigm for Building Scal-
able Distributed Systems
by Marcos K. Aguilera (HP Labs), Arif Merchant (HP Labs),
Mehul Shah (HP Labs), Alistair Veitch (HP Labs), and

Christos Karamanolis (VMware)

Abstract: We propose a new paradigm for building scalable
distributed systems. Our approach does not require dealing
with message-passing protocols – a major complication in
existing distributed systems. Instead, developers just design
and manipulate data structures within our service called Sin-
fonia. Sinfonia keeps data for applications on a set of mem-
ory nodes, each exporting a linear address space. At the core
of Sinfonia is a novel minitransaction primitive that enables
efficient and consistent access to data, while hiding the com-
plexities that arise from concurrency and failures. Using
Sinfonia, we implemented two very different and complex ap-
plications in a few months: a cluster file system and a group
communication service. Our implementations perform well
and scale to hundreds of machines.

Presentation by Marcos Aguilera

Butler Lampson, MSR
Q: It seems like your scheme would work just as well if you
allowed a minitransaction to be a more or less arbitrary pro-
gram as long as it has a reasonable bounded execution time
and doesn’t write any permanent data except at the end. Is
there some reason you did not do that?
A: We discuss this in paper. For example, you could imple-
ment functionality that doesn’t cross a memory node. For
example, We can trace pointers within memory nodes. If
have to trace pointers across memory nodes, then you have
to add network round trips to that. The functionality may
be desirable for some apps. The incremental workload that
I described here has problems with contention. If you im-
plement increment at the memory node then you don’t have
that. We’ve explained this in the paper, we didn’t have to
use this added functionality for the apps we built.

Marc Shapiro, INRIA
Q: Are there any benefits if you had designed it to be
Append-only memory instead of random access memory.
You mentioned that it was hard to design data structures in
the GCS case. If you had append only memory, it wouldn’t
be the case.
A: Yes, I guess there are some issues with garbage collec-
tion with append only memory. If you don’t have to have
to worry about that, then you could use append only mem-
ory. But we haven’t thought about about using append-only
memory.

Ken Birman, Cornell University
Q: What do you do when you have a lot of contention? You
could have exponential rollback. Have you looked at scenar-
ios like that?
A: Sinfonia doesn’t perform well under contention. There
is no silver bullet for dealing with contention in large sys-
tems. In the Group Communication Service we built, we
seem to have a reasonable amount of scalability over what
exists currently, which is spread toolkit, not perfect scala-
bility but reasonable scalability.
Q: What would have happened if you have turned on IP
multicast for spread?
A: I think that spread would have performed an order of
magnitude better, but didn’t run the test as we it was not
in our environment to support that.

143

Bryan Ford, MIT
Q: You seem to propose an alternative to message passing,
but I don’t see any mechanism for notifications?
A: Notifications are good if you are trying to improve la-
tency, otherwise, polling is good. It turns that we are trying
to optimize for throughput instead of latency and we don’t
mind polling not so frequently and that’s we did in our GCS
application, which is really not optimized for latency.

Dutch Meyer, UBC
Q: : What about the application space made you go with
mini transactions as opposed to Federated array of bricks
with quorum?
A: FAB is a storage component built out of commodity com-
ponents and you don’t have a notion of transactions. If the
same storage component is being accessed by different ma-
chines, there is no way to orchestrate a synchronized access
as there are no transactions, whereas in sinfonia, you can
orchestrate concurrent access.
Q: Is there a big principled reason why transactions are bet-
ter than a quorum protocol?
A: Quorum mechanisms and mini transactions are not to
be compared side to side. They are different mechanisms to
do different things.

PeerReview: Practical Accountability for Dis-
tributed Systems
by Andreas Haeberlen (MPI-SWS), Petr Kouznetsov (MPI-
SWS), and Peter Druschel (MPI-SWS)

Abstract: We describe PeerReview, a system that provides
accountability in distributed systems. PeerReview ensures
that Byzantine faults whose effects are observed by a correct
node are eventually detected and irrefutably linked to a faulty
node. At the same time, PeerReview ensures that a cor-
rect node can always defend itself against false accusations.
These guarantees are particularly important for systems that
span multiple administrative domains, which may not trust
each other.

PeerReview works by maintaining a secure record of the mes-
sages sent and received by each node. The record is used to
automatically detect when a node’s behavior deviates from
that of a given reference implementation, thus exposing faulty
nodes. PeerReview is widely applicable: it only requires that
a correct node’s actions are deterministic, that nodes can
sign messages, and that each node is periodically checked by
a correct node. We demonstrate that Peer- Review is prac-
tical by applying it to three different types of distributed sys-
tems: a network filesystem, a peer-to-peer system, and an
overlay multicast system.

Presentation by Andreas Haeberlen

Indranil Gupta, UIUC
Q: How do you select Witnesses? How do you prevent nodes
from colluding among each other?
A: In NFS example, the membership was static and we used
a static config file that mapped every node to its witness. We
used consistent hashing to choose a witness. In distributed
email system, we could not do this as the membership was
dynamic. There, we used consistent hashing but we resolve

it dynamically using secure routing. That ensures that you
cannot pick your witness nodes yourself.
Q: What is to prevent a node’s friend from doing a sybil
kind of attack, where it tries out all port numbers until it
becomes a witness?
A: We assume that we have a solution to sybil attacks.

Robbert Van Renesee, Cornell
Q: How do you deal with nodes that selectively talk to some
nodes and not to the others?
A: Suppose I ignore a message from you, but talk to oth-
ers, you would generate verifiable evidence against me. You
would give this evidence to my witness nodes, then my wit-
ness nodes would give it to everyone else and it would also
come to me and challenge me and say ”please acknowledge
that you received this message”. If I did not get the original
message due to communication problem, I can acknowledge
that got the message. But if I am malicious and don’t reply,
all other nodes will know that I am malicious and will stop
communicating with me. So I have no choice but to talk to
other people.

Jay Lepreau, Utah
Q: Because of the requirement of another instance of the
RSM, it seems like it will be useful for malicious adversary
instead of general faults. The question is of Wide applica-
bility. Is this work is useful for failing H/W and S/W where
you can’t or is not practical to replicate. The state machine,
it’ll have the same fault.
A: They decided to take it offline.

Jeff Chase, Duke
Q: The cats system which does strong accountability for a
particular system - network storage. You said, unlike peer
review, cats depends on a trusted publishing medium for
the integrity of the state logs. For clarification, each node
requires access to other node’s state log. But the publish-
ing medium doesn’t have to be central and it isn’t trusted.
It can mount a denial of accountability attack but it can’t
subvert the system. It seems like witnesses play the same
role and the replication of witness is important. How do you
make deal with the assumption of making the logs visible in
a secure way?
A: This is solved by the requirement that every single wit-
ness set has one correct node. This correct node will make
the evidence available to other nodes in the system. It re-
ally depends on your failure assumption. How many nodes
do you need for this witness set, what kind of config do you
have. In a general setting, you might use a probabilistic ar-
gument to see how large the witness set has to be. If you
have some special nodes, you might use those.

Milan Milenkovic, Intel
Q: You cannot figure out if the fault is with the sender or
receiver if a message not received. There were some papers
in the 70s regarding digital non-repudiation that addressed
this. Why couldn’t you use this?
A: Answer taken offline.

Dynamo: Amazon’s Highly Available Key-Value
Store

144

by Guiseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swami Sivasubramanian, Peter Vosshall, and Werner Vogels
(Amazon.com)

Abstract: Reliability at massive scale is one of the biggest
challenges we face at Amazon.com, one of the largest e-
commerce operations in the world; even the slightest outage
has significant financial consequences and impacts customer
trust. The Amazon.com platform, which provides services
for many web sites worldwide, is implemented on top of an
infrastructure of tens of thousands of servers and network
components located in many datacenters around the world.
At this scale, small and large components fail continuously
and the way persistent state is managed in the face of these
failures drives the reliability and scalability of the software
systems.

This paper presents the design and implementation of Dy-
namo, a highly available key-value storage system that some
of Amazon’s core services use to provide an “always-on” ex-
perience. To achieve this level of availability, Dynamo sac-
rifices consistency under certain failure scenarios. It makes
extensive use of object versioning and application-assisted
conflict resolution in a manner that provides a novel inter-
face for developers to use.

Presentation by Peter Vosshall

Mike Schroeder, MSR
Q: When failure occurs in some of the nodes, it adds load.
What kind of MTTF is needed to avoid loading up parts of
keyspace so that that part of the key space becomes unavail-
able?
A: We do have guidelines to over provision to accommodate
typical failure scenarios (not sure I can give out the exact
formulas). We sufficiently over provision.

Bill Bolosky, MSR
Q: There’s an interaction between 99.9 SLA and adding a
node: you got to make all nodes have their load reduced
rather than just a few. Do you chop it up into so many
pieces so that if you add one node it takes load off every-
body?
A: By introducing virtual nodes into the system, when you
add a new node, it takes many positions on the ring and
it ends up having a neighbor relationship with many other
nodes in the system. Instead of transferring load from one
node, you’re pulling small segments of load from all the
nodes with a high probability.
Q: With a whole lot of small database files that you have
to split things into?
A: Yes.

Goeff Kuenning, Harvey Mudd College
Q: When a node recovers, you use eta entropy, do you use
log based or comparison based method? Why?
A: There’s a number of mechanisms. There’s hinted hand-
off: when there are failures, writes spill over to another node.
When the node recovers, the spill over data is handed off to
the correct node. Another technique is to use merkel hash
trees to do replica synchronization between the two nodes.

George Candea, EPFL

Q: At this scale, how do you collect the data, analyze, and
verify and prove to your users that you met the three 9’s?
A: We have a monitoring infrastructure to do all for all our
services, but I was not involved with it, so I don’t know the
details but everyone does use it verify if the SLA is being
met or not.
Q: Do you know if you sample or not?
A: I don’t know.

Ashvin Goel, University of Toronto
Q: What kind of conflicts do you see and what kind of con-
flict management do you have to do?
A: There’s some results in the paper about the rate at which
we are seeing multiple results. 99.94% of reads return a sin-
gle value, so there’s not conflict. The other times, reads were
returning two versions of the value. We don’t know if they
are conflicts or retries of the same write.

Chris Lesniewski-Laas, MIT
Q: How often do you miss your write quorum?
A: We have not had failures where we fail to gather a write
quorum.
Q: Do you ever have a partition where you have only one
node on one side?
A: That’s possible ... if a switch on a rack fails.
Q: Would a client ever see that?
A: The client would not see that.

David Anderson, CMU
Q: Trying to understand why you abandoned pure consis-
tent hashing. You said it took too long for the seeks to do
replication. That seems like a classic seek vs scan tradeoff
in a database. So why didn’t you partition your data into
relatively coarse extents on disk and simply scan them se-
quentially?
A: We’re not claiming that we did the best thing, we just
did something.

Andrew Myers, Cornell
Q: Trying to understand the programming model. How do
clients do a good job of merging conflicts, because it seems
like you are not giving the common ancestors of the versions
back, which things like cvs or rcs really need to do a good
job of merging?
A: yes, its hard for apps. Depending on the application,
how they approach it can vary. Carts already use the model
and were already good at reconciling conflicts. From an ap-
plication perspective, that’s sufficient. History might help
in some cases. other applications we might punt and use
a last write wins rule. You can tune your dynamo cluster
to do that for you. We also thought about keeping all ver-
sions around and garbage collect them later on, so we could
present previous versions, but we didn’t need it for the apps
we were considering. But, if the apps really wanted it, we
could think about doing that.
Q: Are there guarantees that you will eventually converge
on one version?
A: There are no guarantees in life, but we believe that the
system will converge.

Emit Sit, MIT
Q: Why did you use consistency hashing vs. a GFS like ap-
proach that has a random set of nodes and a coordinator?

145

A: We wanted extremely high availability. We wanted a
symmetric system where there was no master. The decen-
tralized that you got from consistent hashing was very com-
pelling. You could add a node and it could be its own master
for a particular read/write operation and also have their own
view of the system. That was the main reason.

Hari Balakrishnan, MIT
Q: This is regarding load balancing. What happens if some
keys are more popular than others and the distribution is
heavily skewed and do you see that in real applications?
A: In some apps, we don’t really see it so often. Even if
there are robots, it falls away into noise as there are so
many users. In some apps, you do see it and it is bit of
a challenge. Unless you have a control over how keys are
placed, that could be a challenge. Because we control over
how nodes are placed, we could start controlling how that
load impacts the system.
Q: So you have log(n) virt nodes and any given key is repli-
cated that many times?
A: Yes.

SESSION 6: SYSTEM MAINTENANCE
Scribes for this session were Purvi Shah (University of Hous-
ton) and Qing Zhang (UCSD).

Staged Deployment in Mirage, an Integrated
Software Upgrade Testing and Distribution Sys-
tem
by Olivier Crameri (EPFL), Nikola Knezevic (EPFL), Dejan
Kostic (EPFL), Ricardo Bianchini (Rutgers), and
Willy Zwaenepoel (EPFL)

Abstract: Despite major advances in the engineering of
maintainable and robust software over the years, upgrad-
ing software remains a primitive and error-prone activity.
In this paper, we argue that several problems with upgrad-
ing software are caused by a poor integration between up-
grade deployment, user-machine testing, and problem report-
ing. To support this argument, we present a characteriza-
tion of software upgrades resulting from a survey we con-
ducted of 50 system administrators. Motivated by the sur-
vey results, we present Mirage, a distributed framework for
integrating upgrade deployment, user-machine testing, and
problem reporting into the overall upgrade development pro-
cess. Our evaluation focuses on the most novel aspect of
Mirage, namely its staged upgrade deployment based on the
clustering of user machines according to their environments
and configurations. Our results suggest that Mirage’s staged
deployment is effective for real upgrade problems.

Presentation by Olivier Crameri

Bill Bolosky, MSR
Q: Adversaries tend to design exploits based on released
patches. Hence there is an urgency to get the patches out
asap. Does this system pose any limitations by extending
the amount of time the patches are released until it reaches
the users?
A: We give the control to the vender for the speed of de-
ployment. If time is crucial the vendors can bypass some of

the stages. Trade off between speed and the usibility of the
users of the updates.

Joshua Triplett, Portland State University
Q: Finger printing between different clusters Can you ap-
ply fingerprinting to note differences between clusters, to see
why updates work for one and not another? What if rep-
resentative in a cluster fails? Also, can you diff them for
debugging purposes?
A: Yes, our future work is to diff different clusters to see
why how they differ and what the similarities are for debug-
ging.

Micah Brodsky, MIT
Q: Are clusters non-overlapping?
A: Yes, two clusters can have same problems The goal is
that the machines in the same cluster behave the same.
Q: With the possible combinations of problems, it.s a com-
binatorial problem and wouldn.t there be a risk of explosion
of clusters?
A: We try to study the population of applications and limit
the update by configurations that make sense. We want the
update, which depend on the specific application.

Daniel Peek, Michigan
Q: Are there other ways of evaluate the system?
A: Our paper evaluates the system in one way, but there
are other avenues of evaluation techniques that we can de-
ploy.

AutoBash: Improving Configuration Manage-
ment with Operating System Causality Analy-
sis
by Ya-Yunn Su (University of Michigan), Mona Attariyan
(University of Michigan), and Jason Flinn (University of
Michigan)

Abstract: AutoBash is a set of interactive tools that helps
users and system administrators manage con gurations. Au-
toBash leverages causal tracking support implemented within
our modi ed Linux kernel to understand the inputs (causal
dependencies) and outputs (causal effects) of configuration
actions. It uses OS-level speculative execution to try possi-
ble actions, examine their effects, and roll them back when
necessary. AutoBash automates many of the tedious parts of
trying to fix a misconfiguration, including searching through
possible solutions, testing whether a particular solution fixes
a problem, and undoing changes to persistent and transient
state when a solution fails. Our results show that AutoBash
correctly identifies the solution to several CVS, gcc cross-
compiler, and Apache configuration errors. We also show
that causal analysis reduces AutoBash’s search time by an
average of 35% and solution verification time by an average
of 70%.

Presentation by Ya-Yunn Su

Jacob Hansen, VMware
Q: I like the part of rollback transactions. Have you con-
sidered adding transactional packages to Linux. E.g., Inte-
grating redo into Linux.

146

A: Yes, rolling back would be useful. It will provide ver-
sioning management.

Michael Swift, University of Wisconsin
Q: How relevant would it work in distributed file system
environment?
A: We don.t handle distributed system yet. We are thinking
about extending our work to support distributed systems.
Q: How far back can you go with the predicates. How in-
crementally deployable is this system?
A: The users will add their own predicates. It will be good
to have a database of predicates.

John Wilkes, HP labs
Q: Writing predicates is a real pain, takes forever. Can
we look at applications automatically generate predicates
similar to installation system. Where else do you get these
predicates from?
A: The vendor will have these predicates, and they can pro-
vide them to the users. How will the SW vendor provides
these predicates.

Micah Brodsky, MIT
Q: I think this is a really cool system. How well would it
work with persistent state transactions. How does it com-
pare with speculative systems?
A: The benefit from doing the rollback in memory is more
flexible, and you wouldn.t roll back to have bad data in a
persistent state.

Derrick Coetzee, MSR
Q: Can we provide diagnostic information as oppose to just
fail/pass. Infer information about what is fixed and what
failed from the predicates. It would help users to debug
configuration problems.
A: We can make it into a more interactive tool.

Josh Triplett, Portland State
Q: What happens if you need to apply multiple solutions?
Can you deploy multiple solutions?
A: Currently we can only try one solution at a time. In the
future we want to try solutions which allow multiple deploy-
ments of predicate.

SESSION 7: ENERGY
Scribes for this session were Sarah Diesburg (Florida State
University) and Jan Stoess (University of Karlsruhe).

Integrating Concurrency Control and Energy
Management in Device Drivers
by Kevin Klues (Stanford University, Washington Univer-
sity in St. Louis, Technical University of Berlin), Vlado
Handziski (Technical University of Berlin), Chenyang Lu
(Washington University in St. Louis), Adam Wolisz (Tech-
nical University of Berlin, University of California Berke-
ley), David Culler (Arch Rock Co., University of California
Berkeley), David Gay (Intel Research Berkeley), and Philip
Levis (Stanford University)

Abstract: Energy management is a critical concern in wire-
less sensornets. Despite its importance, sensor network op-

erating systems today provide minimal energy management
support, requiring applications to explicitly manage system
power states. To address this problem, we present ICEM,
a device driver architecture that enables simple, energy effi-
cient wireless sensornet applications. The key insight behind
ICEM is that the most valuable information an application
can give the OS for energy management is its concurrency.
Using ICEM, a low-rate sensing application requires only a
single line of energy management code and has an efficiency
within 1.6% of a hand-tuned implementation. ICEM’s ef-
fectiveness questions the assumption that sensornet applica-
tions must be responsible for all power management and sen-
sornets cannot have a standardized OS with a simple API.

Presentation by Kevin Klues

Matt Welsh from Harvard University stated that this work
was really about amoritizing power when powering on or
off devices. In general, though, it would be nice if the
applications would be somewhat adaptive to their circum-
stances. Can the applicationss adapt their behavior? Kevin
responded that they thought about ways to allow appli-
cations to submit application requests. There has been
work done on an energy management system called“Concur-
rency”, and they have thought about combining these tools
toghether.

Mike Swift from The University of Wisconsin asked if there
are any lessons that apply to main-stream OSes such as
Linux or Windows. Kevin responded that right now, there
would be nothing on stage for general-purposes OSes. They
had plans for later integrating their approach into OSes for
embedded systems such as Symbian, to make, e.g., mobile
phones more energy efficient.

Mike then followed up by asking how the programming model
would change for programmers implementing this approach.
Kevin responded that the proposed operations are very sim-
ilar to the common notion of asynchronous I/O. Still, it
would require application developers to somewhat change
their programming paradigms. It would be nice to have a
scheme to allow applications to use the energy management
mechanisms if possible, but still allow the application to
proceed with lower energy efficiency if not.

Mike finally asked if one could come up with a transaction-
style language construct for batching all these I/O requests
directly, and if one could leverage work combining events and
threads? Kevin answered that they hadn’t thought about
that much, but he wouldn’t see anything preventing an API.

Milan Milenkovic from Intel finally noted that, given a
send operation via the radio was particularly expensive, one
could apply special tricks such as to reduce overhead via
data compression, e.g., as soon as a certain threshold has
been reached. Kevin stated that all they had specified was
the architecture and that you could use that architecture
very well to specify different implementations of power com-
penents. The power lock semantics weren’t really limited to
the three interfaces presented, and one could imagine special
policies for different components and hardware devices.

147

VirtualPower: Coordinated Power Management
in Virtualized Enterprise Systems
by Ripal Nathuji (Georgia Institute of Technology) and Kar-
sten Schwan (Georgia Institute of Technology)

Abstract: Power management has become increasingly nec-
essary in large-scale datacenters to address costs and limi-
tations in cooling or power delivery. This paper explores
how to integrate power management mechanisms and poli-
cies with the virtualization technologies being actively de-
ployed in these environments. The goals of the proposed Vir-
tualPower approach to online power management are (i) to
support the isolated and independent operation assumed by
guest virtual machines (VMs) running on virtualized plat-
forms and (ii) to make it possible to control and globally
coordinate the effects of the diverse power management poli-
cies applied by these VMs to virtualized resources. To attain
these goals, VirtualPower extends to guest VMs ‘soft’ ver-
sions of the hardware power states for which their policies
are designed. The resulting technical challenge is to appro-
priately map VM-level updates made to soft power states
to actual changes in the states or in the allocation of un-
derlying virtualized hardware. An implementation of Vir-
tualPower Management (VPM) for the Xen hypervisor ad-
dresses this challenge by provision of multiple system-level
abstractions including VPM states, channels, mechanisms,
and rules. Experimental evaluations on modern multicore
platforms highlight resulting improvements in online power
management capabilities, including minimization of power
consumption with little or no performance penalties and the
ability to throttle power consumption while still meeting ap-
plication requirements. Finally, coordination of online meth-
ods for server consolidation with VPM management tech-
niques in heterogeneous server systems is shown to provide
up to 34% improvements in power consumption.

Presentation by Ripal Nathuji

Petros Maniatis from Intel research noted that one of the
design choices of their approach had been a high-level re-
quirement to remain transparent to applications. He asked
if and how much adherence to that choice would create over-
head. Ripal responded that they were looking into that
problem, and how it could possibly be mitigated using light-
weight paravirtualization.

Milan Milenkovic from Intel stated that another possi-
ble source to save power would be the consolidation across
nodes, which could be established by connecting the power
management subsystem with the cross-node management
subsystem. Ripal responded that their work evaluated ex-
actly that scenario, and that their ultimate goal was to do
this dynamically. In this context they would alleviate a need
for low workload analysis by getting the information on the
fly.

SESSION 8: STORAGE
Scribes for this session were Vishakha Gupta (Georgia In-
stitute of Technology) and Swapnil Patil (Carnegie Mellon).

DejaView: A Personal Virtual Computer
Recorder

by Oren Laadan, Ricardo A. Baratto, Dan Phung, Shaya
Potter, and Jason Nieh (Columbia University)

Abstract: As users interact with the world and their peers
through their computers, it is becoming important to archive
and later search the information that they have viewed. We
present DejaView, a personal virtual computer recorder that
provides a complete record of a desktop computing experience
that a user can playback, browse, search, and revive seam-
lessly. DejaView records visual output, checkpoints corre-
sponding application and file system state, and captures dis-
played text with contextual information to index the record.
A user can then browse and search the record for any vi-
sual information that has been displayed on the desktop, and
revive and interact with the desktop computing state corre-
sponding to any point in the record. DejaView combines
display, operating system, and file system virtualization to
provide its functionality transparently without any modifi-
cations to applications, window systems, or operating sys-
tem kernels. We have implemented DejaView and evaluated
its performance on real-world desktop applications. Our re-
sults demonstrate that DejaView can provide continuous low-
overhead recording without any user noticeable performance
degradation, and allows browsing, search and playback of
records fast enough for interactive use.

Presentation by Oren Laadan

Hank Levy, U of Washington
Q: What state is not available when you go back and revive,
and how does it impact the user?
A: When you revive the computer, the main piece missing
is the network. We have to look at network for different
application; whatever connection a user had before for state
full protocol is lost but stateless protocols dont care. We
don’t want to auto revive the network access because it is
better that network access be handled on a per-application
basis (e-mail apps use network differently from browsing).

Geoff Keunning, Harvey Mudd College
Q: Rather odd level of saving information. When working
with Photoshop, I care about not about what I see on the
screen but the complex information underneath that is more
important...same for video, dvd insertion would be more im-
portant. Then why this instead of more application specific?
A: Two reasons: First, our systems can search and extract
information displayed on screen is mainly textual informa-
tion. Not aware of tools for searching video and images. And
if you have to search through text, then you need to cap-
ture text. Second, if you have to work through application,
then have to build very specific features for every applica-
tion. E.g. for photoshop, I might want to remember when
I was working on photoshop and what was in a browser. I
could use these hints to revive the data later.

Winfried Kuehnhauser, TUI
Q: What about privacy and confidentiality?
A: Not the focus of current paper – but future work. In
current implementation, we don’t capture key board input,
so things like passwd but show ***. Not done much beyond
basic in this aspect.

Cynthia Taylor, UCSD
Q: How do you handle video when you are capturing video?

148

A: The display recording is based on previous SOSP paper.
We only save display updates. In case of full screen video
play, we have about 30 display updates which is entire screen
and is one single command that is saved.

Improving File System Reliability with I/O
Shepherding
by Haryadi S. Gunawi (University Wisconsin - Madison),
Vijayan Prabhakaran (Microsoft Research), Swetha Krish-
nan (University Wisconsin - Madison), Andrea C. Arpaci-
Dusseau (University Wisconsin - Madison), and Remzi H.
Arpaci-Dusseau (University Wisconsin - Madison)

Abstract: We introduce a new reliability infrastructure for
file systems called I/O shepherding. I/O shepherding allows
a file system developer to craft nuanced reliability policies
to detect and recover from a wide range of storage system
failures. We incorporate shepherding into the Linux ext3 file
system through a set of changes to the consistency manage-
ment subsystem, layout engine, disk scheduler, and buffer
cache. The resulting file system, CrookFS, enables a broad
class of policies to be easily and correctly specified. We
implement numerous policies, incorporating data protection
techniques such as retry, parity, mirrors, checksums, sanity
checks, and data structure repairs; even complex policies can
be implemented in less than 100 lines of code, confirming the
power and simplicity of the shepherding framework. We also
demonstrate that shepherding is properly integrated, adding
less than 5% overhead to the I/O path.

Presentation by Haryadi Gunawi

Preston Crow, EMC
Q: If you want to have policy propagate errors back to ap-
plications, the file system ignores error, and you are wedged
in beneath the FS, there is no code path to send error back.
How do you handle that?
A: Currently working on it. There are certain issues in cor-
rectly guaranteeing consistency and error propagation. Cur-
rently we are doing static analysis to propagate to the error
to application (work under submission)

Colin Dixon, Univ of Washington
Q: In practice, when you run into reliability problem, things
seem to have different, unknown effects. How do account for
that?
A: There is not much work done right now on how individual
block failures occur. There is a paper in Sigmetrics which
has statistics on how individual block failures happen. We
depend on such data for showing how policies can improve
reliability.

Bill Bolosky, MSR
Q: When you are doing mirroring, are you writing on one
copy, complete the write, and continue letting the others run
asynchronously?
A: When we write to block D and replicate it to R, we ask
file system to allocate block R to shepherd and shepherd can
synchronously write to D&R in parallel. The checkpoint is
success, if both blocks are written to disk. This causes lots of
changes, like modified bitmap, modified shepherd data etc.,

that need chained transactions. So all these state changes in
the memory happen with respect to policies for checkpoint.
And to guarantee that these changes complete successfully,
we need transaction semantics.
Q: By doing that do you get good IO parallelism by avoid-
ing to seek back and forth on the disk?
A: We have tested several benchmarks till now; so far, its
not that prohibitive. In general reliability policies are not
very much in line with performance. For instance, usually
file systems preallocate stuff and you cannot allocate too
much. I agree with you that performance might not be good
always and it depends on workload.

Amit Gud, VMware
Q: Have you thought of the IO shepherd not having the
need to know disk layout of file system?
A: It depends on what policies you want to support. For ex-
ample, if you want to repair inode or sanity checking at file
system level, not at shepherd layer, then shepherd doesn’t
need to know the layout but then there is a problem of policy.
As a file system developer, if you have policies accordingly,
then it is better for the FS developed to provide this support
with the shepherd.

Generalized File System Dependencies
by Christopher Frost (UCLA), Mike Mammarella (UCLA),
Eddie Kohler (UCLA), Andrew de los Reyes (Google), Shant
Hovsepian (UCLA), Andrew Matsuoka (UT Austin), and
Lei Zhang (Google)

Abstract: Reliable storage systems depend in part on“write-
before” relationships where some changes to stable storage
are delayed until other changes commit. A journaled file
system, for example, must commit a journal transaction be-
fore applying that transaction’s changes, and soft updates
and other consistency enforcement mechanisms have simi-
lar constraints, implemented in each case in systemdepen-
dent ways. We present a general abstraction, the patch, that
makes write-before relationships explicit and file system ag-
nostic. A patch-based file system implementation expresses
dependencies among writes, leaving lower system layers to
determine write orders that satisfy those dependencies. Stor-
age system modules can examine and modify the dependency
structure, and generalized file system dependencies are nat-
urally exportable to user level. Our patch-based storage sys-
tem, Featherstitch, includes several important optimizations
that reduce patch overheads by orders of magnitude. Our
ext2 prototype runs in the Linux kernel and supports asyn-
chronous writes, soft updates-like dependencies, and journal-
ing. It outperforms similarly reliable ext2 and ext3 configu-
rations on some, but not all, benchmarks. It also supports
unusual configurations, such as correct dependency enforce-
ment within a loopback file system, and lets applications de-
fine consistency requirements without micromanaging how
those requirements are satisfied.

Presentation by Christopher Frost

Marc Shapiro, INRIA
Q: What is your undo data?
A: Copy of the data before patch is created (these are file-
system agnostic)

149

Q: How does this work when several applications are writ-
ing to the same block?
A: Get layer of patches; write() are atomic w.r.t to other
applications.

Petros Maniatis, Intel Research
Q: Comparison between your xsyncfs and ext3. The per-
formance approach in ext3 under the two approaches are
different . Where are the differences in performance?
A: Two levels of difference. One, featherstitch with patches
can used to implement provide xsyncfs and take advantage
of several optimizations that patches provide. On the other
hand, xsyncs can provide similar guarantees with patch groups,
with a simpler API; but PG provides additional flexibity by
not requiring to implement features other techniques.

Surendra Verma, Microsoft
Q: How will patches help build a better file system? For
instance, how will patches help improve journaling? Not
sure if IO gets better in the way it goes down to the disk as
opposed to journal where data can go most optimally? For
instance, It’s hard to order the I/Os in your system.
A: Patches can be used to implement a model like journal
– exact same block writes like journal. In constructing a
new system, they can help reduce complexity and ease de-
veloping new consistency models. Our approach is a good
starting point for new file system for applications to have
more control on consistency models.

SESSION 9: OPERATING SYSTEM
SECURITY
Scribes for this session were Yu-En Lu (University of Cam-
bridge) and Xiaohui Yang (George Mason University).

Information Flow Control For Standard OS
Abstractions
by Maxwell Krohn (MIT), Alex Yip (MIT), Micah Brodsky
(MIT), Natan Cliffer (MIT), M. Frans Kaashoek (MIT), Ed-
die Kohler (UCLA), and Robert Morris (MIT)

Abstract: Decentralized Information Flow Control (DIFC)
is an approach to security that allows application writers to
control how data flows between the pieces of an application
and the outside world. As applied to privacy, DIFC allows
untrusted software to compute with private data while trusted
security code controls the release of that data. As applied
to integrity, DIFC allows trusted code to protect untrusted
software from unexpected malicious inputs. In either case,
only bugs in the trusted code, which tends to be small and
isolated, can lead to security violations.

We present Flume, a new DIFC model and system that ap-
plies at the granularity of operating system processes and
standard OS abstractions (e.g., pipes and file descriptors).
Flume eases DIFC’s use in existing applications and allows
safe interaction between conventional and DIFC-aware pro-
cesses. Flume runs as a user-level reference monitor on
Linux. A process confined by Flume cannot perform most
system calls directly; instead, an interposition layer replaces

system calls with IPC to the reference monitor, which en-
forces data flow policies and performs safe operations on
the process’s behalf. We ported a complex Web application
(MoinMoin wiki) to Flume, changing only 2% of the origi-
nal code. The Flume version is roughly 30-40% slower due
to overheads in our current implementation but supports ad-
ditional security policies impossible without DIFC.

Presentation by Max Krohn

Ki Yung Ahn, Portland State
Q: On the example showing how endpoints are made, and
secrecy labels may be changed, what if a malicious plugin
attempts to perform declassification?
A: This isn’t a problem, because, if the secrecy were critical
to other applications, it wouldn’t be able to declassify the
tag (because the tag would have been created by another ap-
plication). Untrusted software would not have the elevated
privilege to declassify tags.

Unidentified, Unknown
Q: Can the described policies be implemented inside
SELinux?
A: For a single application, probably yes, but the policies
would become complex if it were possible to add applica-
tions to the change. Fluke simplifies system administration
and transfers these decisions to the content provider.

SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for
Commodity OSes
by Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig
(Carnegie Mellon University)

Abstract: We propose SecVisor, a tiny hypervisor that en-
sures code integrity for commodity OS kernels. In particular,
SecVisor ensures that only approved code can execute in ker-
nel mode over the entire system lifetime. This protects the
kernel against code injection attacks, such as kernel rootkits.
SecVisor can achieve this property even against an attacker
who controls everything but the CPU, the memory controller,
and system memory. Further, SecVisor the attacker could
have the knowledge of zero-day kernel exploits.

Our design goals for SecVisor are small code size, small ex-
ternal interface, and ease of porting OS kernels. We rely
onmemory virtualization to build SecVisor and implement
two versions, one using software memory virtualization and
the other using CPU-supported memory virtualization. The
code sizes of the runtime portions of these versions measure
1739 and 1112 lines, respectively. The size of the exter-
nal interface for both versions of SecVisor is 2 hypercalls.
We also port the Linux kernel version 2.6.20 to execute on
SecVisor. This requires us to add 12 lines of code to the
kernel and delete 81 lines, out of a total of approximately
4.3 million lines of code.

Presentation by Arvind Seshadri

Andrea Bittau, University College London
Q: Many past kernel exploits change the uid of user pro-
cesses to overwrite kernel memory; does SecVisor address

150

this?
A: It doesn’t protect the integrity of kernel data structures.
This is future work.

Christos Karamanolis, VMware
Q: Performance effect of nested page tables?
A: Shadow overhead goes away, but you still have to check
and protect the kernel page tables.

Mike Schroeder, Microsoft Research
Q: Knowing everything you know about the system, how
would you attack it as an intruder?
A: Try to attack the Trusted Computing Base, but it is very
small, so we don’t expect that this will be a problem.

Andy Tucker, VMware
Q: Deal with loadable modules?
A: Paper discusses this: you could have a hash-based ap-
proval policy, and SecVisor performs code relocation on be-
half of the kernel.

Richard Black, Microsoft Research
Q: How to protect the stable storage off which SecVisor is
loaded?
A: Use the same hash technique and store it in PCR block.

Secure Virtual Architecture: A Safe Execution
Environment for Commodity Operating Systems
by John Criswell (University of Illinois), Andrew Lenharth
(University of Illinois), Dinakar Dhurjati (DoCoMo Labs
USA), and Vikram Adve (University of Illinois)

Abstract: This paper describes an efficient and robust ap-
proach to provide a safe execution environment for an en-
tire operating system, such as Linux, and all its applica-
tions. The approach, which we call Secure Virtual Archi-
tecture (SVA), defines a virtual, low-level, typed instruction
set suitable for executing all code on a system, including
kernel and application code. SVA code is translated for ex-
ecution by a virtual machine transparently, offline or on-
line. SVA aims to enforce fine-grain (object level) memory
safety, control-flow integrity, type safety for a subset of ob-
jects, and sound analysis. A virtual machine implement-
ing SVA achieves these goals by using a novel approach that
exploits properties of existing memory pools in the kernel
and by preserving the kernel’s explicit control over memory,
including custom allocators and explicit deallocation. Fur-
thermore, the safety properties can be encoded compactly as
extensions to the SVA type system, allowing the (complex)
safety checking compiler to be outside the trusted comput-
ing base. SVA also defines a set of OS interface operations
that abstract all privileged hardware instructions, allowing
the virtual machine to monitor all privileged operations and
control the physical resources on a given hardware platform.
We have ported the Linux kernel to SVA, treating it as a
new architecture, and made only minimal code changes (less
than 300 lines of code) to the machine-independent parts of
the kernel and device drivers. SVA is able to prevent 4 out
of 5 memory safety exploits previously reported for the Linux
2.4.22 kernel for which exploit code is available, and would
prevent the fifth one simply by compiling an additional kernel

library.

Presentation by John Criswell

Bryan Ford, MIT
Q: To what extent does the analysis equate to type safety?
A: Do not guarantee that pointers point to the correct ob-
ject, but that it is a valid object.

Nickolai Zeldovich, Stanford University
Q: Must the number of memory pools be statically allo-
cated?
A: No.
Q: What if memory pools are allocated at run-time?
A: Even then, its use is statically identifiable.

Jay Lepreau, Utah
Q: Is the overhead really small enough to make this ap-
proach suitable for use today?
A: Improving the overheads is future work.

151

	frontmatter
	Inside front cover 20081209
	osr_01
	OSR_02
	osr_03
	osr_04

