Towards a MapReduce Application Performance Model

Jared Gray
Dept. of Mathematics and Computer Science
Denison University
gray.jared.r@gmail.com

ABSTRACT

In the modern age, our ability to generate large
data sets far outpaces our capacity for analyzing
them. Google’s proposed solution to this funda-
mental problem — the MapReduce paradigm and
runtime system — has recently gained traction in
the scientific and “big data” industries. However,
the performance characteristics of MapReduce are
not well known. This paper builds on the efforts of
prior research to more accurately characterize and
model the performance of MapReduce applications
on large-scale distributed systems.

1. INTRODUCTION

Invented by Google in 2004, MapReduce [3] is a
programming runtime and software framework for
distributed computing. Using the runtime, a pro-
grammer can take an embarrassingly parallel pro-
gram and distribute its execution across a large
cluster of computers. MapReduce enjoys a positive
reputation for ease of use and general robustness,
as the details of task scheduling, data partitioning,
and fault tolerance are all automatically handled
by the runtime system. Consequently, MapReduce
has become increasingly popular for scientific com-
puting applications and “big data” processing in
recent years.

Despite its popularity, however, not a great deal
is known about the performance characteristics of
MapReduce, especially in the presence of machine
failures. One might expect that a MapReduce ap-
plication’s execution time scales linearly with the
number of cluster computers used for computation.
However, such assumptions are often not borne out
by performance benchmarks. In fact, the debate
over which factors matter most to MapReduce per-
formance has yet to be settled, due in no small

Proceedings of the 2012 Midstates Conference on Undergraduate Research

in Computer Science and Mathematics

Dr. Thomas C. Bressoud
Dept. of Mathematics and Computer Science
Denison University
bressoud@denison.edu

part to the complex interplay of networking, cluster
hardware, and operating systems. Making matters
worse for analysis, there are an immense number of
parameters that a user may specify to the runtime
to change its behavior.

In the literature that does exist on the subject,
much performance analysis of MapReduce hinges
on failure-free operation assumptions. These as-
sumptions are unrealistic in practice and are an
important deficiency, for failures can cause signifi-
cant delays in execution. More theoretical research
often fails to accurately estimate the failure rate of
computing nodes and thus the time necessary to
complete execution of an application.

We addresses the deficiencies discussed above in
three ways. First, through the use of our own Map-
Reduce microbenchmarks and the results of prior
work, we aim to more accurately characterize the
performance of MapReduce. Second, we develop a
new, more robust model for MapReduce applica-
tion performance that includes provisions for ma-
chine failures. Lastly, our new model drives a dis-
crete event simulation for MapReduce, the perfor-
mance characteristics of which can be investigated
thoroughly in future work. This simulation utilizes
empirical cluster failure data from Los Alamos Na-
tional Lab (LANL) [5] as a basis for failure injec-
tion.

2. BACKGROUND
2.1 Application Phases

A MapReduce application consists of three primary
phases. In order of execution, these are: (1) map,
(2) shuffle and sort, and (3) reduce. Prior to run-
ning an application, the user must copy all rele-
vant input data to a distributed file system (DFS),
which unifies and makes accessible the local storage
of computers across a network. It is common prac-
tice to utilize the local storage of compute nodes



for DF'S operations, for this allows computations to
co-reside with their requisite input data. We dis-
cuss the three phases below and present a graphical
representation of a MapReduce application in Fig-
ure 1.

2.1.1 Map

In the map phase, the MapReduce runtime hands
a partition of the input data — called a “split” in
MapReduce nomenclature — to each compute node
participant of the map phase. We call these par-
ticipants “mappers”. The mappers then take their
assigned splits and interpret them as a series of
key-value pairs. For example, it is common for a
mapper to parse an input file, creating a key-value
pair for every line of text in the file; the keys are
assigned the text comprising a line and their cor-
responding values are set to the line number at
which that text appears. After the input data has
been parsed, mappers run a user-specified MAP al-
gorithm, which deterministically transforms the in-
put key-value pairs into a set of intermediate key-
value pairs. After all mappers run the MaP algo-
rithm on their assigned input data and save the
intermediate data output to local storage, the map
phase is finished.

2.1.2  Shuffle and Sort

Next, in shuffle and sort, intermediate data is sorted
and redistributed across cluster nodes. This phase
technically initiates before the map phase com-
pletes and terminates before the reduce phase be-
gins. As each mapper completes its assigned task,
it partitions the intermediate keyspace into a series
of key ranges and sorts each partition [8, p.175-
176]. Then, compute nodes constitutive of the re-
duce phase — “reducers” — are assigned a specific
range and copy the associated key-value pairs to
their locally attached storage. Note that reduc-
ers will likely have to obtain key-value pairs from
multiple mappers, as an individual mapper can po-
tentially generate the full spectrum of intermedi-
ate keys. The reducers’ next task is to sort their
copies of the intermediate data. Given that reduc-
ers can only copy data as it becomes available, they
must wait until all mappers complete their respec-
tive tasks before they can finish copying. When all
reducers have copied and sorted the data pertain-
ing to their assigned key range, the shuffle and sort
is done.

2.1.3 Reduce
Finally, in the reduce phase, reducers take their
sorted intermediate key-value pairs and transform

Figure 1: A MapReduce Application’
Mapper 1 Mapper 2 Mapper 3 Mapper m

onaBpu | PPOD | DDPE) DPHT DD

Map Algorithm Map Algorithm l Map Algorithm LI l Map Algorithm ‘

weresee hOO0)BoOOOG|0000Y]  BOOOY

Shuffle and
Sort Phase

YK A \ L5 Aad ¥
Reducer 1 Reducer 2 Reducer 3 Reducer r

ndiaecne | (I IG) || (I EC) || QIGIGICT | | QIGIGE)

Reduce Algorithm Reduce Algorithm Reduce Algorithm Reduce Algorithm ‘
jrorcol E— | — — I E—
Output Data

them into output key-value pairs. This transfor-
mation occurs according to another deterministic,
user-specified algorithm, the REDUCE function. Fol-
lowing the completion of all REDUCE-related com-
putation, reducers save their output back to the
DFS. After all reducers finish saving, the MapRe-
duce application is complete. A programmer can
manually analyze these output files or conveniently
use them as input for a subsequent MapReduce ap-
plication.

2.2 WordCount Example Application

In this section, we describe a hypothetical MapRe-

duce application that computes a word frequency

histogram for a large library of text. The input

data for this application consists of a series of text

files. MapReduce will emit a {1ine of text, line
number } pair for each line in every file, defining the

input for our MAP function. We desire output data

in the form of {word, number of occurrences}

pairs.

First, in the MAP algorithm, we will count the
occurrences of words, emitting a {word, number
of occurrences} pair for each key-value pair of
input data. These emitted pairs collectively con-
stitute our intermediate data. Note that several
mappers might have come across common words —
such as “the”, “a”, and “to” — in their input data. If
this is the case, the intermediate data will contain
multiple key-value pairs with the same key, where

IThe dichotomy between solid and dashed lines has no sig-
nificance except to draw attention to the complete k-partite
graph on two sets of 3 vertices, visualizing the network ac-
tivity between mappers [1..3] and reducers [1..3].



each pair represents a unique, mapper-local count
of words.

As the map phase nears completion, the MapRe-
duce runtime will perform the shuffle and sort au-
tomatically, reorganizing the intermediate data and

distributing its key-value pairs to our reducers. Based

on the way in which shuffle and sort partitions the
intermediate keyspace, all key-value pairs of the in-
termediate data with the same key are guaranteed
to reside on the same reducer.

In order to compute our histogram, we will need
to consolidate the mappers’ local counts of words.
The REDUCE algorithm can thus work on a parti-
tion of intermediate data, aggregating the various
mapper-local word counts. This operation will pro-
duce a more consolidated set of key-value pairs of
the form {word, number of occurrences}. These
pairs define the output of our MapReduce applica-
tion and represent the word frequency histogram
we sought to create.

2.3 Fault Tolerance

So far, we have seen that MapReduce automati-
cally performs data partitioning and task schedul-
ing behind the scenes, removing a great deal of
burden from programmers. All of this intelligence
might be for naught, however, if MapReduce could
not gracefully handle machine failures. The fault
tolerance mechanism in use by the MapReduce run-
time is one of re-execution. Should an individual
machine fail — becoming inaccessible over the net-
work or generally unresponsive — all map or reduce
tasks running on that machine are re-executed on
other cluster nodes. This mechanism is effective
because the MAP and REDUCE functions are de-
terministic; their output should be identical given
the same input data, regardless of on which ma-
chine they are executed.

3. PRIOR WORK

Previous research on MapReduce performance has
yielded a number of parameters that can dramati-
cally affect the time required for a MapReduce ap-
plication to run [10] [4]. Of particular interest to
us, Wottrich [9] determined that the sizes of the
input, intermediate, and output data were vital
considerations for application performance. Addi-
tionally, he examined the cost of managing many
map and reduce tasks, an overhead which can out-
weigh the performance benefits derived from di-
viding an application into smaller parts. Unlike
Wottrich, Bressoud and Kozuch [2] focused on the

performance characteristics of MapReduce in the
presence of machine failures. To do so, they de-
signed and utilized a discrete event simulation of
the MapReduce runtime. One of the primary goals
of this project is to take that simulator, CFTsim
(Cluster Fault Tolerance Simulator), and improve
its underlying model of MapReduce, thus increas-
ing its accuracy in reflecting real-world MapReduce
performance.

4. EQUIPMENT

4.1 Cluster Arrangement

To run MapReduce, this research project utilizes a
Beowulf cluster consisting of 35 computers. Each
computer runs a 32-bit installation of Ubuntu Server
12.04 Linux. Notably, our cluster contains a het-
erogeneous mix of hardware. Fifteen hardware-
identical computers run on older Intel Core 2 Duo
processors, while a more modern set of 14 com-
puters have Intel Core i7 2600s installed. In our
testing, we determined that there exist subtle dif-
ferences in hard drive and network interface card
performance between the two sets of machines. As
such, we carefully tailor our MapReduce bench-
marks to mitigate the impact of these differences
in performance.

4.2 Network

Our cluster computers are networked together by
means of a fully managed gigabit ethernet switch
by Cisco. All network interfaces on the switch and
the compute nodes are capable of gigabit speed and
full duplex connectivity. In an all-pairs network
bandwidth benchmark, we found that the switch
was minimally capable of delivering an average of
694 megabits per second to each cluster node.

4.3 Hadoop

Each of our cluster nodes runs Hadoop [1], the
Apache Software Foundation’s open-source imple-
mentation of Google’s MapReduce paradigm and
distributed file system. We configured our cluster
to utilize 34 compute nodes for executing map and
reduce tasks, along with a single “master” node in
charge of managing task scheduling and the Hadoop
Distributed File System [6]. The Hadoop pack-
age in use by our cluster is version 1.0.1, which
was the current stable release at the onset of this
project. Note that future releases of Hadoop will
incur significant changes to the runtime. Thus, the
discussion of MapReduce mechanics above applies
to our current Hadoop installation, but may not
accurately describe future (or past) versions of the
runtime.



S. THE BENCHMARKS

Before we could attempt improving on the model
for MapReduce, we needed to establish the impact
of various performance factors on MapReduce ap-
plication running time, using the results discussed
in Section 3 as a starting point for inquiry. Accord-
ingly, we developed three MapReduce benchmarks
which isolate the effects of specific parameters on
overall application performance. Combined with
Wottrich’s benchmarks for input, output, and in-
termediate data sizes, we had a number of utilities
with which to more accurately characterize Map-
Reduce application performance and use as the ba-
sis for a new model.

We keep the aggregate sizes of input, intermedi-
ate, and output data trivially small (< 1 MB) for
each of our benchmarks. Additionally, we define a
constant amount of “work” performed in our home-
brew Map and Reduce functions to a specific time
interval using a busy loop around the system clock.
Thus, we are able to isolate the effect of each fixed-
time algorithm on overall MapReduce application
performance. We synchronize the system clocks
of all compute nodes using a network time proto-
col server on the local network, which updates the
compute nodes on an hourly basis. All benchmarks
measure the total time elapsed from application
initialization to completion.

The first benchmark, simply named mrbench, aims
to determine the overhead of creating many map
and reduce tasks.? This program can be run in one
of two modes, one for benchmarking map task over-
head and another for reduce task overhead. If the
user runs in the Map-benchmarking mode, a trivial
REDUCE function is used. Should the user desire
a Reduce-side benchmark, on the other hand, the
program uses a trivial MAP function. The bench-
mark works by forcing compute nodes to run mul-
tiple non-trivial tasks at the same time. At first,
each node executes a single, fixed-work map or re-
duce task. In the next iteration, all nodes are as-
signed two such asks and run them both concur-
rently. This continues for several dozen iterations.
Because we have fixed the MAP or REDUCE algo-
rithm running time, we are able to isolate the effect
of map and reduce task overhead on application
performance using this benchmark.

The next benchmark, mrbench-waves, works very

2This benchmark is our own creation, different from the
mrbench program included with the Hadoop package.

similarly to the previous program, with one major
difference. Unlike mrbench, which causes each clus-
ter node to execute all assigned non-trivial map or
reduce tasks concurrently, this benchmark forces
every compute node to run only one such task at a
time. Due to this constraint, at most n map/reduce
tasks can be running simultaneously across the clus-
ter, where n is the number of mappers or reduc-
ers running the non-trivial algorithm. Further, be-
cause the non-trivial algorithm’s running time is
fixed, each set of tasks currently running on the
cluster initiates and completes at roughly the same
time, causing “waves” of execution to occur.

Similar to mrbench, mrbench-waves operates by in-
creasing the number of tasks handled by the Map-
Reduce runtime. In the first iteration of mrbench-
waves, a non-trivial task is executed once per node.
In the second iteration, each node runs two tasks
back-to-back; the number of tasks likewise increases
for the remaining iterations. We should expect
each iteration of this benchmark to take succes-
sively longer to run, proportional to the product
of (a) the quantity of waves and (b) the MAP or
REDUCE algorithm’s fixed running time.

Our last benchmark, mrbench-files, examines the
performance impact of opening multiple files on the
DFS. In Pro Hadoop, Jason Venner [7, p.168] ad-
vises Hadoop developers to avoid spreading out the
input or output in a MapReduce application over
multiple files, as this can cause severe performance
losses. This benchmark tests Venner’s claim by cre-
ating multiple trivially-sized input or output files
and using a fixed-time MAP or REDUCE algorithm.
A single, trivial reduce task is used when bench-
marking input files, a trivial mapper for the output
test. Borrowing heavily from mrbench-waves, this
benchmark simply accesses or creates one file per
map/reduce task per wave, increasing the number
of waves iteratively. The similarity between this
benchmark and mrbench-waves is intentional, for
it makes the results of this test directly compara-
ble with those of mrbench-waves.

6. RESULTS

We present the results of mrbench benchmark in
Figures 2 and 3. Here, the non-trivial MAP or RE-
DUCE algorithm is fixed to a 10-minute run time.
Again, because all tasks are allowed to run concur-
rently and the amount of work for each task’s MAP
or REDUCE algorithm is constant, we should ex-
pect the addition of tasks to incur no increase nor
decrease in execution time, supposing no signifi-



Figure 2: mrbench Map-Side Results

Single Wave Hadoop Application Execution Time
With Fixed 10-Minute Map Algorithm
740
/",)\ 725

N
o 710

y =3.7667x + 628.44
ol R? =0.99045
= 680
o

B 66 ~—Map
a 5
g &0 = Linear (Map)
635 | =
620
12 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 25
Number of Tasks per Node

Figure 3: mrbench Reduce-Side Results

Single Wave Hadoop Application Execution Time
With Fixed 10-Minute Reduce Algorithm

y=35777x + 633.51
R?=10.99014

====Reduce

= * Linear (Reduce)

Execution Time (s)

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Number of Tasks per Node

cant overhead exists for map/reduce task creation.
However — based on the line of best fit — we observe
a clear trend of 3.77s overhead for the Map plot,
3.58s for the Reduce-side benchmark. Because we
have 34 compute nodes, each time we increase the
number of tasks per node by one, we are adding
34 map or reduce tasks. Then the map task over-
head is % ~ 0.111s and reduce task overhead is

3985 ~ (.105s.

3

These overheads signify an important component
of MapReduce performance. Typical MapReduce
clusters are comprised of hundreds or thousands of
computers. Most commodity machines today can
also efficiently run multiple map or reduce tasks in
parallel, thanks to the prevalence of multi-core sys-
tems. It would be fairly typical, then, for a Map-
Reduce cluster to be configured for hundreds or
thousands of map and/or reduce tasks. Moreover,
with such large clusters, the possibility for individ-
ual machine failures escalates, leading to further
performance costs down the road. Finally, with
the pervasiveness of “small” MapReduce jobs that
take only a few hours to run, this overhead can be
a significant component of overall execution time.

The mrbench-waves results appear in Figure 4. For

Figure 4: mrbench-waves Results

Multi-Wave Hadoop Application Execution Time

With 30s Fixed Work per Wave
1400 (Map)
y=37.307x
1200 R? = 0.99842
)
D 1000 (Reduce)
E y =40.075x
= 800 R? =0.99909
=
S 600
g
3 400 Map
ﬂl
ﬁ 200 =Reduce
o -
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 Linear (Map)
Number of Waves = * Linear (Reduce)
.
Figure 5: mrbench-files Results
Multi-Wave Hadoop Application Execution Time -
34 Additional Files Accessed per Wave Map)
ap.
7000 y =308.03x
R? =0.99995
‘% 6000 —
9 _ -
w
5000 - (Reduce)
B~ 4000 —~ - y =42.677x
- R?=0.99771
© 3000 —
=] -
a 2000 - ~ Map
Q -
} = ——Reduce
=3 1000 > - e
-

0 = =Linear (Map)
1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Waves = Linear (Reduce)

this benchmark, the non-trivial algorithm has a
fixed 30-second running time. A null hypothe-
sis for this benchmark predicts that each succes-
sive run takes an additional 30s over the previous
one. However, we see that each successive Map run
takes roughly 37.3s longer to complete than its pre-
decessor and each Reduce run takes an additional
40.1s to complete. This result indicates that the
map task overhead for each wave is around 7.3 sec-
onds, and reduce task overhead is approximately
10.1 seconds. As each wave is comprised of 34 tasks
in our case, this amounts to approximately 0.215
seconds and 0.297 seconds and of overhead per map
task and reduce task, respectively.

Interestingly, although this benchmark also aims
to capture the overhead of map/reduce task cre-
ation and maintenance, its results differ signifi-
cantly from those of the previous test. Both map
and reduce task overhead, as captured by this bench-
mark, exceed the overheads measured by mrbench.
This result makes intuitive sense, as there is some
management overhead inherent in performing job
scheduling. When an individual task completes,
the master node must free the compute node to
run another task. Then, if there are multiple tasks
yet to be assigned, the master node must also per-



form scheduling to determine the ideal computer
on which to run the next task.®> In mrbench, all
tasks complete at virtually the same time — mini-
mizing the overheads for scheduling and task man-
agement. However, in mrbench-waves, tasks com-
plete one wave at a time. Because each wave com-
pletes at the same time, the master node is likely
overwhelmed with such scheduling tasks, and a sig-
nificant overhead results.

The other difference in measured performance be-
tween the two benchmarks pertains to the relative
overhead of map and reduce tasks. Unlike mr-
bench, mrbench-waves indicates that reduce task
overhead is greater than map task overhead, as
shown by the steeper line of best fit for the re-
sult data. Unfortunately, we have not been able to
come up with as exact an explanation for why this
is the case. It is possible that software changes
on our cluster between the run of mrbench and
mrbench-waves are to blame, a scenario which we
could rule out by re-running the benchmarks. There
might also be an issue related to the MAP or RE-
DUCE algorithm code or the Java interpreter’s op-
timization thereof, but nothing apparent stands
out to us. Because most real-world MapReduce
applications will exhibit this wave-type behavior,
however, we believe the results of mrbench-waves
should be preferentially used over those of mrbench.

The mrbench-files benchmark also yielded interest-
ing results (Figure 5). As mentioned above, much
of this benchmark’s source code was derived from
mrbench-waves. Due to the additional work of cre-
ating files, the reduce phase takes an additional
2.6s per wave, a 20% increase in overhead. The
map-side results, however, are even more dramatic.
Map task overhead is nearly 8.5 times greater here
than in the previous benchmark, demonstrating
that spreading out the input to a MapReduce ap-
plication over multiple files can degrade perfor-
mance significantly. Hence, we are able to confirm
that the number of input/output files accessed via
the DFS has a significant impact on MapReduce
application execution time.

7. MODELING

Having identified a number of parameters impact-
ing MapReduce application performance, we pro-
pose an enriched version of the Bressoud-Kozuch
model for MapReduce. Our new model, much like

3The proportion of task input data local to the machine is
the most important factor in scheduling.

the original, operates on two different yet over-
lapping levels. The first level is that of the map
and reduce task instances. At this level, we exam-
ine the state transitions that individual tasks must
progress through on their way to completion. The
second level is that of the MapReduce application
itself. In this latter level, we track the progress of
the application through the map, shuffle and sort,
and reduce phases.

At the task instance level of our new model, dis-
played in Figures 6 and 7, there are separate fi-
nite state machines for map and reduce task in-
stances, necessary to denote the difference in be-
havior between them. These task instance mod-
els progress through more precise states than be-
fore; map tasks transition through READ, WORK,
WRITE, and COMPLETE stages, while reduce tasks
have an additional SORT state between READ and
WORK. The amount of time spent in each phase is
denoted by a series of parameters supplied by the
user to the simulation. Should no failures occur
in a given time interval, the task will move along
the solid arrow to the next state. If, on the other

Figure 6: Map Task Instance

Active
(Read)

Failure
Active — Failure Free
(Work)

s o)
9 ]
= a
= =
3 3

Active
(Write)

Inactive

Complete (Down)

H
&
=
3
5]

Figure 7: Reduce Task Instance

Active
(Read)

Read Time

Failure

Sort Time — Failure Free

Active
(Work)
Work Time

Active
(Write)

Write Time|

Inactive

Complete (Down)



hand, the machine on which the task is executing
does fail, the task instance will itself fail and be
re-executed later, possibly on a different machine.

The model for MapReduce applications has also
grown more complex than its predecessor. The new
model, shown in Figure 8, progresses through state
transitions realistically; we must wait for all map-
pers to complete writing data to local disk before
reducers can begin making a copy. When all reduc-
ers have completed copying, they begin executing
the REDUCE algorithm on their input key/value
pairs. After all reducers have completed running
the algorithm and writing results to the DFS, all
map and reduce tasks are complete and the appli-
cation is done.

The failure behavior described by the new model
follows a uniformly distributed key assumption: we
assume that each mapper generates intermediate
data such that every reducer copies at least one
key-value pair from each mapper. Thus, if a map-
per should fail before the read portion of shuffle
and sort — “Reduce (Part 1)” in Figure 8 — is com-
plete, that mapper must be re-executed before the
application can continue. In the simulation, all re-
ducers are subsequently re-executed to ensure the
availability of intermediate data.

Another interesting component of MapReduce be-
havior is that a mapper failure does not result in
re-execution after the shuffie and sort is complete.
This can be problematic if a reducer failure fol-
lows a mapper failure anytime in the reduce phase.
Assuming uniform key distribution of intermediate
data and no DFS data replication, this situation
would result in a permanent loss of intermediate
data. Unless the user specifies that the MapRe-
duce application should compute a partial result
based on the remaining data, the application will
fail. Our model reflects the default case.

8. CONCLUSIONS

This project contributes to our understanding of
MapReduce application performance on large-scale
distributed systems. First, our microbenchmarks

isolate important performance factors affecting Map-

Reduce. With the mrbench and mrbench-waves
benchmarks, we observe that the overheads incurred
by creating and maintaining multiple map and re-
duce tasks is significant. Furthermore, the mrbench-
files benchmark results indicate a strong decrease
in performance as we increase the number of files
managed by the DFS. Extrapolating these results,

Figure 8: MapReduce Application Model

Mapper Failure
Map Reduce
(Part 1) m Read, Work, (Part 1) r Read
and Write
rSort, Work,
and Write
Complete Reduce Map
P rComplete (Part 3) 'm Complete (Part 2)
Key Application
m : number of map tasks Fail
r : number of reduce tasks ailure Mapp?:rfl Reducer
ailure

we present a more robust model for MapReduce,
which takes machine failures into account. Finally,
we provide a discrete event simulation for MapRe-
duce based on real-world failure data. This sim-
ulation supplies the vital groundwork for future
statistical analysis of MapReduce performance on
large-scale clusters.

9. FUTURE DIRECTIONS

A significant amount of work lies ahead in ana-
lyzing the performance of MapReduce applications
via the new CFTsim. This analysis should examine
performance as we scale the numbers of map/reduce
tasks, compute nodes, and processor cores. A fu-
ture simulation might also consider the role of net-
working in application performance, as well as the
overheads and redundancy-related advantages of
distributed file system operations. Lastly, there
is work to be done in optimizing the efficiency of
the simulator itself. Much of its complexity could
be eliminated by removing its checkpointing and
rollback recovery components.

10. ACKNOWLEDGMENTS
We gratefully acknowledge the generous support of
the Denison Undergraduate Research Foundation,
which made this project possible.

I would like to thank Dr. Thomas Bressoud for
advising me during this project. His advice and
guidance were invaluable.

11. REFERENCES
[1] Apache Hadoop.
http://hadoop.apache.org, retrieved 1
November 2012.
[2] Thomas C. Bressoud and Michael Kozuch.
“Cluster Fault-Tolerance: An Experimental


http://hadoop.apache.org

[6]

Evaluation of Checkpointing and MapReduce
Through Simulation”. In Proceedings of the
2009 IEEE International Conference on
Cluster Computing. IEEE, 2009.

Jeffrey Dean and Sanjay Ghemawat.
“MapReduce: Simplified Data Processing on
Large Clusters”. In Proceedings of the 6th
Conference on Symposium on Opearting
Systems Design and Implementation -
Volume 6, OSDI’04. USENIX Association,
2004.

Florin Dinu and T.S. Eugene Ng.
“Understanding the Effects and Implications
of Compute Node Related Failures in
Hadoop”. In Proceedings of the 21st
International Symposium on
High-Performance Parallel and Distributed
Computing, HPDC ’12. ACM, 2012.

Los Alamos National Lab (LANL).
“Operational Data to Support and Enable
Computer Science Research”. http:
//institutes.lanl.gov/data/fdata/,
retrieved 1 November 2012.

Konstantin Shvachko, Hairong Kuang, Sanjay

[10]

Radia, and Robert Chansler. “The Hadoop
Distributed File System”. In Proceedings of
the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST),
MSST ’10. IEEE Computer Society, 2010.

J. Venner. Pro Hadoop (Expert’s Voice in
Open Source). Apress, New York, NY, 2009.
T. White. Hadoop - The Definitive Guide:
Storage and Analysis at Internet Scale.
O’Reilly, Sebastopol, CA, 2nd edition, 2011.
K. Wottrich and T. Bressoud. “The
Performance Characteristics of MapReduce
Applications on Scalable Clusters”. In
Proceedings of the Midstates Conference for
Undergraduate Research in Computer Science
and Mathematics (MCURCSM), 2011.

Matei Zaharia, Andy Konwinski, Anthony D.
Joseph, Randy Katz, and Ion Stoica.
“Improving MapReduce Performance in
Heterogeneous Environments”. In Proceedings
of the 8th USENIX Conference on Operating
Systems Design and Implementation,
OSDTI’08. USENIX Association, 2008.


http://institutes.lanl.gov/data/fdata/
http://institutes.lanl.gov/data/fdata/

	Introduction
	Background
	Application Phases
	Map
	Shuffle and Sort
	Reduce

	WordCount Example Application
	Fault Tolerance

	Prior Work
	Equipment
	Cluster Arrangement
	Network
	Hadoop

	The Benchmarks
	Results
	Modeling
	Conclusions
	Future Directions
	Acknowledgments
	References

