
S O C K E T S : I N T R O D U C T I O N

Sockets are a method of IPC that allow data to be exchanged between applications,
either on the same host (computer) or on different hosts connected by a network. The
first widespread implementation of the sockets API appeared with 4.2BSD in 1983,
and this API has been ported to virtually every UNIX implementation, as well as
most other operating systems.

The sockets API is formally specified in POSIX.1g, which was ratified in 2000
after spending about a decade as a draft standard. This standard has been
superseded by SUSv3.

This chapter and the following chapters describe the use of sockets, as follows:

z This chapter provides a general introduction to the sockets API. The following
chapters assume an understanding of the general concepts presented here. We
don’t present any example code in this chapter. Code examples in the UNIX
and Internet domains are presented in the following chapters.

z Chapter 57 describes UNIX domain sockets, which allow communication
between applications on the same host system.

z Chapter 58 introduces various computer networking concepts and describes
key features of the TCP/IP networking protocols. It provides background
needed for the next chapters.

z Chapter 59 describes Internet domain sockets, which allow applications on dif-
ferent hosts to communicate via a TCP/IP network.

1150 Chapter 56

z Chapter 60 discusses the design of servers that use sockets.

z Chapter 61 covers a range of advanced topics, including additional features for
socket I/O, a more detailed look at the TCP protocol, and the use of socket
options to retrieve and modify various attributes of sockets.

These chapters merely aim to give the reader a good grounding in the use of sockets.
Sockets programming, especially for network communication, is an enormous
topic in its own right, and forms the subject of entire books. Sources of further
information are listed in Section 59.15.

56.1 Overview
In a typical client-server scenario, applications communicate using sockets as follows:

z Each application creates a socket. A socket is the “apparatus” that allows com-
munication, and both applications require one.

z The server binds its socket to a well-known address (name) so that clients can
locate it.

A socket is created using the socket() system call, which returns a file descriptor used
to refer to the socket in subsequent system calls:

fd = socket(domain, type, protocol);

We describe socket domains and types in the following paragraphs. For all applica-
tions described in this book, protocol is always specified as 0.

Communication domains
Sockets exist in a communication domain, which determines:

z the method of identifying a socket (i.e., the format of a socket “address”); and

z the range of communication (i.e., either between applications on the same host
or between applications on different hosts connected via a network).

Modern operating systems support at least the following domains:

z The UNIX (AF_UNIX) domain allows communication between applications on
the same host. (POSIX.1g used the name AF_LOCAL as a synonym for AF_UNIX, but
this name is not used in SUSv3.)

z The IPv4 (AF_INET) domain allows communication between applications run-
ning on hosts connected via an Internet Protocol version 4 (IPv4) network.

z The IPv6 (AF_INET6) domain allows communication between applications running
on hosts connected via an Internet Protocol version 6 (IPv6) network.
Although IPv6 is designed as the successor to IPv4, the latter protocol is cur-
rently still the most widely used.

Table 56-1 summarizes the characteristics of these socket domains.

Sockets : In t roduct ion 1151

In some code, we may see constants with names such as PF_UNIX instead of
AF_UNIX. In this context, AF stands for “address family” and PF stands for “protocol
family.” Initially, it was conceived that a single protocol family might support
multiple address families. In practice, no protocol family supporting multiple
address families has ever been defined, and all existing implementations
define the PF_ constants to be synonymous with the corresponding AF_ constants.
(SUSv3 specifies the AF_ constants, but not the PF_ constants.) In this book, we
always use the AF_ constants. Further information about the history of these
constants can be found in Section 4.2 of [Stevens et al., 2004].

Socket types
Every sockets implementation provides at least two types of sockets: stream and
datagram. These socket types are supported in both the UNIX and the Internet
domains. Table 56-2 summarizes the properties of these socket types.

Stream sockets (SOCK_STREAM) provide a reliable, bidirectional, byte-stream communi-
cation channel. By the terms in this description, we mean the following:

z Reliable means that we are guaranteed that either the transmitted data will
arrive intact at the receiving application, exactly as it was transmitted by the
sender (assuming that neither the network link nor the receiver crashes), or
that we’ll receive notification of a probable failure in transmission.

z Bidirectional means that data may be transmitted in either direction between
two sockets.

z Byte-stream means that, as with pipes, there is no concept of message bound-
aries (refer to Section 44.1).

Table 56-1: Socket domains

Domain Communication
performed

Communication
between applications

Address format Address
structure

AF_UNIX within kernel on same host pathname sockaddr_un
AF_INET via IPv4 on hosts connected

via an IPv4 network
32-bit IPv4 address +
16-bit port number

sockaddr_in

AF_INET6 via IPv6 on hosts connected
via an IPv6 network

128-bit IPv6 address +
16-bit port number

sockaddr_in6

Table 56-2: Socket types and their properties

Property
Socket type

Stream Datagram

Reliable delivery? Y N
Message boundaries preserved? N Y
Connection-oriented? Y N

1152 Chapter 56

A stream socket is similar to using a pair of pipes to allow bidirectional communica-
tion between two applications, with the difference that (Internet domain) sockets
permit communication over a network.

Stream sockets operate in connected pairs. For this reason, stream sockets are
described as connection-oriented. The term peer socket refers to the socket at the other
end of a connection; peer address denotes the address of that socket; and peer
application denotes the application utilizing the peer socket. Sometimes, the term
remote (or foreign) is used synonymously with peer. Analogously, sometimes the term
local is used to refer to the application, socket, or address for this end of the con-
nection. A stream socket can be connected to only one peer.

Datagram sockets (SOCK_DGRAM) allow data to be exchanged in the form of mes-
sages called datagrams. With datagram sockets, message boundaries are preserved,
but data transmission is not reliable. Messages may arrive out of order, be dupli-
cated, or not arrive at all.

Datagram sockets are an example of the more generic concept of a
connectionless socket. Unlike a stream socket, a datagram socket doesn’t need to be
connected to another socket in order to be used. (In Section 56.6.2, we’ll see that
datagram sockets may be connected with one another, but this has somewhat dif-
ferent semantics from connected stream sockets.)

In the Internet domain, datagram sockets employ the User Datagram Protocol
(UDP), and stream sockets (usually) employ the Transmission Control Protocol (TCP).
Instead of using the terms Internet domain datagram socket and Internet domain stream
socket, we’ll often just use the terms UDP socket and TCP socket, respectively.

Socket system calls
The key socket system calls are the following:

z The socket() system call creates a new socket.

z The bind() system call binds a socket to an address. Usually, a server employs
this call to bind its socket to a well-known address so that clients can locate
the socket.

z The listen() system call allows a stream socket to accept incoming connections
from other sockets.

z The accept() system call accepts a connection from a peer application on a listen-
ing stream socket, and optionally returns the address of the peer socket.

z The connect() system call establishes a connection with another socket.

On most Linux architectures (the exceptions include Alpha and IA-64), all of
the sockets system calls are actually implemented as library functions multi-
plexed through a single system call, socketcall(). (This is an artifact of the original
development of the Linux sockets implementation as a separate project.)
Nevertheless, we refer to all of these functions as system calls in this book,
since this is what they were in the original BSD implementation, as well as in
many other contemporary UNIX implementations.

Sockets : In t roduct ion 1153

Socket I/O can be performed using the conventional read() and write() system calls,
or using a range of socket-specific system calls (e.g., send(), recv(), sendto(), and
recvfrom()). By default, these system calls block if the I/O operation can’t be com-
pleted immediately. Nonblocking I/O is also possible, by using the fcntl() F_SETFL
operation (Section 5.3) to enable the O_NONBLOCK open file status flag.

On Linux, we can call ioctl(fd, FIONREAD, &cnt) to obtain the number of
unread bytes available on the stream socket referred to by the file descriptor
fd. For a datagram socket, this operation returns the number of bytes in the
next unread datagram (which may be zero if the next datagram is of zero
length), or zero if there are no pending datagrams. This feature is not speci-
fied in SUSv3.

56.2 Creating a Socket: socket()

The socket() system call creates a new socket.

The domain argument specifies the communication domain for the socket. The type
argument specifies the socket type. This argument is usually specified as either
SOCK_STREAM, to create a stream socket, or SOCK_DGRAM, to create a datagram socket.

The protocol argument is always specified as 0 for the socket types we describe in
this book. Nonzero protocol values are used with some socket types that we don’t
describe. For example, protocol is specified as IPPROTO_RAW for raw sockets (SOCK_RAW).

On success, socket() returns a file descriptor used to refer to the newly created
socket in later system calls.

Starting with kernel 2.6.27, Linux provides a second use for the type argument,
by allowing two nonstandard flags to be ORed with the socket type. The
SOCK_CLOEXEC flag causes the kernel to enable the close-on-exec flag (FD_CLOEXEC)
for the new file descriptor. This flag is useful for the same reasons as the open()
O_CLOEXEC flag described in Section 4.3.1. The SOCK_NONBLOCK flag causes the kernel
to set the O_NONBLOCK flag on the underlying open file description, so that future
I/O operations on the socket will be nonblocking. This saves additional calls
to fcntl() to achieve the same result.

56.3 Binding a Socket to an Address: bind()

The bind() system call binds a socket to an address.

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Returns file descriptor on success, or –1 on error

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

Returns 0 on success, or –1 on error

1154 Chapter 56

The sockfd argument is a file descriptor obtained from a previous call to socket(). The
addr argument is a pointer to a structure specifying the address to which this socket
is to be bound. The type of structure passed in this argument depends on the
socket domain. The addrlen argument specifies the size of the address structure.
The socklen_t data type used for the addrlen argument is an integer type specified
by SUSv3.

Typically, we bind a server’s socket to a well-known address—that is, a fixed
address that is known in advance to client applications that need to communicate
with that server.

There are other possibilities than binding a server’s socket to a well-known
address. For example, for an Internet domain socket, the server could omit the
call to bind() and simply call listen(), which causes the kernel to choose an ephem-
eral port for that socket. (We describe ephemeral ports in Section 58.6.1.)
Afterward, the server can use getsockname() (Section 61.5) to retrieve the
address of its socket. In this scenario, the server must then publish that address
so that clients know how to locate the server’s socket. Such publication could
be done by registering the server’s address with a centralized directory service
application that clients then contact in order to obtain the address. (For example,
Sun RPC solves this problem using its portmapper server.) Of course, the
directory service application’s socket must reside at a well-known address.

56.4 Generic Socket Address Structures: struct sockaddr

The addr and addrlen arguments to bind() require some further explanation. Look-
ing at Table 56-1, we see that each socket domain uses a different address format.
For example, UNIX domain sockets use pathnames, while Internet domain sockets
use the combination of an IP address plus a port number. For each socket domain, a
different structure type is defined to store a socket address. However, because system
calls such as bind() are generic to all socket domains, they must be able to accept
address structures of any type. In order to permit this, the sockets API defines a
generic address structure, struct sockaddr. The only purpose for this type is to cast the
various domain-specific address structures to a single type for use as arguments in
the socket system calls. The sockaddr structure is typically defined as follows:

struct sockaddr {
 sa_family_t sa_family; /* Address family (AF_* constant) */
 char sa_data[14]; /* Socket address (size varies
 according to socket domain) */
};

This structure serves as a template for all of the domain-specific address structures.
Each of these address structures begins with a family field corresponding to the
sa_family field of the sockaddr structure. (The sa_family_t data type is an integer type
specified in SUSv3.) The value in the family field is sufficient to determine the size
and format of the address stored in the remainder of the structure.

Some UNIX implementations also define an additional field in the sockaddr
structure, sa_len, that specifies the total size of the structure. SUSv3 doesn’t
require this field, and it is not present in the Linux implementation of the
sockets API.

Sockets : In t roduct ion 1155

If we define the _GNU_SOURCE feature test macro, then glibc prototypes the
various socket system calls in <sys/socket.h> using a gcc extension that elimi-
nates the need for the (struct sockaddr *) cast. However, reliance on this feature
is nonportable (it will result in compilation warnings on other systems).

56.5 Stream Sockets
The operation of stream sockets can be explained by analogy with the telephone
system:

1. The socket() system call, which creates a socket, is the equivalent of installing a
telephone. In order for two applications to communicate, each of them must
create a socket.

2. Communication via a stream socket is analogous to a telephone call. One applica-
tion must connect its socket to another application’s socket before communication
can take place. Two sockets are connected as follows:

a) One application calls bind() in order to bind the socket to a well-known
address, and then calls listen() to notify the kernel of its willingness to
accept incoming connections. This step is analogous to having a known
telephone number and ensuring that our telephone is turned on so that
people can call us.

b) The other application establishes the connection by calling connect(), speci-
fying the address of the socket to which the connection is to be made. This
is analogous to dialing someone’s telephone number.

c) The application that called listen() then accepts the connection using accept().
This is analogous to picking up the telephone when it rings. If the accept() is
performed before the peer application calls connect(), then the accept() blocks
(“waiting by the telephone”).

3. Once a connection has been established, data can be transmitted in both direc-
tions between the applications (analogous to a two-way telephone conversation)
until one of them closes the connection using close(). Communication is performed
using the conventional read() and write() system calls or via a number of socket-
specific system calls (such as send() and recv()) that provide additional functionality.

Figure 56-1 illustrates the use of the system calls used with stream sockets.

Active and passive sockets
Stream sockets are often distinguished as being either active or passive:

z By default, a socket that has been created using socket() is active. An active socket
can be used in a connect() call to establish a connection to a passive socket. This is
referred to as performing an active open.

z A passive socket (also called a listening socket) is one that has been marked to
allow incoming connections by calling listen(). Accepting an incoming connec-
tion is referred to as performing a passive open.

1156 Chapter 56

In most applications that employ stream sockets, the server performs the passive
open, and the client performs the active open. We presume this scenario in subse-
quent sections, so that instead of saying “the application that performs the active
socket open,” we’ll often just say “the client.” Similarly, we’ll equate “the server”
with “the application that performs the passive socket open.”

Figure 56-1: Overview of system calls used with stream sockets

56.5.1 Listening for Incoming Connections: listen()
The listen() system call marks the stream socket referred to by the file descriptor
sockfd as passive. The socket will subsequently be used to accept connections from
other (active) sockets.

We can’t apply listen() to a connected socket—that is, a socket on which a connect()
has been successfully performed or a socket returned by a call to accept().

To understand the purpose of the backlog argument, we first observe that the
client may call connect() before the server calls accept(). This could happen, for
example, because the server is busy handling some other client(s). This results in a
pending connection, as illustrated in Figure 56-2.

Passive socket
(server)

blocks until
client connects

resumes

(Possibly multiple) data
transfers in either direction

Active socket
(client)

write()

read()

close()

socket()

connect()

socket()

bind()

listen()

accept()

read()

write()

close()

#include <sys/socket.h>

int listen(int sockfd, int backlog);

Returns 0 on success, or –1 on error

Sockets : In t roduct ion 1157

Figure 56-2: A pending socket connection

The kernel must record some information about each pending connection request
so that a subsequent accept() can be processed. The backlog argument allows us to
limit the number of such pending connections. Connection requests up to this limit
succeed immediately. (For TCP sockets, the story is a little more complicated, as we’ll
see in Section 61.6.4.) Further connection requests block until a pending connection
is accepted (via accept()), and thus removed from the queue of pending connections.

SUSv3 allows an implementation to place an upper limit on the value that can
be specified for backlog, and permits an implementation to silently round backlog
values down to this limit. SUSv3 specifies that the implementation should advertise
this limit by defining the constant SOMAXCONN in <sys/socket.h>. On Linux, this con-
stant is defined with the value 128. However, since kernel 2.4.25, Linux allows this
limit to be adjusted at run time via the Linux-specific /proc/sys/net/core/somaxconn
file. (In earlier kernel versions, the SOMAXCONN limit is immutable.)

In the original BSD sockets implementation, the upper limit for backlog was 5,
and we may see this number specified in older code. All modern implementa-
tions allow higher values of backlog, which are necessary for network servers
employing TCP sockets to serve large numbers of clients.

56.5.2 Accepting a Connection: accept()
The accept() system call accepts an incoming connection on the listening stream
socket referred to by the file descriptor sockfd. If there are no pending connections
when accept() is called, the call blocks until a connection request arrives.

Passive socket
(server)

Active socket
(client)

may block, depending on
number of backlogged
connection requests

socket()

bind()

listen()

accept()

socket()

connect()

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

Returns file descriptor on success, or –1 on error

1158 Chapter 56

The key point to understand about accept() is that it creates a new socket, and it is
this new socket that is connected to the peer socket that performed the connect(). A
file descriptor for the connected socket is returned as the function result of the
accept() call. The listening socket (sockfd) remains open, and can be used to accept
further connections. A typical server application creates one listening socket, binds
it to a well-known address, and then handles all client requests by accepting con-
nections via that socket.

The remaining arguments to accept() return the address of the peer socket. The
addr argument points to a structure that is used to return the socket address. The type
of this argument depends on the socket domain (as for bind()).

The addrlen argument is a value-result argument. It points to an integer that,
prior to the call, must be initialized to the size of the buffer pointed to by addr, so
that the kernel knows how much space is available to return the socket address.
Upon return from accept(), this integer is set to indicate the number of bytes of data
actually copied into the buffer.

If we are not interested in the address of the peer socket, then addr and addrlen
should be specified as NULL and 0, respectively. (If desired, we can retrieve the peer’s
address later using the getpeername() system call, as described in Section 61.5.)

Starting with kernel 2.6.28, Linux supports a new, nonstandard system call,
accept4(). This system call performs the same task as accept(), but supports an
additional argument, flags, that can be used to modify the behavior of the system
call. Two flags are supported: SOCK_CLOEXEC and SOCK_NONBLOCK. The SOCK_CLOEXEC
flag causes the kernel to enable the close-on-exec flag (FD_CLOEXEC) for the new
file descriptor returned by the call. This flag is useful for the same reasons as
the open() O_CLOEXEC flag described in Section 4.3.1. The SOCK_NONBLOCK flag
causes the kernel to enable the O_NONBLOCK flag on the underlying open file
description, so that future I/O operations on the socket will be nonblocking.
This saves additional calls to fcntl() to achieve the same result.

56.5.3 Connecting to a Peer Socket: connect()
The connect() system call connects the active socket referred to by the file descriptor
sockfd to the listening socket whose address is specified by addr and addrlen.

The addr and addrlen arguments are specified in the same way as the corresponding
arguments to bind().

If connect() fails and we wish to reattempt the connection, then SUSv3 specifies
that the portable method of doing so is to close the socket, create a new socket, and
reattempt the connection with the new socket.

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

Returns 0 on success, or –1 on error

Sockets : In t roduct ion 1159

56.5.4 I/O on Stream Sockets
A pair of connected stream sockets provides a bidirectional communication chan-
nel between the two endpoints. Figure 56-3 shows what this looks like in the UNIX
domain.

Figure 56-3: UNIX domain stream sockets provide a bidirectional communication channel

The semantics of I/O on connected stream sockets are similar to those for pipes:

z To perform I/O, we use the read() and write() system calls (or the socket-specific
send() and recv(), which we describe in Section 61.3). Since sockets are bidirec-
tional, both calls may be used on each end of the connection.

z A socket may be closed using the close() system call or as a consequence of the
application terminating. Afterward, when the peer application attempts to
read from the other end of the connection, it receives end-of-file (once all buff-
ered data has been read). If the peer application attempts to write to its socket,
it receives a SIGPIPE signal, and the system call fails with the error EPIPE. As we
noted in Section 44.2, the usual way of dealing with this possibility is to ignore
the SIGPIPE signal and find out about the closed connection via the EPIPE error.

56.5.5 Connection Termination: close()
The usual way of terminating a stream socket connection is to call close(). If multiple
file descriptors refer to the same socket, then the connection is terminated when all
of the descriptors are closed.

Suppose that, after we close a connection, the peer application crashes or other-
wise fails to read or correctly process the data that we previously sent to it. In this
case, we have no way of knowing that an error occurred. If we need to ensure that
the data was successfully read and processed, then we must build some type of
acknowledgement protocol into our application. This normally consists of an
explicit acknowledgement message passed back to us from the peer.

In Section 61.2, we describe the shutdown() system call, which provides finer
control of how a stream socket connection is closed.

56.6 Datagram Sockets
The operation of datagram sockets can be explained by analogy with the postal system:

1. The socket() system call is the equivalent of setting up a mailbox. (Here, we
assume a system like the rural postal service in some countries, which both
picks up letters from and delivers letters to the mailbox.) Each application that
wants to send or receive datagrams creates a datagram socket using socket().

 sockfd

Application A Kernel

 sockfd

Application B

buffer

buffer

1160 Chapter 56

2. In order to allow another application to send it datagrams (letters), an applica-
tion uses bind() to bind its socket to a well-known address. Typically, a server
binds its socket to a well-known address, and a client initiates communication
by sending a datagram to that address. (In some domains—notably the UNIX
domain—the client may also need to use bind() to assign an address to its socket
if it wants to receive datagrams sent by the server.)

3. To send a datagram, an application calls sendto(), which takes as one of its argu-
ments the address of the socket to which the datagram is to be sent. This is
analogous to putting the recipient’s address on a letter and posting it.

4. In order to receive a datagram, an application calls recvfrom(), which may block
if no datagram has yet arrived. Because recvfrom() allows us to obtain the
address of the sender, we can send a reply if desired. (This is useful if the
sender’s socket is bound to an address that is not well known, which is typical
of a client.) Here, we stretch the analogy a little, since there is no requirement
that a posted letter is marked with the sender’s address.

5. When the socket is no longer needed, the application closes it using close().

Just as with the postal system, when multiple datagrams (letters) are sent from one
address to another, there is no guarantee that they will arrive in the order they
were sent, or even arrive at all. Datagrams add one further possibility not present
in the postal system: since the underlying networking protocols may sometimes
retransmit a data packet, the same datagram could arrive more than once.

Figure 56-4 illustrates the use of the system calls employed with datagram sockets.

Figure 56-4: Overview of system calls used with datagram sockets

56.6.1 Exchanging Datagrams: recvfrom() and sendto()
The recvfrom() and sendto() system calls receive and send datagrams on a datagram
socket.

Client

Server

(Possibly multiple) data
transfers in either direction

socket()

bind()

recvfrom()

sendto()

close()

sendto()

recvfrom()

close()

socket()

Sockets : In t roduct ion 1161

The return value and the first three arguments to these system calls are the same as
for read() and write().

The fourth argument, flags, is a bit mask controlling socket-specific I/O fea-
tures. We cover these features when we describe the recv() and send() system calls in
Section 61.3. If we don’t require any of these features, we can specify flags as 0.

The src_addr and addrlen arguments are used to obtain or specify the address of
the peer socket with which we are communicating.

For recvfrom(), the src_addr and addrlen arguments return the address of the
remote socket used to send the datagram. (These arguments are analogous to the addr
and addrlen arguments of accept(), which return the address of a connecting peer
socket.) The src_addr argument is a pointer to an address structure appropriate to
the communication domain. As with accept(), addrlen is a value-result argument.
Prior to the call, addrlen should be initialized to the size of the structure pointed to by
src_addr; upon return, it contains the number of bytes actually written to this structure.

If we are not interested in the address of the sender, then we specify both
src_addr and addrlen as NULL. In this case, recvfrom() is equivalent to using recv() to
receive a datagram. We can also use read() to read a datagram, which is equivalent
to using recv() with a flags argument of 0.

Regardless of the value specified for length, recvfrom() retrieves exactly one mes-
sage from a datagram socket. If the size of that message exceeds length bytes, the
message is silently truncated to length bytes.

If we employ the recvmsg() system call (Section 61.13.2), then it is possible to
find out about a truncated datagram via the MSG_TRUNC flag returned in the
msg_flags field of the returned msghdr structure. See the recvmsg(2) manual
page for details.

For sendto(), the dest_addr and addrlen arguments specify the socket to which the
datagram is to be sent. These arguments are employed in the same manner as the
corresponding arguments to connect(). The dest_addr argument is an address struc-
ture suitable for this communication domain. It is initialized with the address of the
destination socket. The addrlen argument specifies the size of addr.

On Linux, it is possible to use sendto() to send datagrams of length 0. However,
not all UNIX implementations permit this.

#include <sys/socket.h>

ssize_t recvfrom(int sockfd, void *buffer, size_t length, int flags,
 struct sockaddr *src_addr, socklen_t *addrlen);

Returns number of bytes received, 0 on EOF, or –1 on error

ssize_t sendto(int sockfd, const void *buffer, size_t length, int flags,
 const struct sockaddr *dest_addr, socklen_t addrlen);

Returns number of bytes sent, or –1 on error

1162 Chapter 56

56.6.2 Using connect() with Datagram Sockets
Even though datagram sockets are connectionless, the connect() system call serves a
purpose when applied to datagram sockets. Calling connect() on a datagram socket
causes the kernel to record a particular address as this socket’s peer. The term
connected datagram socket is applied to such a socket. The term unconnected datagram
socket is applied to a datagram socket on which connect() has not been called (i.e.,
the default for a new datagram socket).

After a datagram socket has been connected:

z Datagrams can be sent through the socket using write() (or send()) and are auto-
matically sent to the same peer socket. As with sendto(), each write() call results
in a separate datagram.

z Only datagrams sent by the peer socket may be read on the socket.

Note that the effect of connect() is asymmetric for datagram sockets. The above
statements apply only to the socket on which connect() has been called, not to the
remote socket to which it is connected (unless the peer application also calls
connect() on its socket).

We can change the peer of a connected datagram socket by issuing a further
connect() call. It is also possible to dissolve the peer association altogether by speci-
fying an address structure in which the address family (e.g., the sun_family field in
the UNIX domain) is specified as AF_UNSPEC. Note, however, that many other UNIX
implementations don’t support the use of AF_UNSPEC for this purpose.

SUSv3 was somewhat vague about dissolving peer associations, stating that a
connection can be reset by making a connect() call that specifies a “null address,”
without defining that term. SUSv4 explicitly specifies the use of AF_UNSPEC.

The obvious advantage of setting the peer for a datagram socket is that we can use
simpler I/O system calls when transmitting data on the socket. We no longer need
to use sendto() with dest_addr and addrlen arguments, but can instead use write(). Setting
the peer is useful primarily in an application that needs to send multiple datagrams
to a single peer (which is typical of some datagram clients).

On some TCP/IP implementations, connecting a datagram socket to a peer
yields a performance improvement ([Stevens et al., 2004]). On Linux, connect-
ing a datagram socket makes little difference to performance.

56.7 Summary
Sockets allow communication between applications on the same host or on different
hosts connected via a network.

A socket exists within a communication domain, which determines the range
of communication and the address format used to identify the socket. SUSv3 specifies
the UNIX (AF_UNIX), IPv4 (AF_INET), and IPv6 (AF_INET6) communication domains.

Most applications use one of two socket types: stream or datagram. Stream
sockets (SOCK_STREAM) provide a reliable, bidirectional, byte-stream communication
channel between two endpoints. Datagram sockets (SOCK_DGRAM) provide unreliable,
connectionless, message-oriented communication.

Sockets : In t roduct ion 1163

A typical stream socket server creates its socket using socket(), and then binds
the socket to a well-known address using bind(). The server then calls listen() to
allow connections to be received on the socket. Each client connection is then
accepted on the listening socket using accept(), which returns a file descriptor for a
new socket that is connected to the client’s socket. A typical stream socket client
creates a socket using socket(), and then establishes a connection by calling connect(),
specifying the server’s well-known address. After two stream sockets are connected,
data can be transferred in either direction using read() and write(). Once all pro-
cesses with a file descriptor referring to a stream socket endpoint have performed
an implicit or explicit close(), the connection is terminated.

A typical datagram socket server creates a socket using socket(), and then binds
it to a well-known address using bind(). Because datagram sockets are connectionless,
the server’s socket can be used to receive datagrams from any client. Datagrams can
be received using read() or using the socket-specific recvfrom() system call, which
returns the address of the sending socket. A datagram socket client creates a socket
using socket(), and then uses sendto() to send a datagram to a specified (i.e., the
server’s) address. The connect() system call can be used with a datagram socket to set a
peer address for the socket. After doing this, it is no longer necessary to specify the des-
tination address for outgoing datagrams; a write() call can be used to send a datagram.

Further information
Refer to the sources of further information listed in Section 59.15.

S O C K E T S : U N I X D O M A I N

This chapter looks at the use of UNIX domain sockets, which allow communication
between processes on the same host system. We discuss the use of both stream and
datagram sockets in the UNIX domain. We also describe the use of file permissions
to control access to UNIX domain sockets, the use of socketpair() to create a pair of
connected UNIX domain sockets, and the Linux abstract socket namespace.

57.1 UNIX Domain Socket Addresses: struct sockaddr_un

In the UNIX domain, a socket address takes the form of a pathname, and the
domain-specific socket address structure is defined as follows:

struct sockaddr_un {
 sa_family_t sun_family; /* Always AF_UNIX */
 char sun_path[108]; /* Null-terminated socket pathname */
};

The prefix sun_ in the fields of the sockaddr_un structure has nothing to do
with Sun Microsystems; rather, it derives from socket unix.

SUSv3 doesn’t specify the size of the sun_path field. Early BSD implementations
used 108 and 104 bytes, and one contemporary implementation (HP-UX 11) uses
92 bytes. Portable applications should code to this lower value, and use snprintf() or
strncpy() to avoid buffer overruns when writing into this field.

1166 Chapter 57

In order to bind a UNIX domain socket to an address, we initialize a
sockaddr_un structure, and then pass a (cast) pointer to this structure as the addr
argument to bind(), and specify addrlen as the size of the structure, as shown in
Listing 57-1.

Listing 57-1: Binding a UNIX domain socket

 const char *SOCKNAME = "/tmp/mysock";
 int sfd;
 struct sockaddr_un addr;

 sfd = socket(AF_UNIX, SOCK_STREAM, 0); /* Create socket */
 if (sfd == -1)
 errExit("socket");

 memset(&addr, 0, sizeof(struct sockaddr_un)); /* Clear structure */
 addr.sun_family = AF_UNIX; /* UNIX domain address */
 strncpy(addr.sun_path, SOCKNAME, sizeof(addr.sun_path) - 1);

 if (bind(sfd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un)) == -1)
 errExit("bind");

The use of the memset() call in Listing 57-1 ensures that all of the structure fields
have the value 0. (The subsequent strncpy() call takes advantage of this by specifying
its final argument as one less than the size of the sun_path field, to ensure that this
field always has a terminating null byte.) Using memset() to zero out the entire struc-
ture, rather than initializing individual fields, ensures that any nonstandard fields
that are provided by some implementations are also initialized to 0.

The BSD-derived function bzero() is an alternative to memset() for zeroing the
contents of a structure. SUSv3 specifies bzero() and the related bcopy() (which is sim-
ilar to memmove()), but marks both functions LEGACY, noting that memset() and
memmove() are preferred. SUSv4 removes the specifications of bzero() and bcopy().

When used to bind a UNIX domain socket, bind() creates an entry in the file system.
(Thus, a directory specified as part of the socket pathname needs to be accessible
and writable.) The ownership of the file is determined according to the usual rules
for file creation (Section 15.3.1). The file is marked as a socket. When stat() is
applied to this pathname, it returns the value S_IFSOCK in the file-type component of
the st_mode field of the stat structure (Section 15.1). When listed with ls –l, a UNIX
domain socket is shown with the type s in the first column, and ls –F appends an
equal sign (=) to the socket pathname.

Although UNIX domain sockets are identified by pathnames, I/O on these
sockets doesn’t involve operations on the underlying device.

The following points are worth noting about binding a UNIX domain socket:

z We can’t bind a socket to an existing pathname (bind() fails with the error
EADDRINUSE).

Sockets: UNIX Domain 1167

z It is usual to bind a socket to an absolute pathname, so that the socket resides
at a fixed address in the file system. Using a relative pathname is possible, but
unusual, because it requires an application that wants to connect() to this socket to
know the current working directory of the application that performs the bind().

z A socket may be bound to only one pathname; conversely, a pathname can be
bound to only one socket.

z We can’t use open() to open a socket.

z When the socket is no longer required, its pathname entry can (and generally
should) be removed using unlink() (or remove()).

In most of our example programs, we bind UNIX domain sockets to pathnames in
the /tmp directory, because this directory is normally present and writable on every
system. This makes it easy for the reader to run these programs without needing to
first edit the socket pathnames. Be aware, however, that this is generally not a good
design technique. As pointed out in Section 38.7, creating files in publicly writable
directories such as /tmp can lead to various security vulnerabilities. For example, by
creating a pathname in /tmp with the same name as that used by the application
socket, we can create a simple denial-of-service attack. Real-world applications
should bind() UNIX domain sockets to absolute pathnames in suitably secured
directories.

57.2 Stream Sockets in the UNIX Domain
We now present a simple client-server application that uses stream sockets in the
UNIX domain. The client program (Listing 57-4) connects to the server, and uses
the connection to transfer data from its standard input to the server. The server
program (Listing 57-3) accepts client connections, and transfers all data sent on the
connection by the client to standard output. The server is a simple example of an
iterative server—a server that handles one client at a time before proceeding to the
next client. (We consider server design in more detail in Chapter 60.)

Listing 57-2 is the header file used by both of these programs.

Listing 57-2: Header file for us_xfr_sv.c and us_xfr_cl.c
––– sockets/us_xfr.h

#include <sys/un.h>
#include <sys/socket.h>
#include "tlpi_hdr.h"

#define SV_SOCK_PATH "/tmp/us_xfr"

#define BUF_SIZE 100

––– sockets/us_xfr.h

In the following pages, we first present the source code of the server and client,
and then discuss the details of these programs and show an example of their use.

1168 Chapter 57

Listing 57-3: A simple UNIX domain stream socket server
–– sockets/us_xfr_sv.c

#include "us_xfr.h"

#define BACKLOG 5

int
main(int argc, char *argv[])
{
 struct sockaddr_un addr;
 int sfd, cfd;
 ssize_t numRead;
 char buf[BUF_SIZE];

 sfd = socket(AF_UNIX, SOCK_STREAM, 0);
 if (sfd == -1)
 errExit("socket");

 /* Construct server socket address, bind socket to it,
 and make this a listening socket */

 if (remove(SV_SOCK_PATH) == -1 && errno != ENOENT)
 errExit("remove-%s", SV_SOCK_PATH);

 memset(&addr, 0, sizeof(struct sockaddr_un));
 addr.sun_family = AF_UNIX;
 strncpy(addr.sun_path, SV_SOCK_PATH, sizeof(addr.sun_path) - 1);

 if (bind(sfd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un)) == -1)
 errExit("bind");

 if (listen(sfd, BACKLOG) == -1)
 errExit("listen");

 for (;;) { /* Handle client connections iteratively */

 /* Accept a connection. The connection is returned on a new
 socket, 'cfd'; the listening socket ('sfd') remains open
 and can be used to accept further connections. */

 cfd = accept(sfd, NULL, NULL);
 if (cfd == -1)
 errExit("accept");

 /* Transfer data from connected socket to stdout until EOF */

 while ((numRead = read(cfd, buf, BUF_SIZE)) > 0)
 if (write(STDOUT_FILENO, buf, numRead) != numRead)
 fatal("partial/failed write");

 if (numRead == -1)
 errExit("read");

Sockets: UNIX Domain 1169

 if (close(cfd) == -1)
 errMsg("close");
 }
}

–– sockets/us_xfr_sv.c

Listing 57-4: A simple UNIX domain stream socket client
–– sockets/us_xfr_cl.c

#include "us_xfr.h"

int
main(int argc, char *argv[])
{
 struct sockaddr_un addr;
 int sfd;
 ssize_t numRead;
 char buf[BUF_SIZE];

 sfd = socket(AF_UNIX, SOCK_STREAM, 0); /* Create client socket */
 if (sfd == -1)
 errExit("socket");

 /* Construct server address, and make the connection */

 memset(&addr, 0, sizeof(struct sockaddr_un));
 addr.sun_family = AF_UNIX;
 strncpy(addr.sun_path, SV_SOCK_PATH, sizeof(addr.sun_path) - 1);

 if (connect(sfd, (struct sockaddr *) &addr,
 sizeof(struct sockaddr_un)) == -1)
 errExit("connect");

 /* Copy stdin to socket */

 while ((numRead = read(STDIN_FILENO, buf, BUF_SIZE)) > 0)
 if (write(sfd, buf, numRead) != numRead)
 fatal("partial/failed write");

 if (numRead == -1)
 errExit("read");

 exit(EXIT_SUCCESS); /* Closes our socket; server sees EOF */
}

–– sockets/us_xfr_cl.c

The server program is shown in Listing 57-3. The server performs the following
steps:

z Create a socket.

z Remove any existing file with the same pathname as that to which we want to
bind the socket.

1170 Chapter 57

z Construct an address structure for the server’s socket, bind the socket to that
address, and mark the socket as a listening socket.

z Execute an infinite loop to handle incoming client requests. Each loop itera-
tion performs the following steps:

– Accept a connection, obtaining a new socket, cfd, for the connection.

– Read all of the data from the connected socket and write it to standard output.

– Close the connected socket cfd.

The server must be terminated manually (e.g., by sending it a signal).
The client program (Listing 57-4) performs the following steps:

z Create a socket.

z Construct the address structure for the server’s socket and connect to the
socket at that address.

z Execute a loop that copies its standard input to the socket connection. Upon
encountering end-of-file in its standard input, the client terminates, with the
result that its socket is closed and the server sees end-of-file when reading from
the socket on the other end of the connection.

The following shell session log demonstrates the use of these programs. We begin
by running the server in the background:

$./us_xfr_sv > b &
[1] 9866
$ ls -lF /tmp/us_xfr Examine socket file with ls
srwxr-xr-x 1 mtk users 0 Jul 18 10:48 /tmp/us_xfr=

We then create a test file to be used as input for the client, and run the client:

$ cat *.c > a
$./us_xfr_cl < a Client takes input from test file

At this point, the child has completed. Now we terminate the server as well, and
check that the server’s output matches the client’s input:

$ kill %1 Terminate server
 [1]+ Terminated ./us_xfr_sv >b Shell sees server’s termination
$ diff a b
$

The diff command produces no output, indicating that the input and output files
are identical.

Note that after the server terminates, the socket pathname continues to exist.
This is why the server uses remove() to remove any existing instance of the socket
pathname before calling bind(). (Assuming we have appropriate permissions, this
remove() call would remove any type of file with this pathname, even if it wasn’t a
socket.) If we did not do this, then the bind() call would fail if a previous invocation
of the server had already created this socket pathname.

Sockets: UNIX Domain 1171

57.3 Datagram Sockets in the UNIX Domain
In the generic description of datagram sockets that we provided in Section 56.6, we
stated that communication using datagram sockets is unreliable. This is the case for
datagrams transferred over a network. However, for UNIX domain sockets, data-
gram transmission is carried out within the kernel, and is reliable. All messages are
delivered in order and unduplicated.

Maximum datagram size for UNIX domain datagram sockets
SUSv3 doesn’t specify a maximum size for datagrams sent via a UNIX domain
socket. On Linux, we can send quite large datagrams. The limits are controlled via
the SO_SNDBUF socket option and various /proc files, as described in the socket(7) manual
page. However, some other UNIX implementations impose lower limits, such as
2048 bytes. Portable applications employing UNIX domain datagram sockets
should consider imposing a low upper limit on the size of datagrams used.

Example program
Listing 57-6 and Listing 57-7 show a simple client-server application using UNIX
domain datagram sockets. Both of these programs make use of the header file
shown in Listing 57-5.

Listing 57-5: Header file used by ud_ucase_sv.c and ud_ucase_cl.c
––– sockets/ud_ucase.h

#include <sys/un.h>
#include <sys/socket.h>
#include <ctype.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 10 /* Maximum size of messages exchanged
 between client to server */

#define SV_SOCK_PATH "/tmp/ud_ucase"

––– sockets/ud_ucase.h

The server program (Listing 57-6) first creates a socket and binds it to a well-known
address. (Beforehand, the server unlinks the pathname matching that address, in
case the pathname already exists.) The server then enters an infinite loop, using
recvfrom() to receive datagrams from clients, converting the received text to upper-
case, and returning the converted text to the client using the address obtained via
recvfrom().

The client program (Listing 57-7) creates a socket and binds the socket to an
address, so that the server can send its reply. The client address is made unique by
including the client’s process ID in the pathname. The client then loops, sending
each of its command-line arguments as a separate message to the server. After
sending each message, the client reads the server response and displays it on stan-
dard output.

1172 Chapter 57

Listing 57-6: A simple UNIX domain datagram server
––– sockets/ud_ucase_sv.c

#include "ud_ucase.h"

int
main(int argc, char *argv[])
{
 struct sockaddr_un svaddr, claddr;
 int sfd, j;
 ssize_t numBytes;
 socklen_t len;
 char buf[BUF_SIZE];

 sfd = socket(AF_UNIX, SOCK_DGRAM, 0); /* Create server socket */
 if (sfd == -1)
 errExit("socket");

 /* Construct well-known address and bind server socket to it */

 if (remove(SV_SOCK_PATH) == -1 && errno != ENOENT)
 errExit("remove-%s", SV_SOCK_PATH);

 memset(&svaddr, 0, sizeof(struct sockaddr_un));
 svaddr.sun_family = AF_UNIX;
 strncpy(svaddr.sun_path, SV_SOCK_PATH, sizeof(svaddr.sun_path) - 1);

 if (bind(sfd, (struct sockaddr *) &svaddr, sizeof(struct sockaddr_un)) == -1)
 errExit("bind");

 /* Receive messages, convert to uppercase, and return to client */

 for (;;) {
 len = sizeof(struct sockaddr_un);
 numBytes = recvfrom(sfd, buf, BUF_SIZE, 0,
 (struct sockaddr *) &claddr, &len);
 if (numBytes == -1)
 errExit("recvfrom");

 printf("Server received %ld bytes from %s\n", (long) numBytes,
 claddr.sun_path);

 for (j = 0; j < numBytes; j++)
 buf[j] = toupper((unsigned char) buf[j]);

 if (sendto(sfd, buf, numBytes, 0, (struct sockaddr *) &claddr, len) !=
 numBytes)
 fatal("sendto");
 }
}

––– sockets/ud_ucase_sv.c

Sockets: UNIX Domain 1173

Listing 57-7: A simple UNIX domain datagram client
––– sockets/ud_ucase_cl.c

#include "ud_ucase.h"

int
main(int argc, char *argv[])
{
 struct sockaddr_un svaddr, claddr;
 int sfd, j;
 size_t msgLen;
 ssize_t numBytes;
 char resp[BUF_SIZE];

 if (argc < 2 || strcmp(argv[1], "--help") == 0)
 usageErr("%s msg...\n", argv[0]);

 /* Create client socket; bind to unique pathname (based on PID) */

 sfd = socket(AF_UNIX, SOCK_DGRAM, 0);
 if (sfd == -1)
 errExit("socket");

 memset(&claddr, 0, sizeof(struct sockaddr_un));
 claddr.sun_family = AF_UNIX;
 snprintf(claddr.sun_path, sizeof(claddr.sun_path),
 "/tmp/ud_ucase_cl.%ld", (long) getpid());

 if (bind(sfd, (struct sockaddr *) &claddr, sizeof(struct sockaddr_un)) == -1)
 errExit("bind");

 /* Construct address of server */

 memset(&svaddr, 0, sizeof(struct sockaddr_un));
 svaddr.sun_family = AF_UNIX;
 strncpy(svaddr.sun_path, SV_SOCK_PATH, sizeof(svaddr.sun_path) - 1);

 /* Send messages to server; echo responses on stdout */

 for (j = 1; j < argc; j++) {
 msgLen = strlen(argv[j]); /* May be longer than BUF_SIZE */
 if (sendto(sfd, argv[j], msgLen, 0, (struct sockaddr *) &svaddr,
 sizeof(struct sockaddr_un)) != msgLen)
 fatal("sendto");

 numBytes = recvfrom(sfd, resp, BUF_SIZE, 0, NULL, NULL);
 if (numBytes == -1)
 errExit("recvfrom");
 printf("Response %d: %.*s\n", j, (int) numBytes, resp);
 }

 remove(claddr.sun_path); /* Remove client socket pathname */
 exit(EXIT_SUCCESS);
}

––– sockets/ud_ucase_cl.c

1174 Chapter 57

The following shell session log demonstrates the use of the server and client
programs:

$./ud_ucase_sv &
[1] 20113
$./ud_ucase_cl hello world Send 2 messages to server
Server received 5 bytes from /tmp/ud_ucase_cl.20150
Response 1: HELLO
Server received 5 bytes from /tmp/ud_ucase_cl.20150
Response 2: WORLD
$./ud_ucase_cl 'long message' Send 1 longer message to server
Server received 10 bytes from /tmp/ud_ucase_cl.20151
Response 1: LONG MESSA
$ kill %1 Terminate server

The second invocation of the client program was designed to show that when a
recvfrom() call specifies a length (BUF_SIZE, defined in Listing 57-5 with the value 10)
that is shorter than the message size, the message is silently truncated. We can see that
this truncation occurred, because the server prints a message saying it received just
10 bytes, while the message sent by the client consisted of 12 bytes.

57.4 UNIX Domain Socket Permissions
The ownership and permissions of the socket file determine which processes are
able to communicate with that socket:

z To connect to a UNIX domain stream socket, write permission is required on
the socket file.

z To send a datagram to a UNIX domain datagram socket, write permission is
required on the socket file.

In addition, execute (search) permission is required on each of the directories in
the socket pathname.

By default, a socket is created (by bind()) with all permissions granted to owner
(user), group, and other. To change this, we can precede the call to bind() with a
call to umask() to disable the permissions that we do not wish to grant.

Some systems ignore the permissions on the socket file (SUSv3 allows this).
Thus, we can’t portably use socket file permissions to control access to the socket,
although we can portably use permissions on the hosting directory for this purpose.

57.5 Creating a Connected Socket Pair: socketpair()

Sometimes, it is useful for a single process to create a pair of sockets and connect
them together. This could be done using two calls to socket(), a call to bind(), and
then either calls to listen(), connect(), and accept() (for stream sockets), or a call to
connect() (for datagram sockets). The socketpair() system call provides a shorthand
for this operation.

Sockets: UNIX Domain 1175

This socketpair() system call can be used only in the UNIX domain; that is, domain must
be specified as AF_UNIX. (This restriction applies on most implementations, and is logi-
cal, since the socket pair is created on a single host system.) The socket type may be
specified as either SOCK_DGRAM or SOCK_STREAM. The protocol argument must be specified
as 0. The sockfd array returns the file descriptors referring to the two connected sockets.

Specifying type as SOCK_STREAM creates the equivalent of a bidirectional pipe (also
known as a stream pipe). Each socket can be used for both reading and writing, and
separate data channels flow in each direction between the two sockets. (On BSD-
derived implementations, pipe() is implemented as a call to socketpair().)

Typically, a socket pair is used in a similar fashion to a pipe. After the
socketpair() call, the process then creates a child via fork(). The child inherits copies
of the parent’s file descriptors, including the descriptors referring to the socket
pair. Thus, the parent and child can use the socket pair for IPC.

One way in which the use of socketpair() differs from creating a pair of con-
nected sockets manually is that the sockets are not bound to any address. This can
help us avoid a whole class of security vulnerabilities, since the sockets are not
visible to any other process.

Starting with kernel 2.6.27, Linux provides a second use for the type argument,
by allowing two nonstandard flags to be ORed with the socket type. The
SOCK_CLOEXEC flag causes the kernel to enable the close-on-exec flag (FD_CLOEXEC)
for the two new file descriptors. This flag is useful for the same reasons as the
open() O_CLOEXEC flag described in Section 4.3.1. The SOCK_NONBLOCK flag causes
the kernel to set the O_NONBLOCK flag on both underlying open file descriptions,
so that future I/O operations on the socket will be nonblocking. This saves
additional calls to fcntl() to achieve the same result.

57.6 The Linux Abstract Socket Namespace
The so-called abstract namespace is a Linux-specific feature that allows us to bind a
UNIX domain socket to a name without that name being created in the file system.
This provides a few potential advantages:

z We don’t need to worry about possible collisions with existing names in the
file system.

z It is not necessary to unlink the socket pathname when we have finished using
the socket. The abstract name is automatically removed when the socket is closed.

z We don’t need to create a file-system pathname for the socket. This may be
useful in a chroot environment, or if we don’t have write access to a file system.

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sockfd[2]);

Returns 0 on success, or –1 on error

1176 Chapter 57

To create an abstract binding, we specify the first byte of the sun_path field as a null
byte (\0). This distinguishes abstract socket names from conventional UNIX
domain socket pathnames, which consist of a string of one or more nonnull bytes
terminated by a null byte. The name of the abstract socket is then defined by the
remaining bytes (including any null bytes) in sun_path up to the length defined for
the size of the address structure (i.e., addrlen – sizeof(sa_family_t)).

Listing 57-8 demonstrates the creation of an abstract socket binding.

Listing 57-8: Creating an abstract socket binding
––– from sockets/us_abstract_bind.c
 struct sockaddr_un addr;

 memset(&addr, 0, sizeof(struct sockaddr_un)); /* Clear address structure */
 addr.sun_family = AF_UNIX; /* UNIX domain address */

 /* addr.sun_path[0] has already been set to 0 by memset() */

 str = "xyz"; /* Abstract name is "\0xyz" */
 strncpy(&addr.sun_path[1], str, strlen (str));

 sockfd = socket(AF_UNIX, SOCK_STREAM, 0);
 if (sockfd == -1)
 errExit("socket");

 if (bind(sockfd, (struct sockaddr *) &addr,
 sizeof(sa_family_t) + strlen(str) + 1) == -1)
 errExit("bind");

––– from sockets/us_abstract_bind.c

The fact that an initial null byte is used to distinguish an abstract socket name from
a conventional socket name can have an unusual consequence. Suppose that the
variable name happens to point to a zero-length string and that we attempt to bind a
UNIX domain socket to a sun_path initialized as follows:

strncpy(addr.sun_path, name, sizeof(addr.sun_path) - 1);

On Linux, we’ll inadvertently create an abstract socket binding. However, such a
code sequence is probably unintentional (i.e., a bug). On other UNIX implementa-
tions, the subsequent bind() would fail.

57.7 Summary
UNIX domain sockets allow communication between applications on the same
host. The UNIX domain supports both stream and datagram sockets.

A UNIX domain socket is identified by a pathname in the file system. File per-
missions can be used to control access to a UNIX domain socket.

The socketpair() system call creates a pair of connected UNIX domain sockets. This
avoids the need for multiple system calls to create, bind, and connect the sockets.
A socket pair is normally used in a similar fashion to a pipe: one process creates

Sockets: UNIX Domain 1177

the socket pair and then forks to create a child that inherits descriptors referring
to the sockets. The two processes can then communicate via the socket pair.

The Linux-specific abstract socket namespace allows us to bind a UNIX domain
socket to a name that doesn’t appear in the file system.

Further information
Refer to the sources of further information listed in Section 59.15.

57.8 Exercises
57-1. In Section 57.3, we noted that UNIX domain datagram sockets are reliable. Write

programs to show that if a sender transmits datagrams to a UNIX domain
datagram socket faster than the receiver reads them, then the sender is eventually
blocked, and remains blocked until the receiver reads some of the pending
datagrams.

57-2. Rewrite the programs in Listing 57-3 (us_xfr_sv.c) and Listing 57-4 (us_xfr_cl.c) to
use the Linux-specific abstract socket namespace (Section 57.6).

57-3. Reimplement the sequence-number server and client of Section 44.8 using UNIX
domain stream sockets.

57-4. Suppose that we create two UNIX domain datagram sockets bound to the paths
/somepath/a and /somepath/b, and that we connect the socket /somepath/a to /somepath/b.
What happens if we create a third datagram socket and try to send (sendto()) a
datagram via that socket to /somepath/a? Write a program to determine the answer.
If you have access to other UNIX systems, test the program on those systems to see
if the answer differs.

S O C K E T S : F U N D A M E N T A L S O F
T C P / I P N E T W O R K S

This chapter provides an introduction to computer networking concepts and the
TCP/IP networking protocols. An understanding of these topics is necessary to make
effective use of Internet domain sockets, which are described in the next chapter.

Starting in this chapter, we begin mentioning various Request for Comments
(RFC) documents. Each of the networking protocols discussed in this book is formally
described in an RFC. We provide further information about RFCs, as well as a list of
RFCs of particular relevance to the material covered in this book, in Section 58.7.

58.1 Internets
An internetwork or, more commonly, internet (with a lowercase i), connects different
computer networks, allowing hosts on all of the networks to communicate with one
another. In other words, an internet is a network of computer networks. The term
subnetwork, or subnet, is used to refer to one of the networks composing an internet.
An internet aims to hide the details of different physical networks in order to
present a unified network architecture to all hosts on the connected networks. This
means, for example, that a single address format is used to identify all hosts in the
internet.

Although various internetworking protocols have been devised, TCP/IP has
become the dominant protocol suite, supplanting even the proprietary networking

1180 Chapter 58

protocols that were formerly common on local and wide area networks. The term
Internet (with an uppercase I) is used to refer to the TCP/IP internet that connects
millions of computers globally.

The first widespread implementation of TCP/IP appeared with 4.2BSD in 1983.
Several implementations of TCP/IP are derived directly from the BSD code; other
implementations, including the Linux implementation, are written from scratch,
taking the operation of the BSD code as a reference standard defining the opera-
tion of TCP/IP.

TCP/IP grew out of a project sponsored by the US Department of Defense
Advanced Research Projects Agency (ARPA, later DARPA, with the D for
Defense) to devise a computer networking architecture to be used in the
ARPANET, an early wide area network. During the 1970s, a new family of pro-
tocols was designed for the ARPANET. Accurately, these protocols are known
as the DARPA Internet protocol suite, but more usually they are known as the
TCP/IP protocol suite, or simply TCP/IP.

The web page http://www.isoc.org/internet/history/brief.shtml provides a brief
history of the Internet and TCP/IP.

Figure 58-1 shows a simple internet. In this diagram, the machine tekapo is an example
of a router, a computer whose function is to connect one subnetwork to another,
transferring data between them. As well as understanding the internet protocol
being used, a router must also understand the (possibly) different data-link-layer
protocols used on each of the subnets that it connects.

A router has multiple network interfaces, one for each of the subnets to which
it is connected. The more general term multihomed host is used for any host—not
necessarily a router—with multiple network interfaces. (Another way of describing
a router is to say that it is a multihomed host that forwards packets from one sub-
net to another.) A multihomed host has a different network address for each of its
interfaces (i.e., a different address on each of the subnets to which it is connected).

Figure 58-1: An internet using a router to connect two networks

58.2 Networking Protocols and Layers
A networking protocol is a set of rules defining how information is to be transmitted
across a network. Networking protocols are generally organized as a series of layers,
with each layer building on the layer below it to add features that are made avail-
able to higher layers.

wakatipu wanaka

tekapo

pukaki rotoiti

Network 1

Network 2

Router

1182 Chapter 58

always strictly hold true; occasionally, an application does need to know some of
the details of the operation of the underlying transport protocol.) Nor does the
application need to know the details of the operation of IP or of the data-link layer.
From the point of view of the applications, it is as though they are communicat-
ing directly with each other via the sockets API, as shown in Figure 58-3, where the
dashed horizontal lines represent the virtual communication paths between corre-
sponding application, TCP, and IP entities on the two hosts.

Encapsulation
Encapsulation is an important principle of a layered networking protocol. Figure 58-4
shows an example of encapsulation in the TCP/IP protocol layers. The key idea of
encapsulation is that the information (e.g., application data, a TCP segment, or an
IP datagram) passed from a higher layer to a lower layer is treated as opaque data
by the lower layer. In other words, the lower layer makes no attempt to interpret
information sent from the upper layer, but merely places that information inside
whatever type of packet is used in the lower layer and adds its own layer-specific
header before passing the packet down to the next lower layer. When data is passed
up from a lower layer to a higher layer, a converse unpacking process takes place.

We don’t show it in Figure 58-4, but the concept of encapsulation also extends
down into the data-link layer, where IP datagrams are encapsulated inside net-
work frames. Encapsulation may also extend up into the application layer,
where the application may perform its own packaging of data.

58.3 The Data-Link Layer
The lowest layer in Figure 58-2 is the data-link layer, which consists of the device
driver and the hardware interface (network card) to the underlying physical
medium (e.g., a telephone line, a coaxial cable, or a fiber-optic cable). The data-link
layer is concerned with transferring data across a physical link in a network.

To transfer data, the data-link layer encapsulates datagrams from the network
layer into units called frames. In addition to the data to be transmitted, each frame
includes a header containing, for example, the destination address and frame size.
The data-link layer transmits the frames across the physical link and handles
acknowledgements from the receiver. (Not all data-link layers use acknowledgements.)
This layer may perform error detection, retransmission, and flow control. Some data-
link layers also split large network packets into multiple frames and reassemble
them at the receiver.

From an application-programming point of view, we can generally ignore the data-
link layer, since all communication details are handled in the driver and hardware.

One characteristic of the data-link layer that is important for our discussion of
IP is the maximum transmission unit (MTU). A data-link layer’s MTU is the upper
limit that the layer places on the size of a frame. Different data-link layers have dif-
ferent MTUs.

The command netstat –i displays a list of the system’s network interfaces, along
with their MTUs.

1184 Chapter 58

58.4 The Network Layer: IP
Above the data-link layer is the network layer, which is concerned with delivering
packets (data) from the source host to the destination host. This layer performs a
variety of tasks, including:

z breaking data into fragments small enough for transmission via the data-link
layer (if necessary);

z routing data across the internet; and

z providing services to the transport layer.

In the TCP/IP protocol suite, the principal protocol in the network layer is IP. The
version of IP that appeared in the 4.2BSD implementation was IP version 4 (IPv4).
In the early 1990s, a revised version of IP was devised: IP version 6 (IPv6). The most
notable difference between the two versions is that IPv4 identifies subnets and
hosts using 32-bit addresses, while IPv6 uses 128-bit addresses, thus providing a
much larger range of addresses to be assigned to hosts. Although IPv4 is still the
predominant version of IP in use on the Internet, in coming years, it should be sup-
planted by IPv6. Both IPv4 and IPv6 support the higher UDP and TCP transport-
layer protocols (as well as many other protocols).

Although a 32-bit address space theoretically permits billions of IPv4 network
addresses to be assigned, the manner in which addresses were structured and
allocated meant that the practical number of available addresses was far lower.
The possible exhaustion of the IPv4 address space was one of the primary
motivations for the creation of IPv6.

A short history of IPv6 can be found at http://www.laynetworks.com/
IPv6.htm.

The existence of IPv4 and IPv6 begs the question, “What about IPv5?”
There never was an IPv5 as such. Each IP datagram header includes a 4-bit ver-
sion number field (thus, IPv4 datagrams always have the number 4 in this
field), and the version number 5 was assigned to an experimental protocol,
Internet Stream Protocol. (Version 2 of this protocol, abbreviated as ST-II, is
described in RFC 1819.) Initially conceived in the 1970s, this connection-oriented
protocol was designed to support voice and video transmission, and distributed
simulation. Since the IP datagram version number 5 was already assigned, the
successor to IPv4 was assigned the version number 6.

Figure 58-2 shows a raw socket type (SOCK_RAW), which allows an application to com-
municate directly with the IP layer. We don’t describe the use of raw sockets, since
most applications employ sockets over one of the transport-layer protocols (TCP or
UDP). Raw sockets are described in Chapter 28 of [Stevens et al., 2004]. One
instructive example of the use of raw sockets is the sendip program (http://
www.earth.li/projectpurple/progs/sendip.html), which is a command-line-driven tool
that allows the construction and transmission of IP datagrams with arbitrary contents
(including options to construct UDP datagrams and TCP segments).

IP transmits datagrams
IP transmits data in the form of datagrams (packets). Each datagram sent between
two hosts travels independently across the network, possibly taking a different

Sockets: Fundamentals of TCP/IP Networks 1185

route. An IP datagram includes a header, which ranges in size from 20 to 60 bytes.
The header contains the address of the target host, so that the datagram can be
routed through the network to its destination, and also includes the originating
address of the packet, so that the receiving host knows the origin of the datagram.

It is possible for a sending host to spoof the originating address of a packet,
and this forms the basis of a TCP denial-of-service attack known as SYN-flood-
ing. [Lemon, 2002] describes the details of this attack and the measures used
by modern TCP implementations to deal with it.

An IP implementation may place an upper limit on the size of datagrams that it
supports. All IP implementations must permit datagrams at least as large as the
limit specified by IP’s minimum reassembly buffer size. In IPv4, this limit is 576 bytes;
in IPv6, it is 1500 bytes.

IP is connectionless and unreliable
IP is described as a connectionless protocol, since it doesn’t provide the notion of a
virtual circuit connecting two hosts. IP is also an unreliable protocol: it makes a
“best effort” to transmit datagrams from the sender to the receiver, but doesn’t
guarantee that packets will arrive in the order they were transmitted, that they
won’t be duplicated, or even that they will arrive at all. Nor does IP provide error
recovery (packets with header errors are silently discarded). Reliability must be
provided either by using a reliable transport-layer protocol (e.g., TCP) or within
the application itself.

IPv4 provides a checksum for the IP header, which allows the detection of
errors in the header, but doesn’t provide any error detection for the data
transmitted within the packet. IPv6 doesn’t provide a checksum in the IP
header, relying on higher-layer protocols to provide error checking and reli-
ability as required. (UDP checksums are optional with IPv4, but generally enabled;
UDP checksums are mandatory with IPv6. TCP checksums are mandatory with
both IPv4 and IPv6.)

Duplication of IP datagrams may occur because of techniques employed
by some data-link layers to ensure reliability or when IP datagrams are tunneled
through some non-TCP/IP network that employs retransmission.

IP may fragment datagrams
IPv4 datagrams can be up to 65,535 bytes. By default, IPv6 allows datagrams of up
to 65,575 bytes (40 bytes for the header, 65,535 bytes for data), and provides an
option for larger datagrams (so-called jumbograms).

We noted earlier that most data-link layers impose an upper limit (the MTU)
on the size of data frames. For example, this upper limit is 1500 bytes on the commonly
used Ethernet network architecture (i.e., much smaller than the maximum size of an IP
datagram). IP also defines the notion of the path MTU. This is the minimum MTU on
all of the data-link layers traversed on the route from the source to the destination.
(In practice, the Ethernet MTU is often the minimum MTU in a path.)

When an IP datagram is larger than the MTU, IP fragments (breaks up) the data-
gram into suitably sized units for transmission across the network. These fragments
are then reassembled at the final destination to re-create the original datagram.

1186 Chapter 58

(Each IP fragment is itself an IP datagram that contains an offset field giving the
location of that fragment within the original datagram.)

IP fragmentation occurs transparently to higher protocol layers, but nevertheless
is generally considered undesirable ([Kent & Mogul, 1987]). The problem is that,
because IP doesn’t perform retransmission, and a datagram can be reassembled at
the destination only if all fragments arrive, the entire datagram is unusable if any
fragment is lost or contains transmission errors. In some cases, this can lead to signif-
icant rates of data loss (for higher protocol layers that don’t perform retransmission,
such as UDP) or degraded transfer rates (for higher protocol layers that do perform
retransmission, such as TCP). Modern TCP implementations employ algorithms
(path MTU discovery) to determine the MTU of a path between hosts, and accord-
ingly break up the data they pass to IP, so that IP is not asked to transmit datagrams
that exceed this size. UDP provides no such mechanism, and we consider how UDP-
based applications can deal with the possibility of IP fragmentation in Section 58.6.2.

58.5 IP Addresses

An IP address consists of two parts: a network ID, which specifies the network on
which a host resides, and a host ID, which identifies the host within that network.

IPv4 addresses
An IPv4 address consists of 32 bits (Figure 58-5). When expressed in human-readable
form, these addresses are normally written in dotted-decimal notation, with the 4 bytes of
the address being written as decimal numbers separated by dots, as in 204.152.189.116.

Figure 58-5: An IPv4 network address and corresponding network mask

When an organization applies for a range of IPv4 addresses for its hosts, it receives
a 32-bit network address and a corresponding 32-bit network mask. In binary form,
this mask consists of a sequence of 1s in the leftmost bits, followed by a sequence of
0s to fill out the remainder of the mask. The 1s indicate which part of the address
contains the assigned network ID, while the 0s indicate which part of the address is
available to the organization to assign as unique host IDs on its network. The size
of the network ID part of the mask is determined when the address is assigned.
Since the network ID component always occupies the leftmost part of the mask, the
following notation is sufficient to specify the range of assigned addresses:

204.152.189.0/24

The /24 indicates that the network ID part of the assigned address consists of the
leftmost 24 bits, with the remaining 8 bits specifying the host ID. Alternatively, we
could say that the network mask in this case is 255.255.255.0 in dotted-decimal notation.

Network ID

all 1s

Host ID

all 0s

32 bits
Network address

Network mask

Sockets: Fundamentals of TCP/IP Networks 1187

An organization holding this address can assign 254 unique Internet addresses
to its computers—204.152.189.1 through 204.152.189.254. Two addresses can’t be
assigned. One of these is the address whose host ID is all 0 bits, which is used to
identify the network itself. The other is the address whose host ID is all 1 bits—
204.152.189.255 in this example—which is the subnet broadcast address.

Certain IPv4 addresses have special meanings. The special address 127.0.0.1 is
normally defined as the loopback address, and is conventionally assigned the host-
name localhost. (Any address on the network 127.0.0.0/8 can be designated as the
IPv4 loopback address, but 127.0.0.1 is the usual choice.) A datagram sent to this
address never actually reaches the network, but instead automatically loops back to
become input to the sending host. Using this address is convenient for testing client
and server programs on the same host. For use in a C program, the integer con-
stant INADDR_LOOPBACK is defined for this address.

The constant INADDR_ANY is the so-called IPv4 wildcard address. The wildcard IP
address is useful for applications that bind Internet domain sockets on multi-
homed hosts. If an application on a multihomed host binds a socket to just one of
its host’s IP addresses, then that socket can receive only UDP datagrams or TCP
connection requests sent to that IP address. However, we normally want an applica-
tion on a multihomed host to be able to receive datagrams or connection requests
that specify any of the host’s IP addresses, and binding the socket to the wildcard IP
address makes this possible. SUSv3 doesn’t specify any particular value for
INADDR_ANY, but most implementations define it as 0.0.0.0 (all zeros).

Typically, IPv4 addresses are subnetted. Subnetting divides the host ID part of
an IPv4 address into two parts: a subnet ID and a host ID (Figure 58-6). (The choice
of how the bits of the host ID are divided is made by the local network administra-
tor.) The rationale for subnetting is that an organization often doesn’t attach all of
its hosts to a single network. Instead, the organization may operate a set of sub-
networks (an “internal internetwork”), with each subnetwork being identified by
the combination of the network ID plus the subnet ID. This combination is usually
referred to as the extended network ID. Within a subnet, the subnet mask serves the same
role as described earlier for the network mask, and we can use a similar notation to
indicate the range of addresses assigned to a particular subnet.

For example, suppose that our assigned network ID is 204.152.189.0/24, and we
choose to subnet this address range by splitting the 8 bits of the host ID into a 4-bit
subnet ID and a 4-bit host ID. Under this scheme, the subnet mask would consist of
28 leading ones, followed by 4 zeros, and the subnet with the ID of 1 would be des-
ignated as 204.152.189.16/28.

Figure 58-6: IPv4 subnetting

Network ID

all 1s

Host ID

all 0s

32 bits
Network
address

Subnet mask

Subnet ID

Extended network ID

1188 Chapter 58

IPv6 addresses
The principles of IPv6 addresses are similar to IPv4 addresses. The key difference is
that IPv6 addresses consist of 128 bits, and the first few bits of the address are a
format prefix, indicating the address type. (We won’t go into the details of these
address types; see Appendix A of [Stevens et al., 2004] and RFC 3513 for details.)

IPv6 addresses are typically written as a series of 16-bit hexadecimal numbers
separated by colons, as in the following:

F000:0:0:0:0:0:A:1

IPv6 addresses often include a sequence of zeros and, as a notational convenience,
two colons (::) can be employed to indicate such a sequence. Thus, the above
address can be rewritten as:

F000::A:1

Only one instance of the double-colon notation can appear in an IPv6 address;
more than one instance would be ambiguous.

IPv6 also provides equivalents of the IPv4’s loopback address (127 zeros, fol-
lowed by a one, thus ::1) and wildcard address (all zeros, written as either 0::0 or ::).

In order to allow IPv6 applications to communicate with hosts supporting only
IPv4, IPv6 provides so-called IPv4-mapped IPv6 addresses. The format of these
addresses is shown in Figure 58-7.

Figure 58-7: Format of an IPv4-mapped IPv6 address

When writing an IPv4-mapped IPv6 address, the IPv4 part of the address (i.e., the
last 4 bytes) is written in IPv4 dotted-decimal notation. Thus, the IPv4-mapped IPv6
address equivalent to 204.152.189.116 is ::FFFF:204.152.189.116.

58.6 The Transport Layer
There are two widely used transport-layer protocols in the TCP/IP suite:

z User Datagram Protocol (UDP) is the protocol used for datagram sockets.

z Transmission Control Protocol (TCP) is the protocol used for stream sockets.

Before considering these protocols, we first need to describe port numbers, a con-
cept used by both protocols.

58.6.1 Port Numbers
The task of the transport protocol is to provide an end-to-end communication ser-
vice to applications residing on different hosts (or sometimes on the same host). In
order to do this, the transport layer requires a method of differentiating the appli-
cations on a host. In TCP and UDP, this differentiation is provided by a 16-bit port
number.

all zeros

80 bits

IPv4 addressFFFF

16 bits 32 bits

Sockets: Fundamentals of TCP/IP Networks 1189

Well-known, registered, and privileged ports
Some well-known port numbers are permanently assigned to specific applications
(also known as services). For example, the ssh (secure shell) daemon uses the well-
known port 22, and HTTP (the protocol used for communication between web
servers and browsers) uses the well-known port 80. Well-known ports are assigned
numbers in the range 0 to 1023 by a central authority, the Internet Assigned Numbers
Authority (IANA, http://www.iana.org/). Assignment of a well-known port number
is contingent on an approved network specification (typically in the form of an RFC).

IANA also records registered ports, which are allocated to application developers on
a less stringent basis (which also means that an implementation doesn’t need to guaran-
tee the availability of these ports for their registered purpose). The range of IANA
registered ports is 1024 to 41951. (Not all port numbers in this range are registered.)

The up-to-date list of IANA well-known and registered port assignments can be
obtained online at http://www.iana.org/assignments/port-numbers.

In most TCP/IP implementations (including Linux), the port numbers in the
range 0 to 1023 are also privileged, meaning that only privileged (CAP_NET_BIND_SERVICE)
processes may bind to these ports. This prevents a normal user from implementing
a malicious application that, for example, spoofs as ssh in order to obtain pass-
words. (Sometimes, privileged ports are referred to as reserved ports.)

Although TCP and UDP ports with the same number are distinct entities, the
same well-known port number is usually assigned to a service under both TCP and
UDP, even if, as is often the case, that service is available under only one of these pro-
tocols. This convention avoids confusion of port numbers across the two protocols.

Ephemeral ports
If an application doesn’t select a particular port (i.e., in sockets terminology, it
doesn’t bind() its socket to a particular port), then TCP and UDP assign a unique
ephemeral port (i.e., short-lived) number to the socket. In this case, the application—
typically a client—doesn’t care which port number it uses, but assigning a port is
necessary so that the transport-layer protocols can identify the communication
endpoints. It also has the result that the peer application at the other end of the
communication channel knows how to communicate with this application. TCP
and UDP also assign an ephemeral port number if we bind a socket to port 0.

IANA specifies the ports in the range 49152 to 65535 as dynamic or private, with
the intention that these ports can be used by local applications and assigned as
ephemeral ports. However, various implementations allocate ephemeral ports
from different ranges. On Linux, the range is defined by (and can be modified via)
two numbers contained in the file /proc/sys/net/ipv4/ip_local_port_range.

58.6.2 User Datagram Protocol (UDP)
UDP adds just two features to IP: port numbers and a data checksum to allow the
detection of errors in the transmitted data.

Like IP, UDP is connectionless. Since it adds no reliability to IP, UDP is likewise
unreliable. If an application layered on top of UDP requires reliability, then this must
be implemented within the application. Despite this unreliability, we may sometimes
prefer to use UDP instead of TCP, for the reasons detailed in Section 61.12.

Sockets: Fundamentals of TCP/IP Networks 1191

information that is maintained in order to synchronize the operation of the two
connected endpoints. (We describe this state information in further detail when we
consider the TCP state transition diagram in Section 61.6.3.) In the remainder of this
book, we use the terms receiving TCP and sending TCP to denote the TCP endpoints
maintained for the receiving and sending applications on either end of a stream
socket connection that is being used to transmit data in a particular direction.

Connection establishment
Before communication can commence, TCP establishes a communication channel
between the two endpoints. During connection establishment, the sender and receiver
can exchange options to advertise parameters for the connection.

Packaging of data in segments
Data is broken into segments, each of which contains a checksum to allow the
detection of end-to-end transmission errors. Each segment is transmitted in a single
IP datagram.

Acknowledgements, retransmissions, and timeouts
When a TCP segment arrives at its destination without errors, the receiving TCP sends
a positive acknowledgement to the sender, informing it of the successfully delivered
data. If a segment arrives with errors, then it is discarded, and no acknowledgement is
sent. To handle the possibility of segments that never arrive or are discarded, the
sender starts a timer when each segment is transmitted. If an acknowledgement is
not received before the timer expires, the segment is retransmitted.

Since the time taken to transmit a segment and receive its acknowledgement
varies according to the range of the network and the current traffic loading,
TCP employs an algorithm to dynamically adjust the size of the retransmission
timeout (RTO).

The receiving TCP may not send acknowledgements immediately, but
instead wait for a fraction of a second to see if the acknowledgement can be
piggybacked inside any response that the receiver may send straight back to
the sender. (Every TCP segment includes an acknowledgement field, allowing
for such piggybacking.) The aim of this technique, called delayed ACK, is to
save sending a TCP segment, thus decreasing the number of packets in the net-
work and decreasing the load on the sending and receiving hosts.

Sequencing
Each byte that is transmitted over a TCP connection is assigned a logical sequence
number. This number indicates the position of that byte in the data stream for the
connection. (Each of the two streams in the connection has its own sequence
numbering.) When a TCP segment is transmitted, it includes a field containing the
sequence number of the first byte in the segment.

Attaching sequence numbers to each segment serves a variety of purposes:

z The sequence number allows TCP segments to be assembled in the correct
order at the destination, and then passed as a byte stream to the application
layer. (At any moment, multiple TCP segments may be in transit between
sender and receiver, and these segments may arrive out of order.)

1192 Chapter 58

z The acknowledgement message passed from the receiver back to the sender
can use the sequence number to identify which TCP segment was received.

z The receiver can use the sequence number to eliminate duplicate segments.
Such duplicates may occur either because of the duplication of IP datagrams or
because of TCP’s own retransmission algorithm, which could retransmit a suc-
cessfully delivered segment if the acknowledgement for that segment was lost
or was not received in a timely fashion.

The initial sequence number (ISN) for a stream doesn’t start at 0. Instead, it is gen-
erated via an algorithm that increases the ISN assigned to successive TCP connec-
tions (to prevent the possibility of old segments from a previous incarnation of the
connection being confused with segments for this connection). This algorithm is
also designed to make guessing the ISN difficult. The sequence number is a 32-bit
value that is wrapped around to 0 when the maximum value is reached.

Flow control
Flow control prevents a fast sender from overwhelming a slow receiver. To implement
flow control, the receiving TCP maintains a buffer for incoming data. (Each TCP
advertises the size of this buffer during connection establishment.) Data accumulates
in this buffer as it is received from the sending TCP, and is removed as the applica-
tion reads data. With each acknowledgement, the receiver advises the sender of
how much space is available in its incoming data buffer (i.e., how many bytes the
sender can transmit). The TCP flow-control algorithm employs a so-called sliding
window algorithm, which allows unacknowledged segments containing a total of up
N (the offered window size) bytes to be in transit between the sender and receiver.
If a receiving TCP’s incoming data buffer fills completely, then the window is said
to be closed, and the sending TCP stops transmitting.

The receiver can override the default size for the incoming data buffer using
the SO_RCVBUF socket option (see the socket(7) manual page).

Congestion control: slow-start and congestion-avoidance algorithms
TCP’s congestion-control algorithms are designed to prevent a fast sender from
overwhelming a network. If a sending TCP transmits packets faster than they can
be relayed by an intervening router, that router will start dropping packets. This
could lead to high rates of packet loss and, consequently, serious performance
degradation, if the sending TCP kept retransmitting these dropped segments at the
same rate. TCP’s congestion-control algorithms are important in two circumstances:

z After connection establishment: At this time (or when transmission resumes on a
connection that has been idle for some time), the sender could start by imme-
diately injecting as many segments into the network as would be permitted by
the window size advertised by the receiver. (In fact, this is what was done in
early TCP implementations.) The problem here is that if the network can’t handle
this flood of segments, the sender risks overwhelming the network immediately.

Sockets: Fundamentals of TCP/IP Networks 1193

z When congestion is detected: If the sending TCP detects that congestion is occur-
ring, then it must reduce its transmission rate. TCP detects that congestion is
occurring based on the assumption that segment loss because of transmission
errors is very low; thus, if a packet is lost, the cause is assumed to be congestion.

TCP’s congestion-control strategy employs two algorithms in combination: slow
start and congestion avoidance.

The slow-start algorithm causes the sending TCP to initially transmit segments
at a slow rate, but allows it to exponentially increase the rate as these segments are
acknowledged by the receiving TCP. Slow start attempts to prevent a fast TCP
sender from overwhelming a network. However, if unrestrained, slow start’s expo-
nential increase in the transmission rate could mean that the sender would soon
overwhelm the network. TCP’s congestion-avoidance algorithm prevents this, by placing
a governor on the rate increase.

With congestion avoidance, at the beginning of a connection, the sending TCP
starts with a small congestion window, which limits the amount of unacknowledged
data that it can transmit. As the sender receives acknowledgements from the peer
TCP, the congestion window initially grows exponentially. However, once the con-
gestion window reaches a certain threshold believed to be close to the transmission
capacity of the network, its growth becomes linear, rather than exponential. (An
estimate of the capacity of the network is derived from a calculation based on the
transmission rate that was in operation when congestion was detected, or is set at a
fixed value after initial establishment of the connection.) At all times, the quantity
of data that the sending TCP will transmit remains additionally constrained by the
receiving TCP’s advertised window and the local TCP’s send buffer.

In combination, the slow-start and congestion-avoidance algorithms allow the
sender to rapidly raise its transmission speed up to the available capacity of the net-
work, without overshooting that capacity. The effect of these algorithms is to allow
data transmission to quickly reach a state of equilibrium, where the sender trans-
mits packets at the same rate as it receives acknowledgements from the receiver.

58.7 Requests for Comments (RFCs)
Each of the Internet protocols that we discuss in this book is defined in an RFC docu-
ment—a formal protocol specification. RFCs are published by the RFC Editor (http://
www.rfc-editor.org/), which is funded by the Internet Society (http://www.isoc.org/). RFCs
that describe Internet standards are developed under the auspices of the Internet
Engineering Task Force (IETF, http://www.ietf.org/), a community of network designers,
operators, vendors, and researchers concerned with the evolution and smooth opera-
tion of the Internet. Membership of the IETF is open to any interested individual.

The following RFCs are of particular relevance to the material covered in this
book:

z RFC 791, Internet Protocol. J. Postel (ed.), 1981.

z RFC 950, Internet Standard Subnetting Procedure. J. Mogul and J. Postel, 1985.

1194 Chapter 58

z RFC 793, Transmission Control Protocol. J. Postel (ed.), 1981.

z RFC 768, User Datagram Protocol. J. Postel (ed.), 1980.

z RFC 1122, Requirements for Internet Hosts—Communication Layers. R. Braden
(ed.), 1989.

RFC 1122 extends (and corrects) various earlier RFCs describing the TCP/IP
protocols. It is one of a pair of RFCs that are often simply known as the Host
Requirements RFCs. The other member of the pair is RFC 1123, which covers
application-layer protocols such as telnet, FTP, and SMTP.

Among the RFCs that describe IPv6 are the following:

z RFC 2460, Internet Protocol, Version 6. S. Deering and R. Hinden, 1998.

z RFC 4291, IP Version 6 Addressing Architecture. R. Hinden and S. Deering, 2006.

z RFC 3493, Basic Socket Interface Extensions for IPv6. R. Gilligan, S. Thomson,
J. Bound, J. McCann, and W. Stevens, 2003.

z RFC 3542, Advanced Sockets API for IPv6. W. Stevens, M. Thomas, E. Nordmark,
and T. Jinmei, 2003.

A number of RFCs and papers provide improvements and extensions to the origi-
nal TCP specification, including the following:

z Congestion Avoidance and Control. V. Jacobsen, 1988. This was the initial paper
describing the congestion-control and slow-start algorithms for TCP. Originally
published in Proceedings of SIGCOMM ’88, a slightly revised version is available at
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z. This paper is largely superseded by some
of the following RFCs.

z RFC 1323, TCP Extensions for High Performance. V. Jacobson, R. Braden, and D.
Borman, 1992.

z RFC 2018, TCP Selective Acknowledgment Options. M. Mathis, J. Mahdavi, S. Floyd,
and A. Romanow, 1996.

z RFC 2581, TCP Congestion Control. M. Allman, V. Paxson, and W. Stevens,
1999.

z RFC 2861, TCP Congestion Window Validation. M. Handley, J. Padhye, and
S. Floyd, 2000.

z RFC 2883, An Extension to the Selective Acknowledgement (SACK) Option for TCP.
S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, 2000.

z RFC 2988, Computing TCP’s Retransmission Timer. V. Paxson and M. Allman,
2000.

z RFC 3168, The Addition of Explicit Congestion Notification (ECN) to IP.
K. Ramakrishnan, S. Floyd, and D. Black, 2001.

z RFC 3390, Increasing TCP’s Initial Window. M. Allman, S. Floyd, and C. Partridge,
2002.

Sockets: Fundamentals of TCP/IP Networks 1195

58.8 Summary
TCP/IP is a layered networking protocol suite. At the bottom layer of the TCP/IP
protocol stack is the IP network-layer protocol. IP transmits data in the form of data-
grams. IP is connectionless, meaning that datagrams transmitted between source
and destination hosts may take different routes across the network. IP is unreliable,
in that it provides no guarantee that datagrams will arrive in order or unduplicated,
or even arrive at all. If reliability is required, then it must be provided via the use of
a reliable higher-layer protocol (e.g., TCP), or within an application.

The original version of IP is IPv4. In the early 1990s, a new version of IP, IPv6,
was devised. The most notable difference between IPv4 and IPv6 is that IPv4 uses
32 bits to represent a host address, while IPv6 uses 128 bits, thus allowing for a
much larger number of hosts on the world-wide Internet. Currently, IPv4 remains
the most widely used version of IP, although in coming years, it is likely to be sup-
planted by IPv6.

Various transport-layer protocols are layered on top of IP, of which the most
widely used are UDP and TCP. UDP is an unreliable datagram protocol. TCP is a
reliable, connection-oriented, byte-stream protocol. TCP handles all of the details
of connection establishment and termination. TCP also packages data into seg-
ments for transmission by IP, and provides sequence numbering for these seg-
ments so that they can be acknowledged and assembled in the correct order by the
receiver. In addition, TCP provides flow control, to prevent a fast sender from
overwhelming a slow receiver, and congestion control, to prevent a fast sender
from overwhelming the network.

Further information
Refer to the sources of further information listed in Section 59.15.

S O C K E T S : I N T E R N E T D O M A I N S

Having looked at generic sockets concepts and the TCP/IP protocol suite in previous
chapters, we are now ready in this chapter to look at programming with sockets in
the IPv4 (AF_INET) and IPv6 (AF_INET6) domains.

As noted in Chapter 58, Internet domain socket addresses consist of an IP address
and a port number. Although computers use binary representations of IP
addresses and port numbers, humans are much better at dealing with names than with
numbers. Therefore, we describe the techniques used to identify host computers
and ports using names. We also examine the use of library functions to obtain the
IP address(es) for a particular hostname and the port number that corresponds to
a particular service name. Our discussion of hostnames includes a description of
the Domain Name System (DNS), which implements a distributed database that
maps hostnames to IP addresses and vice versa.

59.1 Internet Domain Sockets
Internet domain stream sockets are implemented on top of TCP. They provide a
reliable, bidirectional, byte-stream communication channel.

1198 Chapter 59

Internet domain datagram sockets are implemented on top of UDP. UDP sockets
are similar to their UNIX domain counterparts, but note the following differences:

z UNIX domain datagram sockets are reliable, but UDP sockets are not—data-
grams may be lost, duplicated, or arrive in a different order from that in which
they were sent.

z Sending on a UNIX domain datagram socket will block if the queue of data for
the receiving socket is full. By contrast, with UDP, if the incoming datagram
would overflow the receiver’s queue, then the datagram is silently dropped.

59.2 Network Byte Order
IP addresses and port numbers are integer values. One problem we encounter
when passing these values across a network is that different hardware architectures
store the bytes of a multibyte integer in different orders. As shown in Figure 59-1,
architectures that store integers with the most significant byte first (i.e., at the lowest
memory address) are termed big endian; those that store the least significant byte
first are termed little endian. (The terms derive from Jonathan Swift’s 1726 satirical
novel Gulliver’s Travels, in which the terms refer to opposing political factions who
open their boiled eggs at opposite ends.) The most notable example of a little-
endian architecture is x86. (Digital’s VAX architecture was another historically
important example, since BSD was widely used on that machine.) Most other archi-
tectures are big endian. A few hardware architectures are switchable between the
two formats. The byte ordering used on a particular machine is called the host byte order.

Figure 59-1: Big-endian and little-endian byte order for 2-byte and 4-byte integers

Since port numbers and IP addresses must be transmitted between, and under-
stood by, all hosts on a network, a standard ordering must be used. This ordering is
called network byte order, and happens to be big endian.

Later in this chapter, we look at various functions that convert hostnames (e.g.,
www.kernel.org) and service names (e.g., http) into the corresponding numeric
forms. These functions generally return integers in network byte order, and these
integers can be copied directly into the relevant fields of a socket address structure.

1
(MSB)

0
(LSB)

address
N

address
N + 1

Big endian
byte order

Little endian
byte order

0
(LSB)

1
(MSB)

address
N

address
N + 1

3
(MSB)

2

address
N

address
N + 1

1 0
(LSB)

address
N + 2

address
N + 3

0
(LSB)

1

address
N

address
N + 1

2 3
(MSB)

address
N + 2

address
N + 3

2 byte integer 4 byte integer

MSB = Most Significant Byte, LSB = Least Significant Byte

Sockets: In ternet Domains 1199

However, we sometimes make direct use of integer constants for IP addresses
and port numbers. For example, we may choose to hard-code a port number into
our program, specify a port number as a command-line argument to a program, or
use constants such as INADDR_ANY and INADDR_LOOPBACK when specifying an IPv4
address. These values are represented in C according to the conventions of the
host machine, so they are in host byte order. We must convert these values to net-
work byte order before storing them in socket address structures.

The htons(), htonl(), ntohs(), and ntohl() functions are defined (typically as macros)
for converting integers in either direction between host and network byte order.

In earlier times, these functions had prototypes such as the following:

unsigned long htonl(unsigned long hostlong);

This reveals the origin of the function names—in this case, host to network long. On
most early systems on which sockets were implemented, short integers were 16 bits,
and long integers were 32 bits. This no longer holds true on modern systems (at
least for long integers), so the prototypes given above provide a more exact definition
of the types dealt with by these functions, although the names remain unchanged.
The uint16_t and uint32_t data types are 16-bit and 32-bit unsigned integers.

Strictly speaking, the use of these four functions is necessary only on systems
where the host byte order differs from network byte order. However, these func-
tions should always be used, so that programs are portable to different hardware
architectures. On systems where the host byte order is the same as network byte
order, these functions simply return their arguments unchanged.

59.3 Data Representation
When writing network programs, we need to be aware of the fact that different
computer architectures use different conventions for representing various data
types. We have already noted that integer types can be stored in big-endian or little-
endian form. There are also other possible differences. For example, the C long
data type may be 32 bits on some systems and 64 bits on others. When we consider
structures, the issue is further complicated by the fact that different implementations

#include <arpa/inet.h>

uint16_t htons(uint16_t host_uint16);

Returns host_uint16 converted to network byte order

uint32_t htonl(uint32_t host_uint32);

Returns host_uint32 converted to network byte order

uint16_t ntohs(uint16_t net_uint16);

Returns net_uint16 converted to host byte order

uint32_t ntohl(uint32_t net_uint32);

Returns net_uint32 converted to host byte order

1200 Chapter 59

employ different rules for aligning the fields of a structure to address boundaries on
the host system, leaving different numbers of padding bytes between the fields.

Because of these differences in data representation, applications that exchange
data between heterogeneous systems over a network must adopt some common
convention for encoding that data. The sender must encode data according to this
convention, while the receiver decodes following the same convention. The pro-
cess of putting data into a standard format for transmission across a network is
referred to as marshalling. Various marshalling standards exist, such as XDR (Exter-
nal Data Representation, described in RFC 1014), ASN.1-BER (Abstract Syntax
Notation 1, http://www.asn1.org/), CORBA, and XML. Typically, these standards
define a fixed format for each data type (defining, for example, byte order and
number of bits used). As well as being encoded in the required format, each data
item is tagged with extra field(s) identifying its type (and, possibly, length).

However, a simpler approach than marshalling is often employed: encode all
transmitted data in text form, with separate data items delimited by a designated
character, typically a newline character. One advantage of this approach is that we
can use telnet to debug an application. To do this, we use the following command:

$ telnet host port

We can then type lines of text to be transmitted to the application, and view the
responses sent by the application. We demonstrate this technique in Section 59.11.

The problems associated with differences in representation across heteroge-
neous systems apply not only to data transfer across a network, but also to any
mechanism of data exchange between such systems. For example, we face the
same problems when transferring files on disk or tape between heterogeneous
systems. Network programming is simply the most common programming
context in which we are nowadays likely to encounter this issue.

If we encode data transmitted on a stream socket as newline-delimited text, then it
is convenient to define a function such as readLine(), shown in Listing 59-1.

The readLine() function reads bytes from the file referred to by the file descriptor
argument fd until a newline is encountered. The input byte sequence is returned in
the location pointed to by buffer, which must point to a region of at least n bytes of
memory. The returned string is always null-terminated; thus, at most (n – 1) bytes
of actual data will be returned. On success, readLine() returns the number of bytes of
data placed in buffer; the terminating null byte is not included in this count.

#include "read_line.h"

ssize_t readLine(int fd, void *buffer, size_t n);

Returns number of bytes copied into buffer (excluding
terminating null byte), or 0 on end-of-file, or –1 on error

Sockets: In ternet Domains 1201

Listing 59-1: Reading data a line at a time
–– sockets/read_line.c

#include <unistd.h>
#include <errno.h>
#include "read_line.h" /* Declaration of readLine() */

ssize_t
readLine(int fd, void *buffer, size_t n)
{
 ssize_t numRead; /* # of bytes fetched by last read() */
 size_t totRead; /* Total bytes read so far */
 char *buf;
 char ch;

 if (n <= 0 || buffer == NULL) {
 errno = EINVAL;
 return -1;
 }

 buf = buffer; /* No pointer arithmetic on "void *" */

 totRead = 0;
 for (;;) {
 numRead = read(fd, &ch, 1);

 if (numRead == -1) {
 if (errno == EINTR) /* Interrupted --> restart read() */
 continue;
 else
 return -1; /* Some other error */

 } else if (numRead == 0) { /* EOF */
 if (totRead == 0) /* No bytes read; return 0 */
 return 0;
 else /* Some bytes read; add '\0' */
 break;

 } else { /* 'numRead' must be 1 if we get here */
 if (totRead < n - 1) { /* Discard > (n - 1) bytes */
 totRead++;
 *buf++ = ch;
 }

 if (ch == '\n')
 break;
 }
 }

 *buf = '\0';
 return totRead;
}

–– sockets/read_line.c

1202 Chapter 59

If the number of bytes read before a newline is encountered is greater than or
equal to (n – 1), then the readLine() function discards the excess bytes (including
the newline). If a newline was read within the first (n – 1) bytes, then it is included
in the returned string. (Thus, we can determine if bytes were discarded by checking
if a newline precedes the terminating null byte in the returned buffer.) We take this
approach so that application protocols that rely on handling input in units of lines
don’t end up processing a long line as though it were multiple lines. This would
likely break the protocol, as the applications on either end would become desyn-
chronized. An alternative approach would be to have readLine() read only sufficient
bytes to fill the supplied buffer, leaving any remaining bytes up to the next newline
for the next call to readLine(). In this case, the caller of readLine() would need to
handle the possibility of a partial line being read.

We employ the readLine() function in the example programs presented in
Section 59.11.

59.4 Internet Socket Addresses
There are two types of Internet domain socket addresses: IPv4 and IPv6.

IPv4 socket addresses: struct sockaddr_in

An IPv4 socket address is stored in a sockaddr_in structure, defined in <netinet/in.h>
as follows:

struct in_addr { /* IPv4 4-byte address */
 in_addr_t s_addr; /* Unsigned 32-bit integer */
};

struct sockaddr_in { /* IPv4 socket address */
 sa_family_t sin_family; /* Address family (AF_INET) */
 in_port_t sin_port; /* Port number */
 struct in_addr sin_addr; /* IPv4 address */
 unsigned char __pad[X]; /* Pad to size of 'sockaddr'
 structure (16 bytes) */
};

In Section 56.4, we saw that the generic sockaddr structure commences with a field
identifying the socket domain. This corresponds to the sin_family field in the
sockaddr_in structure, which is always set to AF_INET. The sin_port and sin_addr fields
are the port number and the IP address, both in network byte order. The in_port_t
and in_addr_t data types are unsigned integer types, 16 and 32 bits in length,
respectively.

IPv6 socket addresses: struct sockaddr_in6

Like an IPv4 address, an IPv6 socket address includes an IP address plus a port
number. The difference is that an IPv6 address is 128 bits instead of 32 bits. An
IPv6 socket address is stored in a sockaddr_in6 structure, defined in <netinet/in.h>
as follows:

struct in6_addr { /* IPv6 address structure */
 uint8_t s6_addr[16]; /* 16 bytes == 128 bits */
};

Sockets: In ternet Domains 1203

struct sockaddr_in6 { /* IPv6 socket address */
 sa_family_t sin6_family; /* Address family (AF_INET6) */
 in_port_t sin6_port; /* Port number */
 uint32_t sin6_flowinfo; /* IPv6 flow information */
 struct in6_addr sin6_addr; /* IPv6 address */
 uint32_t sin6_scope_id; /* Scope ID (new in kernel 2.4) */
};

The sin_family field is set to AF_INET6. The sin6_port and sin6_addr fields are the port
number and the IP address. (The uint8_t data type, used to type the bytes of the
in6_addr structure, is an 8-bit unsigned integer.) The remaining fields, sin6_flowinfo
and sin6_scope_id, are beyond the scope of this book; for our purposes, they are always
set to 0. All of the fields in the sockaddr_in6 structure are in network byte order.

IPv6 addresses are described in RFC 4291. Information about IPv6 flow control
(sin6_flowinfo) can be found in Appendix A of [Stevens et al., 2004] and in RFCs
2460 and 3697. RFCs 3493 and 4007 provide information about sin6_scope_id.

IPv6 has equivalents of the IPv4 wildcard and loopback addresses. However, their
use is complicated by the fact that an IPv6 address is stored in an array (rather than
using a scalar type). We use the IPv6 wildcard address (0::0) to illustrate this point.
The constant IN6ADDR_ANY_INIT is defined for this address as follows:

#define IN6ADDR_ANY_INIT { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } }

On Linux, some details in the header files differ from our description in this
section. In particular, the in6_addr structure contains a union definition that
divides the 128-bit IPv6 address into 16 bytes, eight 2-byte integers, or four 32-byte
integers. Because of the presence of this definition, the glibc definition of the
IN6ADDR_ANY_INIT constant actually includes one more set of nested braces than
is shown in the main text.

We can use the IN6ADDR_ANY_INIT constant in the initializer that accompanies a variable
declaration, but can’t use it on the right-hand side of an assignment statement,
since C syntax doesn’t permit structured constants to be used in assignments.
Instead, we must use a predefined variable, in6addr_any, which is initialized as fol-
lows by the C library:

const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;

Thus, we can initialize an IPv6 socket address structure using the wildcard address
as follows:

struct sockaddr_in6 addr;

memset(&addr, 0, sizeof(struct sockaddr_in6));
addr.sin6_family = AF_INET6;
addr.sin6_addr = in6addr_any;
addr.sin6_port = htons(SOME_PORT_NUM);

The corresponding constant and variable for the IPv6 loopback address (::1) are
IN6ADDR_LOOPBACK_INIT and in6addr_loopback.

1204 Chapter 59

Unlike their IPv4 counterparts, the IPv6 constant and variable initializers are in
network byte order. But, as shown in the above code, we still must ensure that the
port number is in network byte order.

If IPv4 and IPv6 coexist on a host, they share the same port-number space. This
means that if, for example, an application binds an IPv6 socket to TCP port 2000
(using the IPv6 wildcard address), then an IPv4 TCP socket can’t be bound to the
same port. (The TCP/IP implementation ensures that sockets on other hosts are
able to communicate with this socket, regardless of whether those hosts are run-
ning IPv4 or IPv6.)

The sockaddr_storage structure
With the IPv6 sockets API, the new generic sockaddr_storage structure was intro-
duced. This structure is defined to be large enough to hold any type of socket
address (i.e., any type of socket address structure can be cast and stored in it). In
particular, this structure allows us to transparently store either an IPv4 or an IPv6
socket address, thus removing IP version dependencies from our code. The
sockaddr_storage structure is defined on Linux as follows:

#define __ss_aligntype uint32_t /* On 32-bit architectures */
struct sockaddr_storage {
 sa_family_t ss_family;
 __ss_aligntype __ss_align; /* Force alignment */
 char __ss_padding[SS_PADSIZE]; /* Pad to 128 bytes */
};

59.5 Overview of Host and Service Conversion Functions
Computers represent IP addresses and port numbers in binary. However, humans
find names easier to remember than numbers. Employing symbolic names also
provides a useful level of indirection; users and programs can continue to use the
same name even if the underlying numeric value changes.

A hostname is the symbolic identifier for a system that is connected to a network
(possibly with multiple IP addresses). A service name is the symbolic representation
of a port number.

The following methods are available for representing host addresses and ports:

z A host address can be represented as a binary value, as a symbolic hostname,
or in presentation format (dotted-decimal for IPv4 or hex-string for IPv6).

z A port can be represented as a binary value or as a symbolic service name.

Various library functions are provided for converting between these formats. This
section briefly summarizes these functions. The following sections describe the
modern APIs (inet_ntop(), inet_pton(), getaddrinfo(), getnameinfo(), and so on) in
detail. In Section 59.13, we briefly discuss the obsolete APIs (inet_aton(), inet_ntoa(),
gethostbyname(), getservbyname(), and so on).

Converting IPv4 addresses between binary and human-readable forms
The inet_aton() and inet_ntoa() functions convert an IPv4 address in dotted-decimal
notation to binary and vice versa. We describe these functions primarily because

Sockets: In ternet Domains 1205

they appear in historical code. Nowadays, they are obsolete. Modern programs that
need to do such conversions should use the functions that we describe next.

Converting IPv4 and IPv6 addresses between binary and human-readable forms
The inet_pton() and inet_ntop() functions are like inet_aton() and inet_ntoa(), but dif-
fer in that they also handle IPv6 addresses. They convert binary IPv4 and IPv6
addresses to and from presentation format—that is, either dotted-decimal or hex-
string notation.

Since humans deal better with names than with numbers, we normally use
these functions only occasionally in programs. One use of inet_ntop() is to produce
a printable representation of an IP address for logging purposes. Sometimes, it is
preferable to use this function instead of converting (“resolving”) an IP address to
a hostname, for the following reasons:

z Resolving an IP address to a hostname involves a possibly time-consuming
request to a DNS server.

z In some circumstances, there may not be a DNS (PTR) record that maps the IP
address to a corresponding hostname.

We describe these functions (in Section 59.6) before getaddrinfo() and getnameinfo(),
which perform conversions between binary representations and the corresponding
symbolic names, principally because they present a much simpler API. This allows
us to quickly show some working examples of the use of Internet domain sockets.

Converting host and service names to and from binary form (obsolete)
The gethostbyname() function returns the binary IP address(es) corresponding to a
hostname and the getservbyname() function returns the port number corresponding
to a service name. The reverse conversions are performed by gethostbyaddr() and
getservbyport(). We describe these functions because they are widely used in existing
code. However, they are now obsolete. (SUSv3 marks these functions obsolete, and
SUSv4 removes their specifications.) New code should use the getaddrinfo() and
getnameinfo() functions (described next) for such conversions.

Converting host and service names to and from binary form (modern)
The getaddrinfo() function is the modern successor to both gethostbyname() and
getservbyname(). Given a hostname and a service name, getaddrinfo() returns a set of
structures containing the corresponding binary IP address(es) and port number.
Unlike gethostbyname(), getaddrinfo() transparently handles both IPv4 and IPv6
addresses. Thus, we can use it to write programs that don’t contain dependencies
on the IP version being employed. All new code should use getaddrinfo() for con-
verting hostnames and service names to binary representation.

The getnameinfo() function performs the reverse translation, converting an IP
address and port number into the corresponding hostname and service name.

We can also use getaddrinfo() and getnameinfo() to convert binary IP addresses
to and from presentation format.

The discussion of getaddrinfo() and getnameinfo(), in Section 59.10, requires
an accompanying description of DNS (Section 59.8) and the /etc/services file
(Section 59.9). DNS allows cooperating servers to maintain a distributed database

1206 Chapter 59

that maps binary IP addresses to hostnames and vice versa. The existence of a system
such as DNS is essential to the operation of the Internet, since centralized management
of the enormous set of Internet hostnames would be impossible. The /etc/services
file maps port numbers to symbolic service names.

59.6 The inet_pton() and inet_ntop() Functions
The inet_pton() and inet_ntop() functions allow conversion of both IPv4 and IPv6
addresses between binary form and dotted-decimal or hex-string notation.

The p in the names of these functions stands for “presentation,” and the n stands for
“network.” The presentation form is a human-readable string, such as the following:

z 204.152.189.116 (IPv4 dotted-decimal address);

z ::1 (an IPv6 colon-separated hexadecimal address); or

z ::FFFF:204.152.189.116 (an IPv4-mapped IPv6 address).

The inet_pton() function converts the presentation string contained in src_str into a
binary IP address in network byte order. The domain argument should be specified
as either AF_INET or AF_INET6. The converted address is placed in the structure pointed
to by addrptr, which should point to either an in_addr or an in6_addr structure,
according to the value specified in domain.

The inet_ntop() function performs the reverse conversion. Again, domain
should be specified as either AF_INET or AF_INET6, and addrptr should point to an in_addr
or in6_addr structure that we wish to convert. The resulting null-terminated string
is placed in the buffer pointed to by dst_str. The len argument must specify the size
of this buffer. On success, inet_ntop() returns dst_str. If len is too small, then inet_ntop()
returns NULL, with errno set to ENOSPC.

To correctly size the buffer pointed to by dst_str, we can employ two constants
defined in <netinet/in.h>. These constants indicate the maximum lengths (including
the terminating null byte) of the presentation strings for IPv4 and IPv6 addresses:

#define INET_ADDRSTRLEN 16 /* Maximum IPv4 dotted-decimal string */
#define INET6_ADDRSTRLEN 46 /* Maximum IPv6 hexadecimal string */

We provide examples of the use of inet_pton() and inet_ntop() in the next section.

#include <arpa/inet.h>

int inet_pton(int domain, const char *src_str, void *addrptr);

Returns 1 on successful conversion, 0 if src_str is not in
presentation format, or –1 on error

const char *inet_ntop(int domain, const void *addrptr, char *dst_str, size_t len);

Returns pointer to dst_str on success, or NULL on error

Sockets: In ternet Domains 1207

59.7 Client-Server Example (Datagram Sockets)
In this section, we take the case-conversion server and client programs shown in
Section 57.3 and modify them to use datagram sockets in the AF_INET6 domain. We
present these programs with a minimum of commentary, since their structure is
similar to the earlier programs. The main differences in the new programs lie in
the declaration and initialization of the IPv6 socket address structure, which we
described in Section 59.4.

The client and server both employ the header file shown in Listing 59-2. This
header file defines the server’s port number and the maximum size of messages
that the client and server can exchange.

Listing 59-2: Header file used by i6d_ucase_sv.c and i6d_ucase_cl.c
–– sockets/i6d_ucase.h

#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <ctype.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 10 /* Maximum size of messages exchanged
 between client and server */

#define PORT_NUM 50002 /* Server port number */

–– sockets/i6d_ucase.h

Listing 59-3 shows the server program. The server uses the inet_ntop() function to
convert the host address of the client (obtained via the recvfrom() call) to printable
form.

The client program shown in Listing 59-4 contains two notable modifications
from the earlier UNIX domain version (Listing 57-7, on page 1173). The first differ-
ence is that the client interprets its initial command-line argument as the IPv6
address of the server. (The remaining command-line arguments are passed as separate
datagrams to the server.) The client converts the server address to binary form using
inet_pton(). The other difference is that the client doesn’t bind its socket to an address.
As noted in Section 58.6.1, if an Internet domain socket is not bound to an address,
the kernel binds the socket to an ephemeral port on the host system. We can
observe this in the following shell session log, where we run the server and the cli-
ent on the same host:

$./i6d_ucase_sv &
[1] 31047
$./i6d_ucase_cl ::1 ciao Send to server on local host
Server received 4 bytes from (::1, 32770)
Response 1: CIAO

From the above output, we see that the server’s recvfrom() call was able to obtain the
address of the client’s socket, including the ephemeral port number, despite the
fact that the client did not do a bind().

1208 Chapter 59

Listing 59-3: IPv6 case-conversion server using datagram sockets
–– sockets/i6d_ucase_sv.c

#include "i6d_ucase.h"

int
main(int argc, char *argv[])
{
 struct sockaddr_in6 svaddr, claddr;
 int sfd, j;
 ssize_t numBytes;
 socklen_t len;
 char buf[BUF_SIZE];
 char claddrStr[INET6_ADDRSTRLEN];

 sfd = socket(AF_INET6, SOCK_DGRAM, 0);
 if (sfd == -1)
 errExit("socket");

 memset(&svaddr, 0, sizeof(struct sockaddr_in6));
 svaddr.sin6_family = AF_INET6;
 svaddr.sin6_addr = in6addr_any; /* Wildcard address */
 svaddr.sin6_port = htons(PORT_NUM);

 if (bind(sfd, (struct sockaddr *) &svaddr,
 sizeof(struct sockaddr_in6)) == -1)
 errExit("bind");

 /* Receive messages, convert to uppercase, and return to client */

 for (;;) {
 len = sizeof(struct sockaddr_in6);
 numBytes = recvfrom(sfd, buf, BUF_SIZE, 0,
 (struct sockaddr *) &claddr, &len);
 if (numBytes == -1)
 errExit("recvfrom");

 if (inet_ntop(AF_INET6, &claddr.sin6_addr, claddrStr,
 INET6_ADDRSTRLEN) == NULL)
 printf("Couldn't convert client address to string\n");
 else
 printf("Server received %ld bytes from (%s, %u)\n",
 (long) numBytes, claddrStr, ntohs(claddr.sin6_port));

 for (j = 0; j < numBytes; j++)
 buf[j] = toupper((unsigned char) buf[j]);

 if (sendto(sfd, buf, numBytes, 0, (struct sockaddr *) &claddr, len) !=
 numBytes)
 fatal("sendto");
 }
}

–– sockets/i6d_ucase_sv.c

Sockets: In ternet Domains 1209

Listing 59-4: IPv6 case-conversion client using datagram sockets
–– sockets/i6d_ucase_cl.c

#include "i6d_ucase.h"

int
main(int argc, char *argv[])
{
 struct sockaddr_in6 svaddr;
 int sfd, j;
 size_t msgLen;
 ssize_t numBytes;
 char resp[BUF_SIZE];

 if (argc < 3 || strcmp(argv[1], "--help") == 0)
 usageErr("%s host-address msg...\n", argv[0]);

 sfd = socket(AF_INET6, SOCK_DGRAM, 0); /* Create client socket */
 if (sfd == -1)
 errExit("socket");

 memset(&svaddr, 0, sizeof(struct sockaddr_in6));
 svaddr.sin6_family = AF_INET6;
 svaddr.sin6_port = htons(PORT_NUM);
 if (inet_pton(AF_INET6, argv[1], &svaddr.sin6_addr) <= 0)
 fatal("inet_pton failed for address '%s'", argv[1]);

 /* Send messages to server; echo responses on stdout */

 for (j = 2; j < argc; j++) {
 msgLen = strlen(argv[j]);
 if (sendto(sfd, argv[j], msgLen, 0, (struct sockaddr *) &svaddr,
 sizeof(struct sockaddr_in6)) != msgLen)
 fatal("sendto");

 numBytes = recvfrom(sfd, resp, BUF_SIZE, 0, NULL, NULL);
 if (numBytes == -1)
 errExit("recvfrom");

 printf("Response %d: %.*s\n", j - 1, (int) numBytes, resp);
 }

 exit(EXIT_SUCCESS);
}

–– sockets/i6d_ucase_cl.c

59.8 Domain Name System (DNS)
In Section 59.10, we describe getaddrinfo(), which obtains the IP address(es) corre-
sponding to a hostname, and getnameinfo(), which performs the converse task.
However, before looking at these functions, we explain how DNS is used to maintain
the mappings between hostnames and IP addresses.

1210 Chapter 59

Before the advent of DNS, mappings between hostnames and IP addresses
were defined in a manually maintained local file, /etc/hosts, containing records of
the following form:

IP-address canonical hostname [aliases]
127.0.0.1 localhost

The gethostbyname() function (the predecessor to getaddrinfo()) obtained an IP address
by searching this file, looking for a match on either the canonical hostname (i.e., the
official or primary name of the host) or one of the (optional, space-delimited) aliases.

However, the /etc/hosts scheme scales poorly, and then becomes impossible, as
the number of hosts in the network increases (e.g., the Internet, with millions of hosts).

DNS was devised to address this problem. The key ideas of DNS are the following:

z Hostnames are organized into a hierarchical namespace (Figure 59-2). Each
node in the DNS hierarchy has a label (name), which may be up to 63 characters.
At the root of the hierarchy is an unnamed node, the “anonymous root.”

z A node’s domain name consists of all of the names from that node up to the
root concatenated together, with each name separated by a period (.). For
example, google.com is the domain name for the node google.

z A fully qualified domain name (FQDN), such as www.kernel.org., identifies a host
within the hierarchy. A fully qualified domain name is distinguished by being
terminated by a period, although in many contexts the period may be omitted.

z No single organization or system manages the entire hierarchy. Instead, there
is a hierarchy of DNS servers, each of which manages a branch (a zone) of the
tree. Normally, each zone has a primary master name server, and one or more
slave name servers (sometimes also known as secondary master name servers), which
provide backup in the event that the primary master name server crashes.
Zones may themselves be divided into separately managed smaller zones. When a
host is added within a zone, or the mapping of a hostname to an IP address is
changed, the administrator responsible for the corresponding local name
server updates the name database on that server. (No manual changes are
required on any other name-server databases in the hierarchy.)

The DNS server implementation employed on Linux is the widely used Berkeley
Internet Name Domain (BIND) implementation, named(8), maintained by the
Internet Systems Consortium (http://www.isc.org/). The operation of this daemon
is controlled by the file /etc/named.conf (see the named.conf(5) manual page).
The key reference on DNS and BIND is [Albitz & Liu, 2006]. Information
about DNS can also be found in Chapter 14 of [Stevens, 1994], Chapter 11 of
[Stevens et al., 2004], and Chapter 24 of [Comer, 2000].

z When a program calls getaddrinfo() to resolve (i.e., obtain the IP address for) a
domain name, getaddrinfo() employs a suite of library functions (the resolver
library) that communicate with the local DNS server. If this server can’t supply
the required information, then it communicates with other DNS servers
within the hierarchy in order to obtain the information. Occasionally, this reso-
lution process may take a noticeable amount of time, and DNS servers employ
caching techniques to avoid unnecessary communication for frequently que-
ried domain names.

Sockets: In ternet Domains 1211

Using the above approach allows DNS to cope with large namespaces, and does not
require centralized management of names.

Figure 59-2: A subset of the DNS hierarchy

Recursive and iterative resolution requests
DNS resolution requests fall into two categories: recursive and iterative. In a recur-
sive request, the requester asks the server to handle the entire task of resolution,
including the task of communicating with any other DNS servers, if necessary.
When an application on the local host calls getaddrinfo(), that function makes a
recursive request to the local DNS server. If the local DNS server does not itself have
the information to perform the resolution, it resolves the domain name iteratively.

We explain iterative resolution via an example. Suppose that the local DNS
server is asked to resolve the name www.otago.ac.nz. To do this, it first communicates
with one of a small set of root name servers that every DNS server is required to know
about. (We can obtain a list of these servers using the command dig . NS or from
the web page at http://www.root-servers.org/.) Given the name www.otago.ac.nz, the
root name server refers the local DNS server to one of the nz DNS servers. The local
DNS server then queries the nz server with the name www.otago.ac.nz, and receives a
response referring it to the ac.nz server. The local DNS server then queries the ac.nz
server with the name www.otago.ac.nz, and is referred to the otago.ac.nz server. Finally,
the local DNS server queries the otago.ac.nz server with the name www.otago.ac.nz,
and obtains the required IP address.

If we supply an incomplete domain name to gethostbyname(), the resolver will
attempt to complete it before resolving it. The rules on how a domain name is com-
pleted are defined in /etc/resolv.conf (see the resolv.conf(5) manual page). By default,
the resolver will at least try completion using the domain name of the local host. For
example, if we are logged in on the machine oghma.otago.ac.nz and we type the com-
mand ssh octavo, the resulting DNS query will be for the name octavo.otago.ac.nz.

com edu net org de nz us

kernelgoogle

Generic
domains

eu

Country
domains

gnu

ftp www

Top level
domains

Anonymous root

ac

canterbury

www

Second
level

domains

www.kernel.org.

www

1212 Chapter 59

Top-level domains
The nodes immediately below the anonymous root form the so-called top-level
domains (TLDs). (Below these are the second-level domains, and so on.) TLDs fall into
two categories: generic and country.

Historically, there were seven generic TLDs, most of which can be considered
international. We have shown four of the original generic TLDs in Figure 59-2. The
other three are int, mil, and gov; the latter two are reserved for the United States. In
more recent times, a number of new generic TLDs have been added (e.g., info,
name, and museum).

Each nation has a corresponding country (or geographical) TLD (standardized as
ISO 3166-1), with a 2-character name. In Figure 59-2, we have shown a few of these:
de (Germany, Deutschland), eu (a supra-national geographical TLD for the European
Union), nz (New Zealand), and us (United States of America). Several countries
divide their TLD into a set of second-level domains in a manner similar to the
generic domains. For example, New Zealand has ac.nz (academic institutions),
co.nz (commercial), and govt.nz (government).

59.9 The /etc/services File
As noted in Section 58.6.1, well-known port numbers are centrally registered by
IANA. Each of these ports has a corresponding service name. Because service num-
bers are centrally managed and are less volatile than IP addresses, an equivalent of
the DNS server is usually not necessary. Instead, the port numbers and service
names are recorded in the file /etc/services. The getaddrinfo() and getnameinfo()
functions use the information in this file to convert service names to port numbers
and vice versa.

The /etc/services file consists of lines containing three columns, as shown in
the following examples:

Service name port/protocol [aliases]
echo 7/tcp Echo # echo service
echo 7/udp Echo
ssh 22/tcp # Secure Shell
ssh 22/udp
telnet 23/tcp # Telnet
telnet 23/udp
smtp 25/tcp # Simple Mail Transfer Protocol
smtp 25/udp
domain 53/tcp # Domain Name Server
domain 53/udp
http 80/tcp # Hypertext Transfer Protocol
http 80/udp
ntp 123/tcp # Network Time Protocol
ntp 123/udp
login 513/tcp # rlogin(1)
who 513/udp # rwho(1)
shell 514/tcp # rsh(1)
syslog 514/udp # syslog

Sockets: In ternet Domains 1213

The protocol is typically either tcp or udp. The optional (space-delimited) aliases specify
alternative names for the service. In addition to the above, lines may include com-
ments starting with the # character.

As noted previously, a given port number refers to distinct entities for UDP
and TCP, but IANA policy assigns both port numbers to a service, even if that service
uses only one protocol. For example, telnet, ssh, HTTP, and SMTP all use TCP, but
the corresponding UDP port is also assigned to these services. Conversely, NTP
uses only UDP, but the TCP port 123 is also assigned to this service. In some cases,
a service uses both UDP and TCP; DNS and echo are examples of such services.
Finally, there are a very few cases where the UDP and TCP ports with the same
number are assigned to different services; for example, rsh uses TCP port 514,
while the syslog daemon (Section 37.5) uses UDP port 514. This is because these
port numbers were assigned before the adoption of the present IANA policy.

The /etc/services file is merely a record of name-to-number mappings. It is not
a reservation mechanism: the appearance of a port number in /etc/services
doesn’t guarantee that it will actually be available for binding by a particular
service.

59.10 Protocol-Independent Host and Service Conversion
The getaddrinfo() function converts host and service names to IP addresses and port
numbers. It was defined in POSIX.1g as the (reentrant) successor to the obsolete
gethostbyname() and getservbyname() functions. (Replacing the use of gethostbyname()
with getaddrinfo() allows us to eliminate IPv4-versus-IPv6 dependencies from our
programs.)

The getnameinfo() function is the converse of getaddrinfo(). It translates a socket
address structure (either IPv4 or IPv6) to strings containing the corresponding host
and service name. This function is the (reentrant) equivalent of the obsolete
gethostbyaddr() and getservbyport() functions.

Chapter 11 of [Stevens et al., 2004] describes getaddrinfo() and getnameinfo() in
detail, and provides implementations of these functions. These functions are
also described in RFC 3493.

59.10.1 The getaddrinfo() Function
Given a host name and a service name, getaddrinfo() returns a list of socket address
structures, each of which contains an IP address and port number.

#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *host, const char *service,
 const struct addrinfo *hints, struct addrinfo **result);

Returns 0 on success, or nonzero on error

1214 Chapter 59

As input, getaddrinfo() takes the arguments host, service, and hints. The host argument
contains either a hostname or a numeric address string, expressed in IPv4 dotted-
decimal notation or IPv6 hex-string notation. (To be precise, getaddrinfo() accepts
IPv4 numeric strings in the more general numbers-and-dots notation described in
Section 59.13.1.) The service argument contains either a service name or a decimal
port number. The hints argument points to an addrinfo structure that specifies fur-
ther criteria for selecting the socket address structures returned via result. We
describe the hints argument in more detail below.

As output, getaddrinfo() dynamically allocates a linked list of addrinfo structures
and sets result pointing to the beginning of this list. Each of these addrinfo struc-
tures includes a pointer to a socket address structure corresponding to host and
service (Figure 59-3). The addrinfo structure has the following form:

struct addrinfo {
 int ai_flags; /* Input flags (AI_* constants) */
 int ai_family; /* Address family */
 int ai_socktype; /* Type: SOCK_STREAM, SOCK_DGRAM */
 int ai_protocol; /* Socket protocol */
 size_t ai_addrlen; /* Size of structure pointed to by ai_addr */
 char *ai_canonname; /* Canonical name of host */
 struct sockaddr *ai_addr; /* Pointer to socket address structure */
 struct addrinfo *ai_next; /* Next structure in linked list */
};

The result argument returns a list of structures, rather than a single structure,
because there may be multiple combinations of host and service corresponding to
the criteria specified in host, service, and hints. For example, multiple address structures
could be returned for a host with more than one network interface. Furthermore,
if hints.ai_socktype was specified as 0, then two structures could be returned—one
for a SOCK_DGRAM socket, the other for a SOCK_STREAM socket—if the given service was
available for both UDP and TCP.

The fields of each addrinfo structure returned via result describe properties of
the associated socket address structure. The ai_family field is set to either AF_INET or
AF_INET6, informing us of the type of the socket address structure. The ai_socktype
field is set to either SOCK_STREAM or SOCK_DGRAM, indicating whether this address struc-
ture is for a TCP or a UDP service. The ai_protocol field returns a protocol value
appropriate for the address family and socket type. (The three fields ai_family,
ai_socktype, and ai_protocol supply the values required for the arguments used when
calling socket() to create a socket for this address.) The ai_addrlen field gives the size
(in bytes) of the socket address structure pointed to by ai_addr. The in_addr field
points to the socket address structure (an in_addr structure for IPv4 or an in6_addr
structure for IPv6). The ai_flags field is unused (it is used for the hints argument).
The ai_canonname field is used only in the first addrinfo structure, and only if the
AI_CANONNAME flag is employed in hints.ai_flags, as described below.

As with gethostbyname(), getaddrinfo() may need to send a request to a DNS
server, and this request may take some time to complete. The same applies for
getnameinfo(), which we describe in Section 59.10.4.

We demonstrate the use of getaddrinfo() in Section 59.11.

Sockets: In ternet Domains 1215

Figure 59-3: Structures allocated and returned by getaddrinfo()

The hints argument
The hints argument specifies further criteria for selecting the socket address struc-
tures returned by getaddrinfo(). When used as the hints argument, only the ai_flags,
ai_family, ai_socktype, and ai_protocol fields of the addrinfo structure can be set. The
other fields are unused, and should be initialized to 0 or NULL, as appropriate.

The hints.ai_family field selects the domain for the returned socket address
structures. It may be specified as AF_INET or AF_INET6 (or some other AF_* constant, if
the implementation supports it). If we are interested in getting back all types of
socket address structures, we can specify the value AF_UNSPEC for this field.

The hints.ai_socktype field specifies the type of socket for which the returned
address structure is to be used. If we specify this field as SOCK_DGRAM, then a lookup
is performed for the UDP service, and a corresponding socket address structure is
returned via result. If we specify SOCK_STREAM, a lookup for the TCP service is performed.
If hints.ai_socktype is specified as 0, any socket type is acceptable.

The hints.ai_protocol field selects the socket protocol for the returned address
structures. For our purposes, this field is always specified as 0, meaning that the
caller will accept any protocol.

ai addr

result
addrinfo

structures

ai next

socket address
structuresai canonname

canonical
hostname

ai addr
ai next

ai addr
ai next

1216 Chapter 59

The hints.ai_flags field is a bit mask that modifies the behavior of getaddrinfo().
This field is formed by ORing together zero or more of the following values:

AI_ADDRCONFIG
Return IPv4 addresses only if there is at least one IPv4 address configured
for the local system (other than the IPv4 loopback address), and return
IPv6 addresses only if there is at least one IPv6 address configured for the
local system (other than the IPv6 loopback address).

AI_ALL
See the description of AI_V4MAPPED below.

AI_CANONNAME
If host is not NULL, return a pointer to a null-terminated string containing
the canonical name of the host. This pointer is returned in a buffer
pointed to by the ai_canonname field of the first of the addrinfo structures
returned via result.

AI_NUMERICHOST
Force interpretation of host as a numeric address string. This is used to prevent
name resolution in cases where it is unnecessary, since name resolution
can be time-consuming.

AI_NUMERICSERV
Interpret service as a numeric port number. This flag prevents the invoca-
tion of any name-resolution service, which is not required if service is a
numeric string.

AI_PASSIVE
Return socket address structures suitable for a passive open (i.e., a listen-
ing socket). In this case, host should be NULL, and the IP address component
of the socket address structure(s) returned by result will contain a wildcard
IP address (i.e., INADDR_ANY or IN6ADDR_ANY_INIT). If this flag is not set, then
the address structure(s) returned via result will be suitable for use with
connect() and sendto(); if host is NULL, then the IP address in the returned
socket address structures will be set to the loopback IP address (either
INADDR_LOOPBACK or IN6ADDR_LOOPBACK_INIT, according to the domain).

AI_V4MAPPED
If AF_INET6 was specified in the ai_family field of hints, then IPv4-mapped
IPv6 address structures should be returned in result if no matching IPv6
address could be found. If AI_ALL is specified in conjunction with AI_V4MAPPED,
then both IPv6 and IPv4 address structures are returned in result, with IPv4
addresses being returned as IPv4-mapped IPv6 address structures.

As noted above for AI_PASSIVE, host can be specified as NULL. It is also possible to
specify service as NULL, in which case the port number in the returned address struc-
tures is set to 0 (i.e., we are just interested in resolving hostnames to addresses). It
is not permitted, however, to specify both host and service as NULL.

If we don’t need to specify any of the above selection criteria in hints, then
hints may be specified as NULL, in which case ai_socktype and ai_protocol are assumed

Sockets: In ternet Domains 1217

as 0, ai_flags is assumed as (AI_V4MAPPED | AI_ADDRCONFIG), and ai_family is assumed as
AF_UNSPEC. (The glibc implementation deliberately deviates from SUSv3, which states
that if hints is NULL, ai_flags is assumed as 0.)

59.10.2 Freeing addrinfo Lists: freeaddrinfo()

The getaddrinfo() function dynamically allocates memory for all of the structures
referred to by result (Figure 59-3). Consequently, the caller must deallocate these
structures when they are no longer needed. The freeaddrinfo() function is provided
to conveniently perform this deallocation in a single step.

If we want to preserve a copy of one of the addrinfo structures or its associated
socket address structure, then we must duplicate the structure(s) before calling
freeaddrinfo().

59.10.3 Diagnosing Errors: gai_strerror()

On error, getaddrinfo() returns one of the nonzero error codes shown in Table 59-1.

Given one of the error codes in Table 59-1, the gai_strerror() function returns a
string describing the error. (This string is typically briefer than the description
shown in Table 59-1.)

#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo *result);

Table 59-1: Error returns for getaddrinfo() and getnameinfo()

Error constant Description

EAI_ADDRFAMILY No addresses for host exist in hints.ai_family (not in SUSv3, but defined on
most implementations; getaddrinfo() only)

EAI_AGAIN Temporary failure in name resolution (try again later)
EAI_BADFLAGS An invalid flag was specified in hints.ai_flags
EAI_FAIL Unrecoverable failure while accessing name server
EAI_FAMILY Address family specified in hints.ai_family is not supported
EAI_MEMORY Memory allocation failure
EAI_NODATA No address associated with host (not in SUSv3, but defined on most

implementations; getaddrinfo() only)
EAI_NONAME Unknown host or service, or both host and service were NULL, or

AI_NUMERICSERV specified and service didn’t point to numeric string
EAI_OVERFLOW Argument buffer overflow
EAI_SERVICE Specified service not supported for hints.ai_socktype (getaddrinfo() only)
EAI_SOCKTYPE Specified hints.ai_socktype is not supported (getaddrinfo() only)
EAI_SYSTEM System error returned in errno

1218 Chapter 59

We can use the string returned by gai_strerror() as part of an error message dis-
played by an application.

59.10.4 The getnameinfo() Function
The getnameinfo() function is the converse of getaddrinfo(). Given a socket address
structure (either IPv4 or IPv6), it returns strings containing the corresponding host
and service name, or numeric equivalents if the names can’t be resolved.

The addr argument is a pointer to the socket address structure that is to be con-
verted. The length of that structure is given in addrlen. Typically, the values for addr
and addrlen are obtained from a call to accept(), recvfrom(), getsockname(), or
getpeername().

The resulting host and service names are returned as null-terminated strings in
the buffers pointed to by host and service. These buffers must be allocated by the caller,
and their sizes must be passed in hostlen and servlen. The <netdb.h> header file
defines two constants to assist in sizing these buffers. NI_MAXHOST indicates the maxi-
mum size, in bytes, for a returned hostname string. It is defined as 1025. NI_MAXSERV
indicates the maximum size, in bytes, for a returned service name string. It is
defined as 32. These two constants are not specified in SUSv3, but they are defined
on all UNIX implementations that provide getnameinfo(). (Since glibc 2.8, we must
define one of the feature text macros _BSD_SOURCE, _SVID_SOURCE, or _GNU_SOURCE to
obtain the definitions of NI_MAXHOST and NI_MAXSERV.)

If we are not interested in obtaining the hostname, we can specify host as NULL
and hostlen as 0. Similarly, if we don’t need the service name, we can specify service
as NULL and servlen as 0. However, at least one of host and service must be non-NULL
(and the corresponding length argument must be nonzero).

The final argument, flags, is a bit mask that controls the behavior of getnameinfo().
The following constants may be ORed together to form this bit mask:

NI_DGRAM
By default, getnameinfo() returns the name corresponding to a stream socket
(i.e., TCP) service. Normally, this doesn’t matter, because, as noted in
Section 59.9, the service names are usually the same for corresponding

#include <netdb.h>

const char *gai_strerror(int errcode);

Returns pointer to string containing error message

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *addr, socklen_t addrlen, char *host,
 size_t hostlen, char *service, size_t servlen, int flags);

Returns 0 on success, or nonzero on error

Sockets: In ternet Domains 1219

TCP and UDP ports. However, in the few instances where the names differ,
the NI_DGRAM flag forces the name of the datagram socket (i.e., UDP) service
to be returned.

NI_NAMEREQD
By default, if the hostname can’t be resolved, a numeric address string is
returned in host. If the NI_NAMEREQD flag is specified, an error (EAI_NONAME) is
returned instead.

NI_NOFQDN
By default, the fully qualified domain name for the host is returned. Speci-
fying the NI_NOFQDN flag causes just the first (i.e., the hostname) part of the
name to be returned, if this is a host on the local network.

NI_NUMERICHOST
Force a numeric address string to be returned in host. This is useful if we
want to avoid a possibly time-consuming call to the DNS server.

NI_NUMERICSERV
Force a decimal port number string to be returned in service. This is useful
in cases where we know that the port number doesn’t correspond to a service
name—for example, if it is an ephemeral port number assigned to the
socket by the kernel—and we want to avoid the inefficiency of unnecessarily
searching /etc/services.

On success, getnameinfo() returns 0. On error, it returns one of the nonzero error
codes shown in Table 59-1.

59.11 Client-Server Example (Stream Sockets)
We now have enough information to look at a simple client-server application
using TCP sockets. The task performed by this application is the same as that per-
formed by the FIFO client-server application presented in Section 44.8: allocating
unique sequence numbers (or ranges of sequence numbers) to clients.

In order to handle the possibility that integers may be represented in different
formats on the server and client hosts, we encode all transmitted integers as strings
terminated by a newline, and use our readLine() function (Listing 59-1) to read
these strings.

Common header file
Both the server and the client include the header file shown in Listing 59-5. This
file includes various other header files, and defines the TCP port number to be
used by the application.

Server program
The server program shown in Listing 59-6 performs the following steps:

z Initialize the server’s sequence number either to 1 or to the value supplied in
the optional command-line argument ..

1220 Chapter 59

z Ignore the SIGPIPE signal 3. This prevents the server from receiving the SIGPIPE
signal if it tries to write to a socket whose peer has been closed; instead, the
write() fails with the error EPIPE.

z Call getaddrinfo() / to obtain a set of socket address structures for a TCP socket
that uses the port number PORT_NUM. (Instead of using a hard-coded port number,
we would more typically use a service name.) We specify the AI_PASSIVE flag $ so
that the resulting socket will be bound to the wildcard address (Section 58.5). As
a result, if the server is run on a multihomed host, it can accept connection
requests sent to any of the host’s network addresses.

z Enter a loop that iterates through the socket address structures returned by the
previous step 1. The loop terminates when the program finds an address struc-
ture that can be used to successfully create and bind a socket 2.

z Set the SO_REUSEADDR option for the socket created in the previous step 4. We
defer discussion of this option until Section 61.10, where we note that a TCP
server should usually set this option on its listening socket.

z Mark the socket as a listening socket (.

z Commence an infinite for loop , that services clients iteratively (Chapter 60).
Each client’s request is serviced before the next client’s request is accepted. For
each client, the server performs the following steps:

– Accept a new connection ". The server passes non-NULL pointers for the
second and third arguments to accept(), in order to obtain the address of
the client. The server displays the client’s address (IP address plus port
number) on standard output 0.

– Read the client’s message #, which consists of a newline-terminated string
specifying how many sequence numbers the client wants. The server con-
verts this string to an integer and stores it in the variable reqLen %.

– Send the current value of the sequence number (seqNum) back to the cli-
ent, encoding it as a newline-terminated string &. The client can assume
that it has been allocated all of the sequence numbers in the range seqNum
to (seqNum + reqLen – 1).

– Update the value of the server’s sequence number by adding reqLen to
seqNum '.

Listing 59-5: Header file used by is_seqnum_sv.c and is_seqnum_cl.c
–– sockets/is_seqnum.h

#include <netinet/in.h>
#include <sys/socket.h>
#include <signal.h>
#include "read_line.h" /* Declaration of readLine() */
#include "tlpi_hdr.h"

#define PORT_NUM "50000" /* Port number for server */

#define INT_LEN 30 /* Size of string able to hold largest
 integer (including terminating '\n') */

–– sockets/is_seqnum.h

Sockets: In ternet Domains 1221

Listing 59-6: An iterative server that uses a stream socket to communicate with clients
–– sockets/is_seqnum_sv.c
#define _BSD_SOURCE /* To get definitions of NI_MAXHOST and
 NI_MAXSERV from <netdb.h> */
#include <netdb.h>
#include "is_seqnum.h"

#define BACKLOG 50

int
main(int argc, char *argv[])
{
 uint32_t seqNum;
 char reqLenStr[INT_LEN]; /* Length of requested sequence */
 char seqNumStr[INT_LEN]; /* Start of granted sequence */
 struct sockaddr_storage claddr;
 int lfd, cfd, optval, reqLen;
 socklen_t addrlen;
 struct addrinfo hints;
 struct addrinfo *result, *rp;
#define ADDRSTRLEN (NI_MAXHOST + NI_MAXSERV + 10)
 char addrStr[ADDRSTRLEN];
 char host[NI_MAXHOST];
 char service[NI_MAXSERV];

 if (argc > 1 && strcmp(argv[1], "--help") == 0)
 usageErr("%s [init-seq-num]\n", argv[0]);

. seqNum = (argc > 1) ? getInt(argv[1], 0, "init-seq-num") : 0;

3 if (signal(SIGPIPE, SIG_IGN) == SIG_ERR)
 errExit("signal");

 /* Call getaddrinfo() to obtain a list of addresses that
 we can try binding to */

 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_canonname = NULL;
 hints.ai_addr = NULL;
 hints.ai_next = NULL;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_family = AF_UNSPEC; /* Allows IPv4 or IPv6 */

$ hints.ai_flags = AI_PASSIVE | AI_NUMERICSERV;
 /* Wildcard IP address; service name is numeric */

/ if (getaddrinfo(NULL, PORT_NUM, &hints, &result) != 0)
 errExit("getaddrinfo");

 /* Walk through returned list until we find an address structure
 that can be used to successfully create and bind a socket */

 optval = 1;
1 for (rp = result; rp != NULL; rp = rp->ai_next) {

 lfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
 if (lfd == -1)
 continue; /* On error, try next address */

1222 Chapter 59

4 if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval))
 == -1)
 errExit("setsockopt");

2 if (bind(lfd, rp->ai_addr, rp->ai_addrlen) == 0)
 break; /* Success */

 /* bind() failed: close this socket and try next address */

 close(lfd);
 }

 if (rp == NULL)
 fatal("Could not bind socket to any address");

(if (listen(lfd, BACKLOG) == -1)
 errExit("listen");

 freeaddrinfo(result);

, for (;;) { /* Handle clients iteratively */

 /* Accept a client connection, obtaining client's address */

 addrlen = sizeof(struct sockaddr_storage);
" cfd = accept(lfd, (struct sockaddr *) &claddr, &addrlen);

 if (cfd == -1) {
 errMsg("accept");
 continue;
 }

0 if (getnameinfo((struct sockaddr *) &claddr, addrlen,
 host, NI_MAXHOST, service, NI_MAXSERV, 0) == 0)
 snprintf(addrStr, ADDRSTRLEN, "(%s, %s)", host, service);
 else
 snprintf(addrStr, ADDRSTRLEN, "(?UNKNOWN?)");
 printf("Connection from %s\n", addrStr);

 /* Read client request, send sequence number back */

if (readLine(cfd, reqLenStr, INT_LEN) <= 0) {
 close(cfd);
 continue; /* Failed read; skip request */
 }

% reqLen = atoi(reqLenStr);
 if (reqLen <= 0) { /* Watch for misbehaving clients */
 close(cfd);
 continue; /* Bad request; skip it */
 }

& snprintf(seqNumStr, INT_LEN, "%d\n", seqNum);
 if (write(cfd, &seqNumStr, strlen(seqNumStr)) != strlen(seqNumStr))
 fprintf(stderr, "Error on write");

Sockets: In ternet Domains 1223

' seqNum += reqLen; /* Update sequence number */

 if (close(cfd) == -1) /* Close connection */
 errMsg("close");
 }
}

–– sockets/is_seqnum_sv.c

Client program
The client program is shown in Listing 59-7. This program accepts two arguments. The
first argument, which is the name of the host on which the server is running, is
mandatory. The optional second argument is the length of the sequence desired by
the client. The default length is 1. The client performs the following steps:

z Call getaddrinfo() to obtain a set of socket address structures suitable for con-
necting to a TCP server bound to the specified host .. For the port number,
the client specifies PORT_NUM.

z Enter a loop 3 that iterates through the socket address structures returned by the
previous step, until the client finds one that can be used to successfully create $
and connect / a socket to the server. Since the client has not bound its socket,
the connect() call causes the kernel to assign an ephemeral port to the socket.

z Send an integer specifying the length of the client’s desired sequence 1. This
integer is sent as a newline-terminated string.

z Read the sequence number sent back by the server (which is likewise a newline-
terminated string) 4 and print it on standard output 2.

When we run the server and the client on the same host, we see the following:

$./is_seqnum_sv &
[1] 4075
$./is_seqnum_cl localhost Client 1: requests 1 sequence number
Connection from (localhost, 33273) Server displays client address + port
Sequence number: 0 Client displays returned sequence number
$./is_seqnum_cl localhost 10 Client 2: requests 10 sequence numbers
Connection from (localhost, 33274)
Sequence number: 1
$./is_seqnum_cl localhost Client 3: requests 1 sequence number
Connection from (localhost, 33275)
Sequence number: 11

Next, we demonstrate the use of telnet for debugging this application:

$ telnet localhost 50000 Our server uses this port number
 Empty line printed by telnet
Trying 127.0..0.1...
Connection from (localhost, 33276)
Connected to localhost.
Escape character is '^]'.
1 Enter length of requested sequence
12 telnet displays sequence number and
Connection closed by foreign host. detects that server closed connection

1224 Chapter 59

In the shell session log, we see that the kernel cycles sequentially through the
ephemeral port numbers. (Other implementations exhibit similar behavior.)
On Linux, this behavior is the result of an optimization to minimize hash look-
ups in the kernel’s table of local socket bindings. When the upper limit for
these numbers is reached, the kernel recommences allocating an available
number starting at the low end of the range (defined by the Linux-specific
/proc/sys/net/ipv4/ip_local_port_range file).

Listing 59-7: A client that uses stream sockets
–– sockets/is_seqnum_cl.c

#include <netdb.h>
#include "is_seqnum.h"

int
main(int argc, char *argv[])
{
 char *reqLenStr; /* Requested length of sequence */
 char seqNumStr[INT_LEN]; /* Start of granted sequence */
 int cfd;
 ssize_t numRead;
 struct addrinfo hints;
 struct addrinfo *result, *rp;

 if (argc < 2 || strcmp(argv[1], "--help") == 0)
 usageErr("%s server-host [sequence-len]\n", argv[0]);

 /* Call getaddrinfo() to obtain a list of addresses that
 we can try connecting to */

 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_canonname = NULL;
 hints.ai_addr = NULL;
 hints.ai_next = NULL;
 hints.ai_family = AF_UNSPEC; /* Allows IPv4 or IPv6 */
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_flags = AI_NUMERICSERV;

. if (getaddrinfo(argv[1], PORT_NUM, &hints, &result) != 0)
 errExit("getaddrinfo");

 /* Walk through returned list until we find an address structure
 that can be used to successfully connect a socket */

3 for (rp = result; rp != NULL; rp = rp->ai_next) {
$ cfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);

 if (cfd == -1)
 continue; /* On error, try next address */

/ if (connect(cfd, rp->ai_addr, rp->ai_addrlen) != -1)
 break; /* Success */

Sockets: In ternet Domains 1225

 /* Connect failed: close this socket and try next address */

 close(cfd);
 }

 if (rp == NULL)
 fatal("Could not connect socket to any address");

 freeaddrinfo(result);

 /* Send requested sequence length, with terminating newline */

1 reqLenStr = (argc > 2) ? argv[2] : "1";
 if (write(cfd, reqLenStr, strlen(reqLenStr)) != strlen(reqLenStr))
 fatal("Partial/failed write (reqLenStr)");
 if (write(cfd, "\n", 1) != 1)
 fatal("Partial/failed write (newline)");

 /* Read and display sequence number returned by server */

4 numRead = readLine(cfd, seqNumStr, INT_LEN);
 if (numRead == -1)
 errExit("readLine");
 if (numRead == 0)
 fatal("Unexpected EOF from server");

2 printf("Sequence number: %s", seqNumStr); /* Includes '\n' */

 exit(EXIT_SUCCESS); /* Closes 'cfd' */
}

–– sockets/is_seqnum_cl.c

59.12 An Internet Domain Sockets Library
In this section, we use the functions presented in Section 59.10 to implement a
library of functions to perform tasks commonly required for Internet domain sockets.
(This library abstracts many of the steps shown in the example programs presented
in Section 59.11.) Since these functions employ the protocol-independent
getaddrinfo() and getnameinfo() functions, they can be used with both IPv4 and IPv6.
Listing 59-8 shows the header file that declares these functions.

Many of the functions in this library have similar arguments:

z The host argument is a string containing either a hostname or a numeric
address (in IPv4 dotted-decimal, or IPv6 hex-string notation). Alternatively,
host can be specified as a NULL pointer to indicate that the loopback IP address is
to be used.

z The service argument is either a service name or a port number specified as a
decimal string.

z The type argument is a socket type, specified as either SOCK_STREAM or SOCK_DGRAM.

1226 Chapter 59

Listing 59-8: Header file for inet_sockets.c
–– sockets/inet_sockets.h

#ifndef INET_SOCKETS_H
#define INET_SOCKETS_H /* Prevent accidental double inclusion */

#include <sys/socket.h>
#include <netdb.h>

int inetConnect(const char *host, const char *service, int type);

int inetListen(const char *service, int backlog, socklen_t *addrlen);

int inetBind(const char *service, int type, socklen_t *addrlen);

char *inetAddressStr(const struct sockaddr *addr, socklen_t addrlen,
 char *addrStr, int addrStrLen);

#define IS_ADDR_STR_LEN 4096
 /* Suggested length for string buffer that caller
 should pass to inetAddressStr(). Must be greater
 than (NI_MAXHOST + NI_MAXSERV + 4) */
#endif

–– sockets/inet_sockets.h

The inetConnect() function creates a socket with the given socket type, and connects
it to the address specified by host and service. This function is designed for TCP or
UDP clients that need to connect their socket to a server socket.

The file descriptor for the new socket is returned as the function result.
The inetListen() function creates a listening stream (SOCK_STREAM) socket bound

to the wildcard IP address on the TCP port specified by service. This function is
designed for use by TCP servers.

The file descriptor for the new socket is returned as the function result.
The backlog argument specifies the permitted backlog of pending connections

(as for listen()).

#include "inet_sockets.h"

int inetConnect(const char *host, const char *service, int type);

Returns a file descriptor on success, or –1 on error

#include "inet_sockets.h"

int inetListen(const char *service, int backlog, socklen_t *addrlen);

Returns a file descriptor on success, or –1 on error

Sockets: In ternet Domains 1227

If addrlen is specified as a non-NULL pointer, then the location it points to is used
to return the size of the socket address structure corresponding to the returned file
descriptor. This value allows us to allocate a socket address buffer of the appropri-
ate size to be passed to a later accept() call if we want to obtain the address of a con-
necting client.

The inetBind() function creates a socket of the given type, bound to the wildcard
IP address on the port specified by service and type. (The socket type indicates
whether this is a TCP or UDP service.) This function is designed (primarily) for
UDP servers and clients to create a socket bound to a specific address.

The file descriptor for the new socket is returned as the function result.
As with inetListen(), inetBind() returns the length of the associated socket

address structure for this socket in the location pointed to by addrlen. This is useful
if we want to allocate a buffer to pass to recvfrom() in order to obtain the address of
the socket sending a datagram. (Many of the steps required for inetListen() and
inetBind() are the same, and these steps are implemented within the library by a
single function, inetPassiveSocket().)

The inetAddressStr() function converts an Internet socket address to printable form.

Given a socket address structure in addr, whose length is specified in addrlen,
inetAddressStr() returns a null-terminated string containing the corresponding host-
name and port number in the following form:

(hostname, port-number)

The string is returned in the buffer pointed to by addrStr. The caller must specify the
size of this buffer in addrStrLen. If the returned string would exceed (addrStrLen – 1)
bytes, it is truncated. The constant IS_ADDR_STR_LEN defines a suggested size for the
addrStr buffer that should be large enough to handle all possible return strings. As
its function result, inetAddressStr() returns addrStr.

The implementation of the functions described in this section is shown in
Listing 59-9.

#include "inet_sockets.h"

int inetBind(const char *service, int type, socklen_t *addrlen);

Returns a file descriptor on success, or –1 on error

#include "inet_sockets.h"

char *inetAddressStr(const struct sockaddr *addr, socklen_t addrlen,
 char *addrStr, int addrStrLen);

Returns pointer to addrStr, a string containing host and service name

1228 Chapter 59

Listing 59-9: An Internet domain sockets library
–– sockets/inet_sockets.c

#define _BSD_SOURCE /* To get NI_MAXHOST and NI_MAXSERV
 definitions from <netdb.h> */
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include "inet_sockets.h" /* Declares functions defined here */
#include "tlpi_hdr.h"

int
inetConnect(const char *host, const char *service, int type)
{
 struct addrinfo hints;
 struct addrinfo *result, *rp;
 int sfd, s;

 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_canonname = NULL;
 hints.ai_addr = NULL;
 hints.ai_next = NULL;
 hints.ai_family = AF_UNSPEC; /* Allows IPv4 or IPv6 */
 hints.ai_socktype = type;

 s = getaddrinfo(host, service, &hints, &result);
 if (s != 0) {
 errno = ENOSYS;
 return -1;
 }

 /* Walk through returned list until we find an address structure
 that can be used to successfully connect a socket */

 for (rp = result; rp != NULL; rp = rp->ai_next) {
 sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
 if (sfd == -1)
 continue; /* On error, try next address */

 if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1)
 break; /* Success */

 /* Connect failed: close this socket and try next address */

 close(sfd);
 }

 freeaddrinfo(result);

 return (rp == NULL) ? -1 : sfd;
}

Sockets: In ternet Domains 1229

static int /* Public interfaces: inetBind() and inetListen() */
inetPassiveSocket(const char *service, int type, socklen_t *addrlen,
 Boolean doListen, int backlog)
{
 struct addrinfo hints;
 struct addrinfo *result, *rp;
 int sfd, optval, s;

 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_canonname = NULL;
 hints.ai_addr = NULL;
 hints.ai_next = NULL;
 hints.ai_socktype = type;
 hints.ai_family = AF_UNSPEC; /* Allows IPv4 or IPv6 */
 hints.ai_flags = AI_PASSIVE; /* Use wildcard IP address */

 s = getaddrinfo(NULL, service, &hints, &result);
 if (s != 0)
 return -1;

 /* Walk through returned list until we find an address structure
 that can be used to successfully create and bind a socket */

 optval = 1;
 for (rp = result; rp != NULL; rp = rp->ai_next) {
 sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
 if (sfd == -1)
 continue; /* On error, try next address */

 if (doListen) {
 if (setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &optval,
 sizeof(optval)) == -1) {
 close(sfd);
 freeaddrinfo(result);
 return -1;
 }
 }

 if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
 break; /* Success */

 /* bind() failed: close this socket and try next address */

 close(sfd);
 }

 if (rp != NULL && doListen) {
 if (listen(sfd, backlog) == -1) {
 freeaddrinfo(result);
 return -1;
 }
 }

 if (rp != NULL && addrlen != NULL)
 addrlen = rp->ai_addrlen; / Return address structure size */

1230 Chapter 59

 freeaddrinfo(result);

 return (rp == NULL) ? -1 : sfd;
}

int
inetListen(const char *service, int backlog, socklen_t *addrlen)
{
 return inetPassiveSocket(service, SOCK_STREAM, addrlen, TRUE, backlog);
}

int
inetBind(const char *service, int type, socklen_t *addrlen)
{
 return inetPassiveSocket(service, type, addrlen, FALSE, 0);
}

char *
inetAddressStr(const struct sockaddr *addr, socklen_t addrlen,
 char *addrStr, int addrStrLen)
{
 char host[NI_MAXHOST], service[NI_MAXSERV];

 if (getnameinfo(addr, addrlen, host, NI_MAXHOST,
 service, NI_MAXSERV, NI_NUMERICSERV) == 0)
 snprintf(addrStr, addrStrLen, "(%s, %s)", host, service);
 else
 snprintf(addrStr, addrStrLen, "(?UNKNOWN?)");

 addrStr[addrStrLen - 1] = '\0'; /* Ensure result is null-terminated */
 return addrStr;
}

–– sockets/inet_sockets.c

59.13 Obsolete APIs for Host and Service Conversions
In the following sections, we describe the older, now obsolete functions for con-
verting host names and service names to and from binary and presentation for-
mats. Although new programs should perform these conversions using the modern
functions described earlier in this chapter, a knowledge of the obsolete functions is
useful because we may encounter them in older code.

59.13.1 The inet_aton() and inet_ntoa() Functions
The inet_aton() and inet_ntoa() functions convert IPv4 addresses between dotted-
decimal notation and binary form (in network byte order). These functions are
nowadays made obsolete by inet_pton() and inet_ntop().

The inet_aton() (“ASCII to network”) function converts the dotted-decimal string
pointed to by str into an IPv4 address in network byte order, which is returned in the
in_addr structure pointed to by addr.

Sockets: In ternet Domains 1231

The inet_aton() function returns 1 if the conversion was successful, or 0 if str was
invalid.

The numeric components of the string given to inet_aton() need not be decimal.
They can be octal (specified by a leading 0) or hexadecimal (specified by a leading
0x or 0X). Furthermore, inet_aton() supports shorthand forms that allow an address
to be specified using fewer than four numeric components. (See the inet(3) manual
page for details.) The term numbers-and-dots notation is used for the more general
address strings that employ these features.

SUSv3 doesn’t specify inet_aton(). Nevertheless, this function is available on
most implementations. On Linux, we must define one of the feature test macros
_BSD_SOURCE, _SVID_SOURCE, or _GNU_SOURCE in order to obtain the declaration of inet_aton()
from <arpa/inet.h>.

The inet_ntoa() (“network to ASCII”) function performs the converse of
inet_aton().

Given an in_addr structure (a 32-bit IPv4 address in network byte order), inet_ntoa()
returns a pointer to a (statically allocated) string containing the address in dotted-
decimal notation.

Because the string returned by inet_ntoa() is statically allocated, it is overwritten
by successive calls.

59.13.2 The gethostbyname() and gethostbyaddr() Functions
The gethostbyname() and gethostbyaddr() functions allow conversion between hostnames
and IP addresses. These functions are nowadays made obsolete by getaddrinfo() and
getnameinfo().

#include <arpa/inet.h>

int inet_aton(const char *str, struct in_addr *addr);

Returns 1 (true) if str is a valid dotted-decimal address, or 0 (false) on error

#include <arpa/inet.h>

char *inet_ntoa(struct in_addr addr);

Returns pointer to (statically allocated)
dotted-decimal string version of addr

#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const char *addr, socklen_t len, int type);

Both return pointer to (statically allocated) hostent structure
on success, or NULL on error

1232 Chapter 59

The gethostbyname() function resolves the hostname given in name, returning a
pointer to a statically allocated hostent structure containing information about that
hostname. This structure has the following form:

struct hostent {
 char *h_name; /* Official (canonical) name of host */
 char **h_aliases; /* NULL-terminated array of pointers
 to alias strings */
 int h_addrtype; /* Address type (AF_INET or AF_INET6) */
 int h_length; /* Length (in bytes) of addresses pointed
 to by h_addr_list (4 bytes for AF_INET,
 16 bytes for AF_INET6) */
 char **h_addr_list; /* NULL-terminated array of pointers to
 host IP addresses (in_addr or in6_addr
 structures) in network byte order */
};

#define h_addr h_addr_list[0]

The h_name field returns the official name of the host, as a null-terminated string. The
h_aliases fields points to an array of pointers to null-terminated strings containing
aliases (alternative names) for this hostname.

The h_addr_list field is an array of pointers to IP address structures for this
host. (A multihomed host has more than one address.) This list consists of either
in_addr or in6_addr structures. We can determine the type of these structures from
the h_addrtype field, which contains either AF_INET or AF_INET6, and their length from the
h_length field. The h_addr definition is provided for backward compatibility with
earlier implementations (e.g., 4.2BSD) that returned just one address in the hostent
structure. Some existing code relies on this name (and thus is not multihomed-
host aware).

With modern versions of gethostbyname(), name can also be specified as a
numeric IP address string; that is, numbers-and-dots notation for IPv4 or hex-string
notation for IPv6. In this case, no lookup is performed; instead, name is copied into
the h_name field of the hostent structure, and h_addr_list is set to the binary equiva-
lent of name.

The gethostbyaddr() function performs the converse of gethostbyname(). Given a
binary IP address, it returns a hostent structure containing information about the
host with that address.

On error (e.g., a name could not be resolved), both gethostbyname() and
gethostbyaddr() return a NULL pointer and set the global variable h_errno. As the name
suggests, this variable is analogous to errno (possible values placed in this variable
are described in the gethostbyname(3) manual page), and the herror() and hstrerror()
functions are analogous to perror() and strerror().

The herror() function displays (on standard error) the string given in str, fol-
lowed by a colon (:), and then a message for the current error in h_errno. Alterna-
tively, we can use hstrerror() to obtain a pointer to a string corresponding to the error
value specified in err.

Sockets: In ternet Domains 1233

Listing 59-10 demonstrates the use of gethostbyname(). This program displays hostent
information for each of the hosts named on its command line. The following shell
session demonstrates the use of this program:

$./t_gethostbyname www.jambit.com
Canonical name: jamjam1.jambit.com
 alias(es): www.jambit.com
 address type: AF_INET
 address(es): 62.245.207.90

Listing 59-10: Using gethostbyname() to retrieve host information
––– sockets/t_gethostbyname.c

#define _BSD_SOURCE /* To get hstrerror() declaration from <netdb.h> */
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
 struct hostent *h;
 char **pp;
 char str[INET6_ADDRSTRLEN];

 for (argv++; *argv != NULL; argv++) {
 h = gethostbyname(*argv);
 if (h == NULL) {
 fprintf(stderr, "gethostbyname() failed for '%s': %s\n",
 *argv, hstrerror(h_errno));
 continue;
 }

 printf("Canonical name: %s\n", h->h_name);

 printf(" alias(es): ");
 for (pp = h->h_aliases; *pp != NULL; pp++)
 printf(" %s", *pp);
 printf("\n");

#define _BSD_SOURCE /* Or _SVID_SOURCE or _GNU_SOURCE */
#include <netdb.h>

void herror(const char *str);

const char *hstrerror(int err);

Returns pointer to h_errno error string corresponding to err

1234 Chapter 59

 printf(" address type: %s\n",
 (h->h_addrtype == AF_INET) ? "AF_INET" :
 (h->h_addrtype == AF_INET6) ? "AF_INET6" : "???");

 if (h->h_addrtype == AF_INET || h->h_addrtype == AF_INET6) {
 printf(" address(es): ");
 for (pp = h->h_addr_list; *pp != NULL; pp++)
 printf(" %s", inet_ntop(h->h_addrtype, *pp,
 str, INET6_ADDRSTRLEN));
 printf("\n");
 }
 }

 exit(EXIT_SUCCESS);
}

––– sockets/t_gethostbyname.c

59.13.3 The getservbyname() and getservbyport() Functions
The getservbyname() and getservbyport() functions retrieve records from the /etc/services
file (Section 59.9). These functions are nowadays made obsolete by getaddrinfo() and
getnameinfo().

The getservbyname() function looks up the record whose service name (or one of its
aliases) matches name and whose protocol matches proto. The proto argument is a
string such as tcp or udp, or it can be NULL. If proto is specified as NULL, any record
whose service name matches name is returned. (This is usually sufficient since,
where both UDP and TCP records with the same name exist in the /etc/services
file, they normally have the same port number.) If a matching record is found, then
getservbyname() returns a pointer to a statically allocated structure of the following type:

struct servent {
 char *s_name; /* Official service name */
 char **s_aliases; /* Pointers to aliases (NULL-terminated) */
 int s_port; /* Port number (in network byte order) */
 char *s_proto; /* Protocol */
};

Typically, we call getservbyname() only in order to obtain the port number, which is
returned in the s_port field.

The getservbyport() function performs the converse of getservbyname(). It returns
a servent record containing information from the /etc/services record whose port
number matches port and whose protocol matches proto. Again, we can specify proto
as NULL, in which case the call will return any record whose port number matches

#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

Both return pointer to a (statically allocated) servent structure
on success, or NULL on not found or error

Sockets: In ternet Domains 1235

the one specified in port. (This may not return the desired result in the few cases
mentioned above where the same port number maps to different service names in
UDP and TCP.)

An example of the use of the getservbyname() function is provided in the file
files/t_getservbyname.c in the source code distribution for this book.

59.14 UNIX Versus Internet Domain Sockets
When writing applications that communicate over a network, we must necessarily
use Internet domain sockets. However, when using sockets to communicate
between applications on the same system, we have the choice of using either Inter-
net or UNIX domain sockets. In the case, which domain should we use and why?

Writing an application using just Internet domain sockets is often the simplest
approach, since it will work on both a single host and across a network. However,
there are some reasons why we may choose to use UNIX domain sockets:

z On some implementations, UNIX domain sockets are faster than Internet
domain sockets.

z We can use directory (and, on Linux, file) permissions to control access to
UNIX domain sockets, so that only applications with a specified user or group
ID can connect to a listening stream socket or send a datagram to a datagram
socket. This provides a simple method of authenticating clients. With Internet
domain sockets, we need to do rather more work if we wish to authenticate clients.

z Using UNIX domain sockets, we can pass open file descriptors and sender creden-
tials, as summarized in Section 61.13.3.

59.15 Further Information
There is a wealth of printed and online resources on TCP/IP and the sockets API:

z The key book on network programming with the sockets API is [Stevens at al.,
2004]. [Snader, 2000] adds some useful guidelines on sockets programming.

z [Stevens, 1994] and [Wright & Stevens, 1995] describe TCP/IP in detail.
[Comer, 2000], [Comer & Stevens, 1999], [Comer & Stevens, 2000], [Kozierok,
2005], and [Goralksi, 2009] also provide good coverage of the same material.

z [Tanenbaum, 2002] provides general background on computer networks.

z [Herbert, 2004] describes the details of the Linux 2.6 TCP/IP stack.

z The GNU C library manual (online at http://www.gnu.org/) has an extensive dis-
cussion of the sockets API.

z The IBM Redbook, TCP/IP Tutorial and Technical Overview, provides lengthy
coverage of networking concepts, TCP/IP internals, the sockets API, and a host
of related topics. It is freely downloadable from http://www.redbooks.ibm.com/.

z [Gont, 2008] and [Gont, 2009b] provide security assessments of IPv4 and TCP.

z The Usenet newsgroup comp.protocols.tcp-ip is dedicated to questions related to
the TCP/IP networking protocols.

1236 Chapter 59

z [Sarolahti & Kuznetsov, 2002] describes congestion control and other details
of the Linux TCP implementation.

z Linux-specific information can be found in the following manual pages:
socket(7), ip(7), raw(7), tcp(7), udp(7), and packet(7).

z See also the RFC list in Section 58.7.

59.16 Summary
Internet domain sockets allow applications on different hosts to communicate via a
TCP/IP network. An Internet domain socket address consists of an IP address and
a port number. In IPv4, an IP address is a 32-bit number; in IPv6, it is a 128-bit number.
Internet domain datagram sockets operate over UDP, providing connectionless,
unreliable, message-oriented communication. Internet domain stream sockets operate
over TCP, and provide a reliable, bidirectional, byte-stream communication channel
between two connected applications.

Different computer architectures use different conventions for representing
data types. For example, integers may be stored in little-endian or big-endian form,
and different computers may use different numbers of bytes to represent numeric
types such as int or long. These differences mean that we need to employ some
architecture-independent representation when transferring data between hetero-
geneous machines connected via a network. We noted that various marshalling
standards exist to deal this problem, and also described a simple solution used by
many applications: encoding all transmitted data in text form, with fields delimited
by a designated character (usually a newline).

We looked at a range of functions that can be used to convert between
(numeric) string representations of IP addresses (dotted-decimal for IPv4 and hex-
string for IPv6) and their binary equivalents. However, it is generally preferable to
use host and service names rather than numbers, since names are easier to remem-
ber and continue to be usable, even if the corresponding number is changed. We
looked at various functions that convert host and service names to their numeric
equivalents and vice versa. The modern function for translating host and service
names into socket addresses is getaddrinfo(), but it is common to see the historical
functions gethostbyname() and getservbyname() in existing code.

Consideration of hostname conversions led us into a discussion of DNS, which
implements a distributed database for a hierarchical directory service. The advan-
tage of DNS is that the management of the database is not centralized. Instead,
local zone administrators update changes for the hierarchical component of the
database for which they are responsible, and DNS servers communicate with one
another in order to resolve a hostname.

59.17 Exercises
59-1. When reading large quantities of data, the readLine() function shown in Listing 59-1

is inefficient, since a system call is required to read each character. A more efficient
interface would read a block of characters into a buffer and extract a line at a time from
this buffer. Such an interface might consist of two functions. The first of these
functions, which might be called readLineBufInit(fd, &rlbuf), initializes the bookkeeping

Sockets: In ternet Domains 1237

data structure pointed to by rlbuf. This structure includes space for a data buffer,
the size of that buffer, and a pointer to the next “unread” character in that buffer.
It also includes a copy of the file descriptor given in the argument fd. The second
function, readLineBuf(&rlbuf), returns the next line from the buffer associated with
rlbuf. If required, this function reads a further block of data from the file descriptor
saved in rlbuf. Implement these two functions. Modify the programs in Listing 59-6
(is_seqnum_sv.c) and Listing 59-7 (is_seqnum_cl.c) to use these functions.

59-2. Modify the programs in Listing 59-6 (is_seqnum_sv.c) and Listing 59-7 (is_seqnum_cl.c) to
use the inetListen() and inetConnect() functions provided in Listing 59-9 (inet_sockets.c).

59-3. Write a UNIX domain sockets library with an API similar to the Internet domain
sockets library shown in Section 59.12. Rewrite the programs in Listing 57-3
(us_xfr_sv.c, on page 1168) and Listing 57-4 (us_xfr_cl.c, on page 1169) to use this
library.

59-4. Write a network server that stores name-value pairs. The server should allow names
to be added, deleted, modified, and retrieved by clients. Write one or more client
programs to test the server. Optionally, implement some kind of security
mechanism that allows only the client that created the name to delete it or to
modify the value associated with it.

59-5. Suppose that we create two Internet domain datagram sockets, bound to specific
addresses, and connect the first socket to the second. What happens if we create a
third datagram socket and try to send (sendto()) a datagram via that socket to the
first socket? Write a program to determine the answer.

S O C K E T S : S E R V E R D E S I G N

This chapter discusses the fundamentals of designing iterative and concurrent servers
and describes inetd, a special daemon designed to facilitate the creation of Inter-
net servers.

60.1 Iterative and Concurrent Servers
Two common designs for network servers using sockets are the following:

z Iterative: The server handles one client at a time, processing that client’s
request(s) completely, before proceeding to the next client.

z Concurrent: The server is designed to handle multiple clients simultaneously.

We have already seen an example of an iterative server using FIFOs in Section 44.8
and an example of a concurrent server using System V message queues in Section 46.8.

Iterative servers are usually suitable only when client requests can be handled
quickly, since each client must wait until all of the preceding clients have been ser-
viced. A typical scenario for employing an iterative server is where the client and
server exchange a single request and response.

1240 Chapter 60

Concurrent servers are suitable when a significant amount of processing time
is required to handle each request, or where the client and server engage in an
extended conversation, passing messages back and forth. In this chapter, we mainly
focus on the traditional (and simplest) method of designing a concurrent server:
creating a new child process for each new client. Each server child performs all
tasks necessary to service a single client and then terminates. Since each of these
processes can operate independently, multiple clients can be handled simulta-
neously. The principal task of the main server process (the parent) is to create a
new child process for each new client. (A variation on this approach is to create a new
thread for each client.)

In the following sections, we look at examples of an iterative and a concurrent
server using Internet domain sockets. These two servers implement the echo service
(RFC 862), a rudimentary service that returns a copy of whatever the client sends it.

60.2 An Iterative UDP echo Server
In this and the next section, we present servers for the echo service. The echo service
operates on both UDP and TCP port 7. (Since this is a reserved port, the echo server
must be run with superuser privileges.)

The UDP echo server continuously reads datagrams, returning a copy of each
datagram to the sender. Since the server needs to handle only a single message at a
time, an iterative server design suffices. The header file for the server is shown in
Listing 60-1.

Listing 60-1: Header file for id_echo_sv.c and id_echo_cl.c
–– sockets/id_echo.h

#include "inet_sockets.h" /* Declares our socket functions */
#include "tlpi_hdr.h"

#define SERVICE "echo" /* Name of UDP service */

#define BUF_SIZE 500 /* Maximum size of datagrams that can
 be read by client and server */

–– sockets/id_echo.h

Listing 60-2 shows the implementation of the server. Note the following points
regarding the server implementation:

z We use the becomeDaemon() function of Section 37.2 to turn the server into a
daemon.

z To shorten this program, we employ the Internet domain sockets library devel-
oped in Section 59.12.

z If the server can’t send a reply to the client, it logs a message using syslog().

In a real-world application, we would probably apply some rate limit to the
messages written with syslog(), both to prevent the possibility of an attacker fill-
ing the system log and because each call to syslog() is expensive, since (by
default) syslog() in turn calls fsync().

Sockets: Server Des ign 1241

Listing 60-2: An iterative server that implements the UDP echo service
––– sockets/id_echo_sv.c

#include <syslog.h>
#include "id_echo.h"
#include "become_daemon.h"

int
main(int argc, char *argv[])
{
 int sfd;
 ssize_t numRead;
 socklen_t addrlen, len;
 struct sockaddr_storage claddr;
 char buf[BUF_SIZE];
 char addrStr[IS_ADDR_STR_LEN];

 if (becomeDaemon(0) == -1)
 errExit("becomeDaemon");

 sfd = inetBind(SERVICE, SOCK_DGRAM, &addrlen);
 if (sfd == -1) {
 syslog(LOG_ERR, "Could not create server socket (%s)", strerror(errno));
 exit(EXIT_FAILURE);
 }

/* Receive datagrams and return copies to senders */

 for (;;) {
 len = sizeof(struct sockaddr_storage);
 numRead = recvfrom(sfd, buf, BUF_SIZE, 0,
 (struct sockaddr *) &claddr, &len);
 if (numRead == -1)
 errExit("recvfrom");

 if (sendto(sfd, buf, numRead, 0, (struct sockaddr *) &claddr, len)
 != numRead)
 syslog(LOG_WARNING, "Error echoing response to %s (%s)",
 inetAddressStr((struct sockaddr *) &claddr, len,
 addrStr, IS_ADDR_STR_LEN),
 strerror(errno));
 }
}

––– sockets/id_echo_sv.c

To test the server, we use the client program shown in Listing 60-3. This program
also employs the Internet domain sockets library developed in Section 59.12. As its
first command-line argument, the client program expects the name of the host on
which the server resides. The client executes a loop in which it sends each of its
remaining command-line arguments to the server as separate datagrams, and reads
and prints each response datagram sent back by the server.

1242 Chapter 60

Listing 60-3: A client for the UDP echo service
––– sockets/id_echo_cl.c

#include "id_echo.h"

int
main(int argc, char *argv[])
{
 int sfd, j;
 size_t len;
 ssize_t numRead;
 char buf[BUF_SIZE];

 if (argc < 2 || strcmp(argv[1], "--help") == 0)
 usageErr("%s: host msg...\n", argv[0]);

/* Construct server address from first command-line argument */

 sfd = inetConnect(argv[1], SERVICE, SOCK_DGRAM);
 if (sfd == -1)
 fatal("Could not connect to server socket");

/* Send remaining command-line arguments to server as separate datagrams */

 for (j = 2; j < argc; j++) {
 len = strlen(argv[j]);
 if (write(sfd, argv[j], len) != len)
 fatal("partial/failed write");

 numRead = read(sfd, buf, BUF_SIZE);
 if (numRead == -1)
 errExit("read");

 printf("[%ld bytes] %.*s\n", (long) numRead, (int) numRead, buf);
 }

 exit(EXIT_SUCCESS);
}

––– sockets/id_echo_cl.c

Here is an example of what we see when we run the server and two instances of the
client:

$ su Need privilege to bind reserved port
Password:
./id_echo_sv Server places itself in background
exit Cease to be superuser
$./id_echo_cl localhost hello world This client sends two datagrams
[5 bytes] hello Client prints responses from server
[5 bytes] world
$./id_echo_cl localhost goodbye This client sends one datagram
[7 bytes] goodbye

Sockets: Server Des ign 1243

60.3 A Concurrent TCP echo Server
The TCP echo service also operates on port 7. The TCP echo server accepts a con-
nection and then loops continuously, reading all transmitted data and sending it
back to the client on the same socket. The server continues reading until it detects
end-of-file, at which point it closes its socket (so that the client sees end-of-file if it is
still reading from its socket).

Since the client may send an indefinite amount of data to the server (and thus ser-
vicing the client may take an indefinite amount of time), a concurrent server design
is appropriate, so that multiple clients can be simultaneously served. The server
implementation is shown in Listing 60-4. (We show an implementation of a client
for this service in Section 61.2.) Note the following points about the implementation:

z The server becomes a daemon by calling the becomeDaemon() function shown in
Section 37.2.

z To shorten this program, we employ the Internet domain sockets library
shown in Listing 59-9 (page 1228).

z Since the server creates a child process for each client connection, we must
ensure that zombies are reaped. We do this within a SIGCHLD handler.

z The main body of the server consists of a for loop that accepts a client connec-
tion and then uses fork() to create a child process that invokes the
handleRequest() function to handle that client. In the meantime, the parent con-
tinues around the for loop to accept the next client connection.

In a real-world application, we would probably include some code in our
server to place an upper limit on the number of child processes that the server
could create, in order to prevent an attacker from attempting a remote fork
bomb by using the service to create so many processes on the system that it
becomes unusable. We could impose this limit by adding extra code in the
server to count the number of children currently executing (this count would
be incremented after a successful fork() and decremented as each child was
reaped in the SIGCHLD handler). If the limit on the number of children were
reached, we could then temporarily stop accepting connections (or alterna-
tively, accept connections and then immediately close them).

z After each fork(), the file descriptors for the listening and connected sockets
are duplicated in the child (Section 24.2.1). This means that both the parent
and the child could communicate with the client using the connected socket.
However, only the child needs to perform such communication, and so the
parent closes the file descriptor for the connected socket immediately after the
fork(). (If the parent did not do this, then the socket would never actually be
closed; furthermore, the parent would eventually run out of file descriptors.)
Since the child doesn’t accept new connections, it closes its duplicate of the file
descriptor for the listening socket.

z Each child process terminates after handling a single client.

1244 Chapter 60

Listing 60-4: A concurrent server that implements the TCP echo service
––– sockets/is_echo_sv.c

#include <signal.h>
#include <syslog.h>
#include <sys/wait.h>
#include "become_daemon.h"
#include "inet_sockets.h" /* Declarations of inet*() socket functions */
#include "tlpi_hdr.h"

#define SERVICE "echo" /* Name of TCP service */
#define BUF_SIZE 4096

static void /* SIGCHLD handler to reap dead child processes */
grimReaper(int sig)
{
 int savedErrno; /* Save 'errno' in case changed here */

 savedErrno = errno;
 while (waitpid(-1, NULL, WNOHANG) > 0)
 continue;
 errno = savedErrno;
}

/* Handle a client request: copy socket input back to socket */

static void
handleRequest(int cfd)
{
 char buf[BUF_SIZE];
 ssize_t numRead;

 while ((numRead = read(cfd, buf, BUF_SIZE)) > 0) {
 if (write(cfd, buf, numRead) != numRead) {
 syslog(LOG_ERR, "write() failed: %s", strerror(errno));
 exit(EXIT_FAILURE);
 }
 }

 if (numRead == -1) {
 syslog(LOG_ERR, "Error from read(): %s", strerror(errno));
 exit(EXIT_FAILURE);
 }
}

int
main(int argc, char *argv[])
{
 int lfd, cfd; /* Listening and connected sockets */
 struct sigaction sa;

 if (becomeDaemon(0) == -1)
 errExit("becomeDaemon");

Sockets: Server Des ign 1245

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART;
 sa.sa_handler = grimReaper;
 if (sigaction(SIGCHLD, &sa, NULL) == -1) {
 syslog(LOG_ERR, "Error from sigaction(): %s", strerror(errno));
 exit(EXIT_FAILURE);
 }

 lfd = inetListen(SERVICE, 10, NULL);
 if (lfd == -1) {
 syslog(LOG_ERR, "Could not create server socket (%s)", strerror(errno));
 exit(EXIT_FAILURE);
 }

 for (;;) {
 cfd = accept(lfd, NULL, NULL); /* Wait for connection */
 if (cfd == -1) {
 syslog(LOG_ERR, "Failure in accept(): %s", strerror(errno));
 exit(EXIT_FAILURE);
 }

/* Handle each client request in a new child process */

switch (fork()) {
 case -1:
 syslog(LOG_ERR, "Can't create child (%s)", strerror(errno));
 close(cfd); /* Give up on this client */
 break; /* May be temporary; try next client */

 case 0: /* Child */
 close(lfd); /* Unneeded copy of listening socket */
 handleRequest(cfd);
 _exit(EXIT_SUCCESS);

 default: /* Parent */
 close(cfd); /* Unneeded copy of connected socket */
 break; /* Loop to accept next connection */
 }
 }
}

––– sockets/is_echo_sv.c

60.4 Other Concurrent Server Designs
The traditional concurrent server model described in the previous section is ade-
quate for many applications that need to simultaneously handle multiple clients via
TCP connections. However, for very high-load servers (for example, web servers
handling thousands of requests per minute), the cost of creating a new child (or
even thread) for each client imposes a significant burden on the server (refer to
Section 28.3), and alternative designs need to be employed. We briefly consider
some of these alternatives.

1246 Chapter 60

Preforked and prethreaded servers
Preforked and prethreaded servers are described in some detail in Chapter 30 of
[Stevens et al., 2004]. The key ideas are the following:

z Instead of creating a new child process (or thread) for each client, the server
precreates a fixed number of child processes (or threads) immediately on startup
(i.e., before any client requests are even received). These children constitute a
so-called server pool.

z Each child in the server pool handles one client at a time, but instead of termi-
nating after handling the client, the child fetches the next client to be serviced
and services it, and so on.

Employing the above technique requires some careful management within the
server application. The server pool should be large enough to ensure adequate
response to client requests. This means that the server parent must monitor the
number of unoccupied children, and, in times of peak load, increase the size of the
pool so that there are always enough child processes available to immediately serve
new clients. If the load decreases, then the size of the server pool should be
reduced, since having excess processes on the system can degrade overall system
performance.

In addition, the children in the server pool must follow some protocol to allow
them to exclusively select individual client connections. On most UNIX implemen-
tations (including Linux), it is sufficient to have each child in the pool block in an
accept() call on the listening descriptor. In other words, the server parent creates
the listening socket before creating any children, and each of the children inherits
a file descriptor for the socket during the fork(). When a new client connection
arrives, only one of the children will complete the accept() call. However, because
accept() is not an atomic system call on some older implementations, the call may
need to be bracketed by some mutual-exclusion technique (e.g., a file lock) to
ensure that only one child at a time performs the call ([Stevens et al., 2004]).

There are alternatives to having all of the children in the server pool perform
accept() calls. If the server pool consists of separate processes, the server parent
can perform the accept() call, and then pass the file descriptor containing the
new connection to one of the free processes in the pool, using a technique that
we briefly describe in Section 61.13.3. If the server pool consists of threads, the
main thread can perform the accept() call, and then inform one of the free
server threads that a new client is available on the connected descriptor.

Handling multiple clients from a single process
In some cases, we can design a single server process to handle multiple clients. To
do this, we must employ one of the I/O models (I/O multiplexing, signal-driven I/O,
or epoll) that allow a single process to simultaneously monitor multiple file descrip-
tors for I/O events. These models are described in Chapter 63.

In a single-server design, the server process must take on some of the scheduling
tasks that are normally handled by the kernel. In a solution that involves one server
process per client, we can rely on the kernel to ensure that each server process (and
thus client) gets a fair share of access to the resources of the server host. But when we
use a single server process to handle multiple clients, the server must do some work

Sockets: Server Des ign 1247

to ensure that one or a few clients don’t monopolize access to the server while other
clients are starved. We say a little more about this point in Section 63.4.6.

Using server farms
Other approaches to handling high client loads involve the use of multiple server
systems—a server farm.

One of the simplest approaches to building a server farm (employed by some
web servers) is DNS round-robin load sharing (or load distribution), where the authori-
tative name server for a zone maps the same domain name to several IP addresses
(i.e., several servers share the same domain name). Successive requests to the DNS
server to resolve the domain name return these IP addresses in round-robin order.
Further information about DNS round-robin load sharing can be found in [Albitz
& Liu, 2006].

Round-robin DNS has the advantage of being inexpensive and easy to set up.
However, it does have some shortcomings. A DNS server performing iterative reso-
lution may cache its results (see Section 59.8), with the result that future queries on
the domain name return the same IP address, instead of the round-robin sequence
generated by the authoritative DNS server. Also, round-robin DNS doesn’t have
any built-in mechanisms for ensuring good load balancing (different clients may
place different loads on a server) or ensuring high availability (what if one of the
servers dies or the server application that it is running crashes?). Another issue that
we may need to consider—one that is faced by many designs that employ multiple
server machines—is ensuring server affinity; that is, ensuring that a sequence of
requests from the same client are all directed to the same server, so that any state
information maintained by the server about the client remains accurate.

A more flexible, but also more complex, solution is server load balancing. In this
scenario, a single load-balancing server routes incoming client requests to one of
the members of the server farm. (To ensure high availability, there may be a
backup server that takes over if the primary load-balancing server crashes.) This
eliminates the problems associated with remote DNS caching, since the server farm
presents a single IP address (that of the load-balancing server) to the outside world.
The load-balancing server incorporates algorithms to measure or estimate server
load (perhaps based on metrics supplied by the members of the server farm) and
intelligently distribute the load across the members of the server farm. The load-bal-
ancing server also automatically detects failures in members of the server farm (and
the addition of new servers, if demand requires it). Finally, a load-balancing server
may also provide support for server affinity. Further information about server load
balancing can be found in [Kopparapu, 2002].

60.5 The inetd (Internet Superserver) Daemon
If we look through the contents of /etc/services, we see literally hundreds of differ-
ent services listed. This implies that a system could theoretically be running a large
number of server processes. However, most of these servers would usually be doing
nothing but waiting for infrequent connection requests or datagrams. All of these
server processes would nevertheless occupy slots in the kernel process table, and
consume some memory and swap space, thus placing a load on the system.

1248 Chapter 60

The inetd daemon is designed to eliminate the need to run large numbers of
infrequently used servers. Using inetd provides two main benefits:

z Instead of running a separate daemon for each service, a single process—the
inetd daemon—monitors a specified set of socket ports and starts other servers
as required. Thus, the number of processes running on the system is reduced.

z The programming of the servers started by inetd is simplified, because inetd
performs several of the steps that are commonly required by all network servers
on startup.

Since it oversees a range of services, invoking other servers as required, inetd is
sometimes known as the Internet superserver.

An extended version of inetd, xinetd, is provided in some Linux distributions.
Among other things, xinetd adds a number of security enhancements. Informa-
tion about xinetd can be found at http://www.xinetd.org/.

Operation of the inetd daemon
The inetd daemon is normally started during system boot. After becoming a daemon
process (Section 37.2), inetd performs the following steps:

1. For each of the services specified in its configuration file, /etc/inetd.conf, inetd
creates a socket of the appropriate type (i.e., stream or datagram) and binds it
to the specified port. Each TCP socket is additionally marked to permit incom-
ing connections via a call to listen().

2. Using the select() system call (Section 63.2.1), inetd monitors all of the sockets
created in the preceding step for datagrams or incoming connection requests.

3. The select() call blocks until either a UDP socket has a datagram available to
read or a connection request is received on a TCP socket. In the case of a TCP
connection, inetd performs an accept() for the connection before proceeding to
the next step.

4. To start the server specified for this socket, inetd() calls fork() to create a new
process that then does an exec() to start the server program. Before performing
the exec(), the child process performs the following steps:

a) Close all of the file descriptors inherited from its parent, except the one
for the socket on which the UDP datagram is available or the TCP connec-
tion has been accepted.

b) Use the techniques described in Section 5.5 to duplicate the socket file
descriptor on file descriptors 0, 1, and 2, and close the socket file descriptor
itself (since it is no longer required). After this step, the execed server is able
to communicate on the socket by using the three standard file descriptors.

c) Optionally, set the user and group IDs for the execed server to values spec-
ified in /etc/inetd.conf.

5. If a connection was accepted on a TCP socket in step 3, inetd closes the connected
socket (since it is needed only in the execed server).

6. The inetd server returns to step 2.

Sockets: Server Des ign 1249

The /etc/inetd.conf file
The operation of the inetd daemon is controlled by a configuration file, normally
/etc/inetd.conf. Each line in this file describes one of the services to be handled by
inetd. Listing 60-5 shows some examples of entries in the /etc/inetd.conf file that
comes with one Linux distribution.

Listing 60-5: Example lines from /etc/inetd.conf

echo stream tcp nowait root internal
echo dgram udp wait root internal
ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
login stream tcp nowait root /usr/sbin/tcpd in.rlogind

The first two lines of Listing 60-5 are commented out by the initial # character; we
show them now since we’ll refer to the echo service shortly.

Each line of /etc/inetd.conf consists of the following fields, delimited by white
space:

z Service name: This specifies the name of a service from the /etc/services file. In
conjunction with the protocol field, this is used to look up /etc/services to deter-
mine which port number inetd should monitor for this service.

z Socket type: This specifies the type of socket used by this service—for example,
stream or dgram.

z Protocol: This specifies the protocol to be used by this socket. This field can con-
tain any of the Internet protocols listed in the file /etc/protocols (documented
in the protocols(5) manual page), but almost every service specifies either tcp
(for TCP) or udp (for UDP).

z Flags: This field contains either wait or nowait. This field specifies whether or
not the server execed by inetd (temporarily) takes over management of the socket
for this service. If the execed server manages the socket, then this field is specified
as wait. This causes inetd to remove this socket from the file descriptor set that
it monitors using select() until the execed server exits (inetd detects this via a
handler for SIGCHLD). We say some more about this field below.

z Login name: This field consists of a username from /etc/passwd, optionally followed
by a period (.) and a group name from /etc/group. These determine the user
and group IDs under which the execed server is run. (Since inetd runs with an
effective user ID of root, its children are also privileged and can thus use calls to
setuid() and setgid() to change process credentials if desired.)

z Server program: This specifies the pathname of the server program to be execed.

z Server program arguments: This field specifies one or more arguments, separated
by white space, to be used as the argument list when execing the server program.
The first of these corresponds to argv[0] in the execed program and is thus usually
the same as the basename part of the server program name. The next argument
corresponds to argv[1], and so on.

1250 Chapter 60

In the example lines shown in Listing 60-5 for the ftp, telnet, and login services,
we see the server program and arguments are set up differently than just
described. All three of these services cause inetd to invoke the same program,
tcpd(8) (the TCP daemon wrapper), which performs some logging and access-
control checks before in turn execing the appropriate program, based on the
value specified as the first server program argument (which is available to tcpd
via argv[0]). Further information about tcpd can be found in the tcpd(8) manual
page and in [Mann & Mitchell, 2003].

Stream socket (TCP) servers invoked by inetd are normally designed to handle just
a single client connection and then terminate, leaving inetd with the job of listening
for further connections. For such servers, flags should be specified as nowait. (If,
instead, the execed server is to accept connections, then wait should be specified, in
which case inetd does not accept the connection, but instead passes the file descrip-
tor for the listening socket to the execed server as descriptor 0.)

For most UDP servers, the flags field should be specified as wait. A UDP server
invoked by inetd is normally designed to read and process all outstanding datagrams on
the socket and then terminate. (This usually requires some sort of timeout when
reading the socket, so that the server terminates when no new datagrams arrive
within a specified interval.) By specifying wait, we prevent the inetd daemon from
simultaneously trying to select() on the socket, which would have the unintended
consequence that inetd would race the UDP server to check for datagrams and, if it
won the race, start another instance of the UDP server.

Because the operation of inetd and the format of its configuration file are not
specified by SUSv3, there are some (generally small) variations in the values
that can be specified in the fields of /etc/inetd.conf. Most versions of inetd pro-
vide at least the syntax that we describe in the main text. For further details,
see the inetd.conf(8) manual page.

As an efficiency measure, inetd implements a few simple services itself, instead of
execing separate servers to perform the task. The UDP and TCP echo services are
examples of services that inetd implements. For such services, the server program field of
the corresponding /etc/inetd.conf record is specified as internal, and the server
program arguments are omitted. (In the example lines in Listing 60-5, we saw that the
echo service entries were commented out. To enable the echo service, we need to
remove the # character at the start of these lines.)

Whenever we change the /etc/inetd.conf file, we need to send a SIGHUP signal to
inetd to request it to reread the file:

killall -HUP inetd

Example: invoking a TCP echo service via inetd

We noted earlier that inetd simplifies the programming of servers, especially con-
current (usually TCP) servers. It does this by carrying out the following steps on
behalf of the servers it invokes:

1. Perform all socket-related initialization, calling socket(), bind(), and (for TCP
servers) listen().

2. For a TCP service, perform an accept() for the new connection.

Sockets: Server Des ign 1251

3. Create a new process to handle the incoming UDP datagram or TCP connec-
tion. The process is automatically set up as a daemon. The inetd program han-
dles all details of process creation via fork() and the reaping of dead children
via a handler for SIGCHLD.

4. Duplicate the file descriptor of the UDP socket or the connected TCP socket
on file descriptors 0, 1, and 2, and close all other file descriptors (since they are
unused in the execed server).

5. Exec the server program.

(In the description of the above steps, we assume the usual cases that the flags field
of the service entry in /etc/inetd.conf is specified as nowait for TCP services and wait
for UDP services.)

As an example of how inetd simplifies the programming of a TCP service, in List-
ing 60-6, we show the inetd-invoked equivalent of the TCP echo server from Listing 60-4.
Since inetd performs all of the above steps, all that remains of the server is the code
executed by the child process to handle the client request, which can be read from
file descriptor 0 (STDIN_FILENO).

If the server resides in the directory /bin (for example), then we would need to
create the following entry in /etc/inetd.conf in order to have inetd invoke the server:

echo stream tcp nowait root /bin/is_echo_inetd_sv is_echo_inetd_sv

Listing 60-6: TCP echo server designed to be invoked via inetd
–– sockets/is_echo_inetd_sv.c

#include <syslog.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 4096

int
main(int argc, char *argv[])
{
 char buf[BUF_SIZE];
 ssize_t numRead;

 while ((numRead = read(STDIN_FILENO, buf, BUF_SIZE)) > 0) {
 if (write(STDOUT_FILENO, buf, numRead) != numRead) {
 syslog(LOG_ERR, "write() failed: %s", strerror(errno));
 exit(EXIT_FAILURE);
 }
 }

 if (numRead == -1) {
 syslog(LOG_ERR, "Error from read(): %s", strerror(errno));
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

–– sockets/is_echo_inetd_sv.c

1252 Chapter 60

60.6 Summary
An iterative server handles one client at a time, processing that client’s request(s)
completely, before proceeding to the next client. A concurrent server handles mul-
tiple clients simultaneously. In high-load scenarios, a traditional concurrent server
design that creates a new child process (or thread) for each client may not perform
well enough, and we outlined a range of other approaches for concurrently han-
dling large numbers of clients.

The Internet superserver daemon, inetd, monitors multiple sockets and starts
the appropriate servers in response to incoming UDP datagrams or TCP connec-
tions. Using inetd allows us to decrease system load by minimizing the number of
network server processes on the system, and also simplifies the programming of server
processes, since it performs most of the initialization steps required by a server.

Further information
Refer to the sources of further information listed in Section 59.15.

60.7 Exercises
60-1. Add code to the program in Listing 60-4 (is_echo_sv.c) to place a limit on the

number of simultaneously executing children.

60-2. Sometimes, it may be necessary to write a socket server so that it can be invoked
either directly from the command line or indirectly via inetd. In this case, a command-
line option is used to distinguish the two cases. Modify the program in Listing 60-4
so that, if it is given a –i command-line option, it assumes that it is being invoked by
inetd and handles a single client on the connected socket, which inetd supplies via
STDIN_FILENO. If the –i option is not supplied, then the program can assume it is
being invoked from the command line, and operate in the usual fashion. (This
change requires only the addition of a few lines of code.) Modify /etc/inetd.conf to
invoke this program for the echo service.

S O C K E T S : A D V A N C E D T O P I C S

This chapter considers a range of more advanced topics relating to sockets pro-
gramming, including the following:

z the circumstances in which partial reads and writes can occur on stream sockets;

z the use of shutdown() to close one half of the bidirectional channel between two
connected sockets;

z the recv() and send() I/O system calls, which provide socket-specific functionality
not available with read() and write();

z the sendfile() system call, which is used in certain circumstances to efficiently
output data on a socket;

z details of the operation of the TCP protocol, with the aim of eliminating some
common misunderstandings that lead to mistakes when writing programs that
use TCP sockets;

z the use of the netstat and tcpdump commands for monitoring and debugging
applications that use sockets; and

z the use of the getsockopt() and setsockopt() system calls to retrieve and modify
options affecting the operation of a socket.

We also consider a number of other more minor topics, and conclude the chapter
with a summary of some advanced sockets features.

1254 Chapter 61

61.1 Partial Reads and Writes on Stream Sockets
When we first introduced the read() and write() system calls in Chapter 4, we noted
that, in some circumstances, they may transfer fewer bytes than requested. Such
partial transfers can occur when performing I/O on stream sockets. We now con-
sider why they can occur and show a pair of functions that transparently handle
partial transfers.

A partial read may occur if there are fewer bytes available in the socket than were
requested in the read() call. In this case, read() simply returns the number of bytes avail-
able. (This is the same behavior that we saw with pipes and FIFOs in Section 44.10.)

A partial write may occur if there is insufficient buffer space to transfer all of
the requested bytes and one of the following is true:

z A signal handler interrupted the write() call (Section 21.5) after it transferred
some of the requested bytes.

z The socket was operating in nonblocking mode (O_NONBLOCK), and it was possible
to transfer only some of the requested bytes.

z An asynchronous error occurred after only some of the requested bytes had
been transferred. By an asynchronous error, we mean an error that occurs asyn-
chronously with respect to the application’s use of calls in the sockets API. An
asynchronous error can arise, for example, because of a problem with a TCP
connection, perhaps resulting from a crash by the peer application.

In all of the above cases, assuming that there was space to transfer at least 1 byte,
the write() is successful, and returns the number of bytes that were transferred to the
output buffer.

If a partial I/O occurs—for example, if a read() returns fewer bytes than
requested or a blocked write() is interrupted by a signal handler after transferring
only part of the requested data—then it is sometimes useful to restart the system
call to complete the transfer. In Listing 61-1, we provide two functions that do this:
readn() and writen(). (The ideas for these functions are drawn from functions of the
same name presented in [Stevens et al., 2004].)

The readn() and writen() functions take the same arguments as read() and write().
However, they use a loop to restart these system calls, thus ensuring that the
requested number of bytes is always transferred (unless an error occurs or end-of-
file is detected on a read()).

#include "rdwrn.h"

ssize_t readn(int fd, void *buffer, size_t count);

Returns number of bytes read, 0 on EOF, or –1 on error

ssize_t writen(int fd, void *buffer, size_t count);

Returns number of bytes written, or –1 on error

Sockets: Advanced Topics 1255

Listing 61-1: Implementation of readn() and writen()
–– sockets/rdwrn.c

#include <unistd.h>
#include <errno.h>
#include "rdwrn.h" /* Declares readn() and writen() */

ssize_t
readn(int fd, void *buffer, size_t n)
{
 ssize_t numRead; /* # of bytes fetched by last read() */
 size_t totRead; /* Total # of bytes read so far */
 char *buf;

 buf = buffer; /* No pointer arithmetic on "void *" */
 for (totRead = 0; totRead < n;) {
 numRead = read(fd, buf, n - totRead);

 if (numRead == 0) /* EOF */
 return totRead; /* May be 0 if this is first read() */
 if (numRead == -1) {
 if (errno == EINTR)
 continue; /* Interrupted --> restart read() */
 else
 return -1; /* Some other error */
 }
 totRead += numRead;
 buf += numRead;
 }
 return totRead; /* Must be 'n' bytes if we get here */
}

ssize_t
writen(int fd, const void *buffer, size_t n)
{
 ssize_t numWritten; /* # of bytes written by last write() */
 size_t totWritten; /* Total # of bytes written so far */
 const char *buf;

 buf = buffer; /* No pointer arithmetic on "void *" */
 for (totWritten = 0; totWritten < n;) {
 numWritten = write(fd, buf, n - totWritten);

 if (numWritten <= 0) {
 if (numWritten == -1 && errno == EINTR)
 continue; /* Interrupted --> restart write() */
 else
 return -1; /* Some other error */
 }
 totWritten += numWritten;
 buf += numWritten;
 }
 return totWritten; /* Must be 'n' bytes if we get here */
}

–– sockets/rdwrn.c

1256 Chapter 61

61.2 The shutdown() System Call
Calling close() on a socket closes both halves of the bidirectional communication
channel. Sometimes, it is useful to close one half of the connection, so that data can
be transmitted in just one direction through the socket. The shutdown() system call
provides this functionality.

The shutdown() system call closes one or both channels of the socket sockfd, depend-
ing on the value of how, which is specified as one of the following:

SHUT_RD
Close the reading half of the connection. Subsequent reads will return
end-of-file (0). Data can still be written to the socket. After a SHUT_RD on a
UNIX domain stream socket, the peer application receives a SIGPIPE signal and
the EPIPE error if it makes further attempts to write to the peer socket. As dis-
cussed in Section 61.6.6, SHUT_RD can’t be used meaningfully for TCP sockets.

SHUT_WR
Close the writing half of the connection. Once the peer application has
read all outstanding data, it will see end-of-file. Subsequent writes to the
local socket yield the SIGPIPE signal and an EPIPE error. Data written by the peer
can still be read from the socket. In other words, this operation allows us to
signal end-of-file to the peer while still being able to read data that the peer
sends back to us. The SHUT_WR operation is employed by programs such as
ssh and rsh (refer to Section 18.5 of [Stevens, 1994]). The SHUT_WR operation
is the most common use of shutdown(), and is sometimes referred to as a
socket half-close.

SHUT_RDWR
Close both the read and the write halves of the connection. This is the
same as performing a SHUT_RD followed by a SHUT_WR.

Aside from the semantics of the how argument, shutdown() differs from close() in
another important respect: it closes the socket channel(s) regardless of whether
there are other file descriptors referring to the socket. (In other words, shutdown()
is performing an operation on the open file description, rather than the file descriptor.
See Figure 5-1, on page 91.) Suppose, for example, that sockfd refers to a connected
stream socket. If we make the following calls, then the connection remains open,
and we can still perform I/O on the connection via the file descriptor fd2:

fd2 = dup(sockfd);
close(sockfd);

#include <sys/socket.h>

int shutdown(int sockfd, int how);

Returns 0 on success, or –1 on error

Sockets: Advanced Topics 1257

However, if we make the following sequence of calls, then both channels of the
connection are closed, and I/O can no longer be performed via fd2:

fd2 = dup(sockfd);
shutdown(sockfd, SHUT_RDWR);

A similar scenario holds if a file descriptor for a socket is duplicated during a fork().
If, after the fork(), one process does a SHUT_RDWR on its copy of the descriptor, then
the other process also can no longer perform I/O on its descriptor.

Note that shutdown() doesn’t close the file descriptor, even if how is specified as
SHUT_RDWR. To close the file descriptor, we must additionally call close().

Example program
Listing 61-2 demonstrates the use of the shutdown() SHUT_WR operation. This pro-
gram is a TCP client for the echo service. (We presented a TCP server for the echo
service in Section 60.3.) To shorten the implementation, we make use of functions
in the Internet domain sockets library shown in Section 59.12.

In some Linux distributions, the echo service is not enabled by default, and
therefore we must enable it before running the program in Listing 61-2. Typically,
this service is implemented internally by the inetd(8) daemon (Section 60.5), and,
to enable the echo service, we must edit the file /etc/inetd.conf to uncomment
the two lines corresponding to the UDP and TCP echo services (see Listing 60-5,
on page 1249), and then send a SIGHUP signal to the inetd daemon.

Many distributions supply the more modern xinetd(8) instead of inetd(8).
Consult the xinetd documentation for information about how to make the
equivalent changes under xinetd.

As its single command-line argument, the program takes the name of the host on
which the echo server is running. The client performs a fork(), yielding parent and
child processes.

The client parent writes the contents of standard input to the socket, so that it
can be read by the echo server. When the parent detects end-of-file on standard
input, it uses shutdown() to close the writing half of its socket. This causes the echo
server to see end-of-file, at which point it closes its socket (which causes the client
child in turn to see end-of-file). The parent then terminates.

The client child reads the echo server’s response from the socket and echoes the
response on standard output. The child terminates when it sees end-of-file on the
socket.

The following shows an example of what we see when running this program:

$ cat > tell-tale-heart.txt Create a file for testing
It is impossible to say how the idea entered my brain;
but once conceived, it haunted me day and night.
Type Control-D
$./is_echo_cl tekapo < tell-tale-heart.txt
It is impossible to say how the idea entered my brain;
but once conceived, it haunted me day and night.

1258 Chapter 61

Listing 61-2: A client for the echo service
–– sockets/is_echo_cl.c

#include "inet_sockets.h"
#include "tlpi_hdr.h"

#define BUF_SIZE 100

int
main(int argc, char *argv[])
{
 int sfd;
 ssize_t numRead;
 char buf[BUF_SIZE];

 if (argc != 2 || strcmp(argv[1], "--help") == 0)
 usageErr("%s host\n", argv[0]);

 sfd = inetConnect(argv[1], "echo", SOCK_STREAM);
 if (sfd == -1)
 errExit("inetConnect");

 switch (fork()) {
 case -1:
 errExit("fork");

 case 0: /* Child: read server's response, echo on stdout */
 for (;;) {
 numRead = read(sfd, buf, BUF_SIZE);
 if (numRead <= 0) /* Exit on EOF or error */
 break;
 printf("%.*s", (int) numRead, buf);
 }
 exit(EXIT_SUCCESS);

 default: /* Parent: write contents of stdin to socket */
 for (;;) {
 numRead = read(STDIN_FILENO, buf, BUF_SIZE);
 if (numRead <= 0) /* Exit loop on EOF or error */
 break;
 if (write(sfd, buf, numRead) != numRead)
 fatal("write() failed");
 }

 /* Close writing channel, so server sees EOF */

 if (shutdown(sfd, SHUT_WR) == -1)
 errExit("shutdown");
 exit(EXIT_SUCCESS);
 }
}

–– sockets/is_echo_cl.c

Sockets: Advanced Topics 1259

61.3 Socket-Specific I/O System Calls: recv() and send()

The recv() and send() system calls perform I/O on connected sockets. They provide
socket-specific functionality that is not available with the traditional read() and
write() system calls.

The return value and the first three arguments to recv() and send() are the same as
for read() and write(). The last argument, flags, is a bit mask that modifies the
behavior of the I/O operation. For recv(), the bits that may be ORed in flags
include the following:

MSG_DONTWAIT
Perform a nonblocking recv(). If no data is available, then instead of block-
ing, return immediately with the error EAGAIN. We can obtain the same
behavior by using fcntl() to set nonblocking mode (O_NONBLOCK) on the socket,
with the difference that MSG_DONTWAIT allows us to control nonblocking
behavior on a per-call basis.

MSG_OOB
Receive out-of-band data on the socket. We briefly describe this feature in
Section 61.13.1.

MSG_PEEK
Retrieve a copy of the requested bytes from the socket buffer, but don’t
actually remove them from the buffer. The data can later be reread by
another recv() or read() call.

MSG_WAITALL
Normally, a recv() call returns the lesser of the number of bytes requested
(length) and the number of bytes actually available in the socket. Specifying
the MSG_WAITALL flag causes the system call to block until length bytes have
been received. However, even when this flag is specified, the call may
return fewer bytes than requested if: (a) a signal is caught; (b) the peer on a
stream socket terminated the connection; (c) an out-of-band data byte
(Section 61.13.1) was encountered; (d) the received message from a data-
gram socket is less than length bytes; or (e) an error occurs on the socket. (The
MSG_WAITALL flag can replace the readn() function that we show in Listing 61-1,
with the difference that our readn() function does restart itself if inter-
rupted by a signal handler.)

#include <sys/socket.h>

ssize_t recv(int sockfd, void *buffer, size_t length, int flags);

Returns number of bytes received, 0 on EOF, or –1 on error

ssize_t send(int sockfd, const void *buffer, size_t length, int flags);

Returns number of bytes sent, or –1 on error

1260 Chapter 61

All of the above flags are specified in SUSv3, except for MSG_DONTWAIT, which is never-
theless available on some other UNIX implementations. The MSG_WAITALL flag was a
later addition to the sockets API, and is not present in some older implementations.

For send(), the bits that may be ORed in flags include the following:

MSG_DONTWAIT
Perform a nonblocking send(). If the data can’t be immediately trans-
ferred (because the socket send buffer is full), then, instead of blocking,
fail with the error EAGAIN. As with recv(), the same effect can be achieved
by setting the O_NONBLOCK flag for the socket.

MSG_MORE (since Linux 2.4.4)
This flag is used with TCP sockets to achieve the same effect as the TCP_CORK
socket option (Section 61.4), with the difference that it provides corking of
data on a per-call basis. Since Linux 2.6, this flag can also be used with data-
gram sockets, where it has a different meaning. Data transmitted in successive
send() or sendto() calls specifying MSG_MORE is packaged into a single datagram
that is transmitted only when a further call is made that does not specify
this flag. (Linux also provides an analogous UDP_CORK socket option that
causes data from successive send() or sendto() calls to be accumulated into a
single datagram that is transmitted when UDP_CORK is disabled.) The MSG_MORE
flag has no effect for UNIX domain sockets.

MSG_NOSIGNAL
When sending data on a connected stream socket, don’t generate a SIGPIPE
signal if the other end of the connection has been closed. Instead, the send()
call fails with the error EPIPE. This is the same behavior as can be obtained
by ignoring the SIGPIPE signal, with the difference that the MSG_NOSIGNAL flag
controls the behavior on a per-call basis.

MSG_OOB
Send out-of-band data on a stream socket. Refer to Section 61.13.1.

Of the above flags, only MSG_OOB is specified by SUSv3. SUSv4 adds a specification
for MSG_NOSIGNAL. MSG_DONTWAIT is not standardized, but appears on a few other UNIX
implementations. MSG_MORE is Linux-specific. The send(2) and recv(2) manual pages
describe further flags that we don’t cover here.

61.4 The sendfile() System Call
Applications such as web servers and file servers frequently need to transfer the
unaltered contents of a disk file through a (connected) socket. One way to do this
would be a loop of the following form:

while ((n = read(diskfilefd, buf, BUZ_SIZE)) > 0)
 write(sockfd, buf, n);

For many applications, such a loop is perfectly acceptable. However, if we fre-
quently transfer large files via a socket, this technique is inefficient. In order to
transmit the file, we must use two system calls (possibly multiple times within a
loop): one to copy the file contents from the kernel buffer cache into user space,

1262 Chapter 61

The count argument specifies the number of bytes to be transferred. If end-of-
file is encountered before count bytes are transferred, only the available bytes are
transferred. On success, sendfile() returns the number of bytes actually transferred.

SUSv3 doesn’t specify sendfile(). Versions of sendfile() are available on some
other UNIX implementations, but the argument list is typically different from the
version on Linux.

Starting with kernel 2.6.17, Linux provides three new (nonstandard) system
calls—splice(), vmsplice(), and tee()—that provide a superset of the functionality
of sendfile(). See the manual pages for details.

The TCP_CORK socket option
To further improve the efficiency of TCP applications using sendfile(), it is some-
times useful to employ the Linux-specific TCP_CORK socket option. As an example,
consider a web server delivering a page in response to a request by a web browser.
The web server’s response consists of two parts: HTTP headers, perhaps output
using write(), followed by the page data, perhaps output using sendfile(). In this sce-
nario, normally two TCP segments are transmitted: the headers are sent in the first
(rather small) segment, and then the page data is sent in a second segment. This is
an inefficient use of network bandwidth. It probably also creates unnecessary work
for both the sending and the receiving TCP, since in many cases the HTTP headers
and the page data would be small enough to fit inside a single TCP segment. The
TCP_CORK option is designed to address this inefficiency.

When the TCP_CORK option is enabled on a TCP socket, all subsequent output is
buffered into a single TCP segment until either the upper limit on the size of a seg-
ment is reached, the TCP_CORK option is disabled, the socket is closed, or a maximum
of 200 milliseconds passes from the time that the first corked byte is written. (The
timeout ensures that the corked data is transmitted if the application forgets to dis-
able the TCP_CORK option.)

We enable and disable the TCP_CORK option using the setsockopt() system call
(Section 61.9). The following code (which omits error checking) demonstrates the
use of TCP_CORK for our hypothetical HTTP server example:

int optval;

/* Enable TCP_CORK option on 'sockfd' - subsequent TCP output is corked
 until this option is disabled. */

optval = 1;
setsockopt(sockfd, IPPROTO_TCP, TCP_CORK, &optval, sizeof(optval));

write(sockfd, ...); /* Write HTTP headers */
sendfile(sockfd, ...); /* Send page data */

/* Disable TCP_CORK option on 'sockfd' - corked output is now transmitted
 in a single TCP segment. */

optval = 0
setsockopt(sockfd, IPPROTO_TCP, TCP_CORK, &optval, sizeof(optval));

Sockets: Advanced Topics 1263

We could avoid the possibility of two segments being transmitted by building a single
data buffer within our application, and then transmitting that buffer with a single
write(). (Alternatively, we could use writev() to combine two distinct buffers in a sin-
gle output operation.) However, if we want to combine the zero-copy efficiency of
sendfile() with the ability to include a header as part of the first segment of transmit-
ted file data, then we need to use TCP_CORK.

In Section 61.3, we noted that the MSG_MORE flag provides similar functionality
to TCP_CORK, but on a per-system-call basis. This is not necessarily an advantage.
It is possible to set the TCP_CORK option on the socket, and then exec a program
that performs output on the inherited file descriptor without being aware of
the TCP_CORK option. By contrast, the use of MSG_MORE requires explicit changes
to the source code of a program.

FreeBSD provides an option similar to TCP_CORK in the form of TCP_NOPUSH.

61.5 Retrieving Socket Addresses
The getsockname() and getpeername() system calls return, respectively, the local
address to which a socket is bound and the address of the peer socket to which the
local socket is connected.

For both calls, sockfd is a file descriptor referring to a socket, and addr is a pointer to
a suitably sized buffer that is used to return a structure containing the socket address.
The size and type of this structure depend on the socket domain. The addrlen argu-
ment is a value-result argument. Before the call, it should be initialized to the
length of the buffer pointed to by addr; on return, it contains the number of bytes
actually written to this buffer.

The getsockname() function returns a socket’s address family and the address to
which a socket is bound. This is useful if the socket was bound by another program
(e.g., inetd(8)) and the socket file descriptor was then preserved across an exec().

Calling getsockname() is also useful if we want to determine the ephemeral port
number that the kernel assigned to a socket when performing an implicit bind of
an Internet domain socket. The kernel performs an implicit bind in the following
circumstances:

z after a connect() or a listen() call on a TCP socket that has not previously been
bound to an address by bind();

z on the first sendto() on a UDP socket that had not previously been bound to an
address; or

z after a bind() call where the port number (sin_port) was specified as 0. In this
case, the bind() specifies the IP address for the socket, but the kernel selects an
ephemeral port number.

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
int getpeername(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

Both return 0 on success, or –1 on error

1264 Chapter 61

The getpeername() system call returns the address of the peer socket on a stream
socket connection. This is useful primarily with TCP sockets, if the server wants to
find out the address of the client that has made a connection. This information
could also be obtained when the accept() call is performed; however, if the server
was execed by the program that did the accept() (e.g., inetd), then it inherits the
socket file descriptor, but the address information returned by accept() is no longer
available.

Listing 61-3 demonstrates the use of getsockname() and getpeername(). This pro-
gram employs the functions that we defined in Listing 59-9 (on page 1228), and
performs the following steps:

1. Use our inetListen() function to create a listening socket, listenFd, bound to the
wildcard IP address and the port specified in the program’s sole command-line
argument. (The port can be specified numerically or as a service name.) The
len argument returns the length of the address structure for this socket’s
domain. This value is passed in a later call to malloc() to allocate a buffer that is
used to return a socket address from calls to getsockname() and getpeername().

2. Use our inetConnect() function to create a second socket, connFd, which is used
to send a connection request to the socket created in step 1.

3. Call accept() on the listening socket in order to create a third socket, acceptFd,
that is connected to the socket created in the previous step.

4. Use calls to getsockname() and getpeername() to obtain the local and peer
addresses for the two connected sockets, connFd and acceptFd. After each of
these calls, the program uses our inetAddressStr() function to convert the socket
address into printable form.

5. Sleep for a few seconds so that we can run netstat in order to confirm the socket
address information. (We describe netstat in Section 61.7.)

The following shell session log shows an example run of this program:

$./socknames 55555 &
getsockname(connFd): (localhost, 32835)
getsockname(acceptFd): (localhost, 55555)
getpeername(connFd): (localhost, 55555)
getpeername(acceptFd): (localhost, 32835)
[1] 8171
$ netstat -a | egrep '(Address|55555)'
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:55555 *:* LISTEN
tcp 0 0 localhost:32835 localhost:55555 ESTABLISHED
tcp 0 0 localhost:55555 localhost:32835 ESTABLISHED

From the above output, we can see that the connected socket (connFd) was bound
to the ephemeral port 32835. The netstat command shows us information about all
three sockets created by the program, and allows us to confirm the port information
for the two connected sockets, which are in the ESTABLISHED state (described in
Section 61.6.3).

Sockets: Advanced Topics 1265

Listing 61-3: Using getsockname() and getpeername()
–– sockets/socknames.c

#include "inet_sockets.h" /* Declares our socket functions */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
 int listenFd, acceptFd, connFd;
 socklen_t len; /* Size of socket address buffer */
 void *addr; /* Buffer for socket address */
 char addrStr[IS_ADDR_STR_LEN];

 if (argc != 2 || strcmp(argv[1], "--help") == 0)
 usageErr("%s service\n", argv[0]);

 listenFd = inetListen(argv[1], 5, &len);
 if (listenFd == -1)
 errExit("inetListen");

 connFd = inetConnect(NULL, argv[1], SOCK_STREAM);
 if (connFd == -1)
 errExit("inetConnect");

 acceptFd = accept(listenFd, NULL, NULL);
 if (acceptFd == -1)
 errExit("accept");

 addr = malloc(len);
 if (addr == NULL)
 errExit("malloc");

 if (getsockname(connFd, addr, &len) == -1)
 errExit("getsockname");
 printf("getsockname(connFd): %s\n",
 inetAddressStr(addr, len, addrStr, IS_ADDR_STR_LEN));
 if (getsockname(acceptFd, addr, &len) == -1)
 errExit("getsockname");
 printf("getsockname(acceptFd): %s\n",
 inetAddressStr(addr, len, addrStr, IS_ADDR_STR_LEN));

 if (getpeername(connFd, addr, &len) == -1)
 errExit("getpeername");
 printf("getpeername(connFd): %s\n",
 inetAddressStr(addr, len, addrStr, IS_ADDR_STR_LEN));
 if (getpeername(acceptFd, addr, &len) == -1)
 errExit("getpeername");
 printf("getpeername(acceptFd): %s\n",
 inetAddressStr(addr, len, addrStr, IS_ADDR_STR_LEN));

 sleep(30); /* Give us time to run netstat(8) */
 exit(EXIT_SUCCESS);
}

–– sockets/socknames.c

1266 Chapter 61

61.6 A Closer Look at TCP
Knowing some of the details of the operation of TCP helps us to debug applications
that use TCP sockets, and, in some cases, to make such applications more efficient. In
the following sections, we look at:

z the format of TCP segments;

z the TCP acknowledgement scheme;

z the TCP state machine;

z TCP connection establishment and termination; and

z the TCP TIME_WAIT state.

61.6.1 Format of a TCP Segment
Figure 61-2 shows the format of the TCP segments that are exchanged between the
endpoints of a TCP connection. The meanings of these fields are as follows:

z Source port number: This is the port number of the sending TCP.

z Destination port number: This is the port number of the destination TCP.

z Sequence number: This is the sequence number for this segment. This is the offset
of the first byte of data in this segment within the stream of data being transmit-
ted in this direction over the connection, as described in Section 58.6.3.

Figure 61-2: Format of a TCP segment

H
ea

de
r

Header
length
(4 bits)

Reser-
ved

(4 bits)

Source port number Destination port number

Window size

TCP checksum Urgent pointer

Options (if present)
(0 40 bytes)

Sequence number

Acknowledgement number

20 bytes

Control
(8 bits)

Data (if present)
(0+ bytes)

0 15 16 31

Sockets: Advanced Topics 1267

z Acknowledgement number: If the ACK bit (see below) is set, then this field con-
tains the sequence number of the next byte of data that the receiver expects to
receive from the sender.

z Header length: This is the length of the header, in units of 32-bit words. Since
this is a 4-bit field, the total header length can be up to 60 bytes (15 words).
This field enables the receiving TCP to determine the length of the variable-
length options field and the starting point of the data.

z Reserved: This consists of 4 unused bits (must be set to 0).

z Control bits: This field consists of 8 bits that further specify the meaning of the
segment:

– CWR: the congestion window reduced flag.

– ECE: the explicit congestion notification echo flag. The CWR and ECE flags
are used as part of TCP/IP’s Explicit Congestion Notification (ECN) algo-
rithm. ECN is a relatively recent addition to TCP/IP and is described in
RFC 3168 and in [Floyd, 1994]. ECN is implemented in Linux from kernel
2.4 onward, and enabled by placing a nonzero value in the Linux-specific
/proc/sys/net/ipv4/tcp_ecn file.

– URG: if set, then the urgent pointer field contains valid information.

– ACK: if set, then the acknowledgement number field contains valid informa-
tion (i.e., this segment acknowledges data previously sent by the peer).

– PSH: push all received data to the receiving process. This flag is described
in RFC 993 and in [Stevens, 1994].

– RST: reset the connection. This is used to handle various error situations.

– SYN: synchronize sequence numbers. Segments with this flag set are
exchanged during connection establishment to allow the two TCPs to specify
the initial sequence numbers to be used for transferring data in each direction.

– FIN: used by a sender to indicate that it has finished sending data.

Multiple control bits (or none at all) may be set in a segment, which allows a single
segment to serve multiple purposes. For example, we’ll see later that a segment
with both the SYN and the ACK bits set is exchanged during TCP connection
establishment.

z Window size: This field is used when a receiver sends an ACK to indicate the
number of bytes of data that the receiver has space to accept. (This relates to
the sliding window scheme briefly described in Section 58.6.3.)

z Checksum: This is a 16-bit checksum covering both the TCP header and the
TCP data.

The TCP checksum covers not just the TCP header and data, but also 12 bytes
usually referred to as the TCP pseudoheader. The pseudoheader consists of the
following: the source and destination IP address (4 bytes each); 2 bytes specifying
the size of the TCP segment (this value is computed, but doesn’t form part of
either the IP or the TCP header); 1 byte containing the value 6, which is TCP’s
unique protocol number within the TCP/IP suite of protocols; and 1 padding
byte containing 0 (so that the length of the pseudoheader is a multiple of 16 bits).
The purpose of including the pseudoheader in the checksum calculation is to

1268 Chapter 61

allow the receiving TCP to double-check that an incoming segment has arrived
at the correct destination (i.e., that IP has not wrongly accepted a datagram
that was addressed to another host or passed TCP a packet that should have
gone to another upper layer). UDP calculates the checksum in its packet headers
in a similar manner and for similar reasons. See [Stevens, 1994] for further
details on the pseudoheader.

z Urgent pointer: If the URG control bit is set, then this field indicates the location
of so-called urgent data within the stream of data being transmitted from the
sender to the receiver. We briefly discuss urgent data in Section 61.13.1.

z Options: This is a variable-length field containing options controlling the opera-
tion of the TCP connection.

z Data: This field contains the user data transmitted in this segment. This field
may be of length 0 if this segment doesn’t contain any data (e.g., if it is simply
an ACK segment).

61.6.2 TCP Sequence Numbers and Acknowledgements
Each byte that is transmitted over a TCP connection is assigned a logical sequence
number by TCP. (Each of the two streams in a connection has its own sequence num-
bering.) When a segment is transmitted, its sequence number field is set to the logical
offset of the first byte of data in the segment within the stream of data being
transmitted in this direction over the connection. This allows the receiving TCP to
assemble the received segments in the correct order, and to indicate which data
was received when sending an acknowledgement to the sender.

To implement reliable communication, TCP uses positive acknowledgements;
that is, when a segment is successfully received, an acknowledgement message (i.e.,
a segment with the ACK bit set) is sent from the receiving TCP to the sending TCP,
as shown in Figure 61-3. The acknowledgement number field of this message is set to
indicate the logical sequence number of the next byte of data that the receiver
expects to receive. (In other words, the value in the acknowledgement number
field is the sequence number of the last byte in the segment that it acknowledges,
plus 1.)

Figure 61-3: Acknowledgements in TCP

When the sending TCP transmits a segment, it sets a timer. If an acknowledgement
is not received before the timer expires, the segment is retransmitted.

segment (x bytes)(Seq # range: N to N+x – 1)

ACK of segment

(Ack #: N+x)

Sender Receiver

Network
Host A Host B

Sockets: Advanced Topics 1269

Figure 61-3 and later similar diagrams are intended to illustrate the exchange
of TCP segments between two endpoints. An implicit time dimension is
assumed when reading these diagrams from top to bottom.

61.6.3 TCP State Machine and State Transition Diagram
Maintaining a TCP connection requires the coordination of the TCPs at both ends
of the connection. To reduce the complexity of this task, a TCP endpoint is mod-
eled as a state machine. This means that the TCP can be in one of a fixed set of states,
and it moves from one state to another in response to events, such as system calls by
the application above the TCP or the arrival of TCP segments from the peer TCP.
The TCP states are the following:

z LISTEN: The TCP is waiting for a connection request from a peer TCP.

z SYN_SENT: The TCP has sent a SYN on behalf of an application performing
an active open and is waiting for a reply from the peer in order to complete the
connection.

z SYN_RECV: The TCP, formerly in the LISTEN state, has received a SYN and
has responded with a SYN/ACK (i.e., a TCP segment with both the SYN and ACK
bits set), and is now waiting for an ACK from the peer TCP in order to com-
plete the connection.

z ESTABLISHED: Establishment of the connection to the peer TCP has been
completed. Data segments can now be exchanged in either direction between
the two TCPs.

z FIN_WAIT1: The application has closed the connection. The TCP has sent a FIN
to the peer TCP in order to terminate its side of the connection and is waiting
for an ACK from the peer. This and the next three states are associated with an
application performing an active close—that is, the first application to close its
side of the connection.

z FIN_WAIT2: The TCP, formerly in the FIN_WAIT1 state, has now received an
ACK from the peer TCP.

z CLOSING: The TCP, formerly awaiting an ACK in the FIN_WAIT1 state,
instead received a FIN from its peer indicating that the peer simultaneously
tried to perform an active close. (In other words, the two TCPs sent FIN seg-
ments at almost the same time. This is a rare scenario.)

z TIME_WAIT: Having done an active close, the TCP has received a FIN, indicating
that the peer TCP has performed a passive close. This TCP now spends a fixed
period of time in the TIME_WAIT state, in order to ensure reliable termina-
tion of the TCP connection and to ensure that any old duplicate segments
expire in the network before a new incarnation of the same connection is created.
(We explain the TIME_WAIT state in more detail in Section 61.6.7.) When this
fixed time period expires, the connection is closed, and the associated kernel
resources are freed.

z CLOSE_WAIT: The TCP has received a FIN from the peer TCP. This and the
following state are associated with an application performing a passive close—
that is, the second application to close the connection.

1270 Chapter 61

z LAST_ACK: The application performed a passive close, and the TCP, formerly
in the CLOSE_WAIT state, sent a FIN to the peer TCP and is waiting for it to
be acknowledged. When this ACK is received, the connection is closed, and
the associated kernel resources are freed.

To the above states, RFC 793 adds one further, fictional state, CLOSED, represent-
ing the state when there is no connection (i.e., no kernel resources are allocated to
describe a TCP connection).

In the above list we use the spellings for the TCP states as defined in the Linux
source code. These differ slightly from the spellings in RFC 793.

Figure 61-4 shows the state transition diagram for TCP. (This figure is based on diagrams
in RFC 793 and [Stevens et al., 2004].) This diagram shows how a TCP endpoint moves
from one state to another in response to various events. Each arrow indicates a pos-
sible transition and is labeled with the event that triggers the transition. This label is
either an action by the application (in boldface) or the string recv, indicating the
receipt of a segment from the peer TCP. As a TCP moves from one state to
another, it may transmit a segment to the peer, and this is indicated by the send label
on the transition. For example, the arrow for the transition from the ESTABLISHED
to the FIN_WAIT1 state shows that the triggering event is a close() by the local appli-
cation, and that, during the transition, the TCP sends a FIN segment to its peer.

In Figure 61-4, the usual transition path for a client TCP is shown with heavy
solid arrows, and the usual transition path for a server TCP is shown with heavy
dashed arrows. (Other arrows indicate paths less traveled.) Looking at the paren-
thetical numbering on the arrows in these paths, we can see that the segments sent
and received by the two TCPs are mirror images of one another. (After the ESTAB-
LISHED state, the paths traveled by the server TCP and the client TCP may be the
opposite of those indicated, if it is the server that performs the active close.)

Figure 61-4 doesn’t show all possible transitions for the TCP state machine; it
illustrates just those of principal interest. A more detailed TCP state transition
diagram can be found at http://www.cl.cam.ac.uk/~pes20/Netsem/poster.pdf.

61.6.4 TCP Connection Establishment
At the sockets API level, two stream sockets are connected via the following steps
(see Figure 56-1, on page 1156):

1. The server calls listen() to perform a passive open of a socket, and then calls
accept(), which blocks until a connection is established.

2. The client calls connect() to perform an active open of a socket in order to estab-
lish a connection to the server’s passive socket.

The steps performed by TCP to establish a connection are shown in Figure 61-5.
These steps are often referred to as the three-way handshake, since three segments
pass between the two TCPs. The steps are as follows:

1. The connect() causes the client TCP to send a SYN segment to the server TCP.
This segment informs the server TCP of the client TCP’s initial sequence number

1272 Chapter 61

The SYN segments exchanged in the first two steps of the three-way handshake
may contain information in the options field of the TCP header that is used to
determine various parameters for the connection. See [Stevens et al., 2004],
[Stevens, 1994], and [Wright & Stevens, 1995] for details.

The labels inside angle brackets (e.g., <LISTEN>) in Figure 61-5 indicate the states
of the TCPs on either side of the connection.

The SYN flag consumes a byte of the sequence-number space for the connec-
tion. This is necessary so that this flag can be acknowledged unambiguously, since
segments with this flag set may also contain data bytes. This is why we show the
acknowledgement of the SYN M segment as ACK M+1 in Figure 61-5.

Figure 61-5: Three-way handshake for TCP connection establishment

61.6.5 TCP Connection Termination
Closing a TCP connection normally occurs in the following manner:

1. An application on one end of the connection performs a close(). (This is often,
but not necessarily, the client.) We say that this application is performing an
active close.

2. Later, the application on the other end of the connection (the server) also per-
forms a close(). This is termed a passive close.

Figure 61-6 shows the corresponding steps performed by the underlying TCPs (here,
we assume that it is the client that does the active close). These steps are as follows:

1. The client performs an active close, which causes the client TCP to send a FIN
to the server TCP.

2. After receipt of the FIN, the server TCP responds with an ACK. Any subsequent
attempt by the server to read() from the socket yields end-of-file (i.e., a 0 return).

3. When the server later closes its end of the connection, the server TCP sends a
FIN to the client TCP.

4. The client TCP responds with an ACK to acknowledge the server’s FIN.

SYN M

SYN N, ACK M+1

Client Server

ACK N+1

connect()
(blocks)

(returns)

accept()
(blocks)

(returns)

listen() <LISTEN>

<SYN RECV>

<ESTABLISHED>

<ESTABLISHED>

<SYN SENT>

Sockets: Advanced Topics 1273

As with the SYN flag, and for the same reasons, the FIN flag consumes a byte of the
sequence-number space for the connection. This is why we show the acknowledge-
ment of the FIN M segment as ACK M+1 in Figure 61-6.

Figure 61-6: TCP connection termination

61.6.6 Calling shutdown() on a TCP Socket
The discussion in the preceding section assumed a full-duplex close; that is, an
application closes both the sending and receiving channels of the TCP socket using
close(). As noted in Section 61.2, we can use shutdown() to close just one channel of
the connection (a half-duplex close). This section notes some specific details for
shutdown() on a TCP socket.

Specifying how as SHUT_WR or SHUT_RDWR initiates the TCP connection termination
sequence (i.e., the active close) described in Section 61.6.5, regardless of whether there
are other file descriptors referring to the socket. Once this sequence has been initiated,
the local TCP moves into the FIN_WAIT1 state, and then into the FIN_WAIT2 state,
while the peer TCP moves into the CLOSE_WAIT state (Figure 61-6). If how is speci-
fied as SHUT_WR, then, since the socket file descriptor remains valid and the reading
half of the connection remains open, the peer can continue to send data back to us.

The SHUT_RD operation can’t be meaningfully used with TCP sockets. This is
because most TCP implementations don’t provide the expected behavior for
SHUT_RD, and the effect of SHUT_RD varies across implementations. On Linux and a few
other implementations, following a SHUT_RD (and after any outstanding data has
been read), a read() returns end-of-file, as we expect from the description of SHUT_RD
in Section 61.2. However, if the peer application subsequently writes data on its
socket, then it is still possible to read that data on the local socket.

On some other implementations (e.g., the BSDs), SHUT_RD does indeed cause
subsequent calls to read() to always return 0. However, on those implementations,
if the peer continues to write() to the socket, then the data channel will eventually
fill until the point where a further (blocking) call to write() by the peer will block.
(With UNIX domain stream sockets, a peer would receive a SIGPIPE signal and the
EPIPE error if it continued writing to its socket after a SHUT_RD had been performed
on the local socket.)

In summary, the use of SHUT_RD should be avoided for portable TCP applications.

FIN M

ACK M+1

Client

ACK N+1

close()

(active close)

<CLOSE WAIT>

<LAST ACK>

<ESTABLISHED><ESTABLISHED>

<FIN WAIT1>

FIN N

<FIN WAIT2>

<TIME WAIT>

Server
(passive close)

close()

<CLOSED>

1274 Chapter 61

61.6.7 The TIME_WAIT State
The TCP TIME_WAIT state is a frequent source of confusion in network program-
ming. Looking at Figure 61-4, we can see that a TCP performing an active close
goes through this state. The TIME_WAIT state exists to serve two purposes:

z to implement reliable connection termination; and

z to allow expiration of old duplicate segments in the network so that they are
not accepted by a new incarnation of the connection.

The TIME_WAIT state differs from the other states in that the event that causes a
transition out of this state (to CLOSED) is a timeout. This timeout has a duration
of twice the MSL (2MSL), where MSL (maximum segment lifetime) is the assumed
maximum lifetime of a TCP segment in the network.

An 8-bit time-to-live (TTL) field in the IP header ensures that all IP packets are
eventually discarded if they don’t reach their destination within a fixed number
of hops (routers traversed) while traveling from the source to the destination
host. The MSL is an estimate of the maximum time that an IP packet could
take to exceed the TTL limit. Since it is represented using 8 bits, the TTL per-
mits a maximum of 255 hops. Normally, an IP packet requires considerably
fewer hops than this to complete its journey. A packet could encounter this
limit because of certain types of router anomalies (e.g., a router configuration
problem) that cause the packet to get caught in a network loop until it exceeds
the TTL limit.

The BSD sockets implementation assumes a value of 30 seconds for the MSL, and
Linux follows the BSD norm. Thus, the TIME_WAIT state has a lifetime of 60 sec-
onds on Linux. However, RFC 1122 recommends a value of 2 minutes for the MSL,
and, on implementations following this recommendation, the TIME_WAIT state
can thus last 4 minutes.

We can understand the first purpose of the TIME_WAIT state—ensuring reliable
connection termination—by looking at Figure 61-6. In this diagram, we can see that
four segments are usually exchanged during the termination of a TCP connection.
The last of these is an ACK sent from the TCP performing the active close to the
TCP performing the passive close. Suppose that this ACK gets lost in the network.
If this occurs, then the TCP performing the passive close will eventually retransmit
its FIN. Having the TCP that performs the active close remain in the TIME_WAIT
state for a fixed period ensures that it is available to resend the final ACK in this
case. If the TCP that performs the active close did not still exist, then—since it
wouldn’t have any state information for the connection—the TCP protocol would
respond to the resent FIN by sending an RST (reset) segment to the TCP perform-
ing the passive close, and this RST would be interpreted as an error. (This explains
why the duration of the TIME_WAIT state is twice the MSL: one MSL for the final
ACK to reach the peer TCP, plus a further MSL in case a further FIN must be sent.)

An equivalent of the TIME_WAIT state is not required for the TCP performing
the passive close, because it is the initiator of the final exchange in the connec-
tion termination. After sending the FIN, this TCP will wait for the ACK from its
peer, and retransmit the FIN if its timer expires before the ACK is received.

Sockets: Advanced Topics 1275

To understand the second purpose of the TIME_WAIT state—ensuring the expiration
of old duplicate segments in the network—we must remember that the retransmission
algorithm used by TCP means that duplicate segments may be generated, and that,
depending on routing decisions, these duplicates could arrive after the connection
has been closed. For example, suppose that we have a TCP connection between two
socket addresses, say, 204.152.189.116 port 21 (the FTP port) and 200.0.0.1 port 50,000.
Suppose also that this connection is closed, and that later a new connection is estab-
lished using exactly the same IP addresses and ports. This is referred to as a new incar-
nation of the connection. In this case, TCP must ensure that no old duplicate
segments from the previous incarnation are accepted as valid data in the new incarna-
tion. This is done by preventing a new incarnation from being established while there
is an existing TCP in the TIME_WAIT state on one of the endpoints.

A frequent question posted to online forums is how to disable the TIME_WAIT
state, since it can lead to the error EADDRINUSE (“Address already in use”) when a
restarted server tries to bind a socket to an address that has a TCP in the TIME_WAIT
state. Although there are ways of doing this (see [Stevens et al., 2004]), and also ways
of assassinating a TCP in this state (i.e., causing the TIME_WAIT state to terminate
prematurely, see [Snader, 2000]), this should be avoided, since it would thwart the
reliability guarantees that the TIME_WAIT state provides. In Section 61.10, we
look at the use of the SO_REUSEADDR socket option, which can be used to avoid the
usual causes of the EADDRINUSE error, while still allowing the TIME_WAIT to provide
its reliability guarantees.

61.7 Monitoring Sockets: netstat

The netstat program displays the state of Internet and UNIX domain sockets on a
system. It is a useful debugging tool when writing socket applications. Most UNIX
implementations provide a version of netstat, although there is some variation in
the syntax of its command-line arguments across implementations.

By default, when executed with no command-line options, netstat displays
information for connected sockets in both the UNIX and Internet domains. We
can use a number of command-line options to change the information displayed.
Some of these options are listed in Table 61-1.

Table 61-1: Options for the netstat command

Option Description

-a Display information about all sockets, including listening sockets
-e Display extended information (includes user ID of socket owner)
-c Redisplay socket information continuously (each second)
-l Display information only about listening sockets
-n Display IP addresses, port numbers, and usernames in numerical form
-p Show the process ID and name of program to which socket belongs
--inet Display information for Internet domain sockets
--tcp Display information for Internet domain TCP (stream) sockets
--udp Display information for Internet domain UDP (datagram) sockets
--unix Display information for UNIX domain sockets

1276 Chapter 61

Here is an abridged example of the output that we see when using netstat to list all
Internet domain sockets on the system:

$ netstat -a --inet
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:50000 *:* LISTEN
tcp 0 0 *:55000 *:* LISTEN
tcp 0 0 localhost:smtp *:* LISTEN
tcp 0 0 localhost:32776 localhost:58000 TIME_WAIT
tcp 34767 0 localhost:55000 localhost:32773 ESTABLISHED
tcp 0 115680 localhost:32773 localhost:55000 ESTABLISHED
udp 0 0 localhost:61000 localhost:60000 ESTABLISHED
udp 684 0 *:60000 *:*

For each Internet domain socket, we see the following information:

z Proto: This is the socket protocol—for example, tcp or udp.

z Recv-Q: This is the number of bytes in the socket receive buffer that are as yet
unread by the local application. For UDP sockets, this field counts not just
data, but also bytes in UDP headers and other metadata.

z Send-Q: This is the number of bytes queued for transmission in the socket send
buffer. As with the Recv-Q field, for UDP sockets, this field includes bytes in
UDP headers and other metadata.

z Local Address: This is the address to which the socket is bound, expressed in the
form host-IP-address:port. By default, both components of the address are dis-
played as names, unless the numeric values can’t be resolved to corresponding
host and service names. An asterisk (*) in the host part of the address means
the wildcard IP address.

z Foreign Address: This is the address of the peer socket to which this socket is
bound. The string *:* indicates no peer address.

z State: This is the current state of the socket. For a TCP socket, this state is one
of those described in Section 61.6.3.

For further details, see the netstat(8) manual page.
Various Linux-specific files in the directory /proc/net allow a program to read

much of the same information that is displayed by netstat. These files are named
tcp, udp, tcp6, udp6, and unix, with the obvious purposes. For further details, see the
proc(5) manual page.

61.8 Using tcpdump to Monitor TCP Traffic
The tcpdump program is a useful debugging tool that allows the superuser to moni-
tor the Internet traffic on a live network, generating a real-time textual equivalent
of diagrams such as Figure 61-3. Despite its name, tcpdump can be used to display
traffic for all kinds of network packets (e.g., TCP segments, UDP datagrams, and
ICMP packets). For each network packet, tcpdump displays information such as
timestamps, the source and destination IP addresses, and further protocol-specific
details. It is possible to select the packets to be monitored by protocol type, source

Sockets: Advanced Topics 1277

and destination IP address and port number, and a range of other criteria. Full
details are provided in the tcpdump manual page.

The wireshark (formerly ethereal; http://www.wireshark.org/) program performs a
similar task to tcpdump, but displays traffic information via a graphical interface.

For each TCP segment, tcpdump displays a line of the following form:

src > dst: flags data-seqno ack window urg <options>

These fields have the following meanings:

z src: This is the source IP address and port.

z dst: This is the destination IP address and port.

z flags: This field contains zero or more of the following letters, each of which
corresponds to one of the TCP control bits described in Section 61.6.1: S (SYN),
F (FIN), P (PSH), R (RST), E (ECE), and C (CWR).

z data-seqno: This is the range of the sequence-number space covered by the bytes
in this packet.

By default, the sequence-number range is displayed relative to the first byte
monitored for this direction of the data stream. The tcpdump –S option causes
sequence numbers to be displayed in absolute format.

z ack: This is a string of the form “ack num” indicating the sequence number of
the next byte expected from the other direction on this connection.

z window: This is a string of the form “win num” indicating the number of bytes of
receive buffer space available for transmission in the opposite direction on this
connection.

z urg: This is a string of the form “urg num” indicating that this segment contains
urgent data at the specified offset within the segment.

z options: This string describes any TCP options contained in the segment.

The src, dst, and flags fields always appear. The remaining fields are displayed only if
appropriate.

The shell session below shows how tcpdump can be used to monitor the traffic
between a client (running on the host pukaki) and a server (running on tekapo). In
this shell session, we use two tcpdump options that make the output less verbose.
The –t option suppresses the display of timestamp information. The –N option
causes hostnames to be displayed without a qualifying domain name. Furthermore,
for brevity, and because we don’t describe the details of TCP options, we have
removed the options fields from the lines of tcpdump output.

The server operates on port 55555, so our tcpdump command selects traffic for
that port. The output shows the three segments exchanged during connection
establishment:

$ tcpdump -t -N 'port 55555'
IP pukaki.60391 > tekapo.55555: S 3412991013:3412991013(0) win 5840
IP tekapo.55555 > pukaki.60391: S 1149562427:1149562427(0) ack 3412991014 win 5792
IP pukaki.60391 > tekapo.55555: . ack 1 win 5840

1278 Chapter 61

These three segments are the SYN, SYN/ACK, and ACK segments exchanged for
the three-way handshake (see Figure 61-5).

In the following output, the client sends the server two messages, containing
16 and 32 bytes, respectively, and the server responds in each case with a 4-byte
message:

IP pukaki.60391 > tekapo.55555: P 1:17(16) ack 1 win 5840
IP tekapo.55555 > pukaki.60391: . ack 17 win 1448
IP tekapo.55555 > pukaki.60391: P 1:5(4) ack 17 win 1448
IP pukaki.60391 > tekapo.55555: . ack 5 win 5840
IP pukaki.60391 > tekapo.55555: P 17:49(32) ack 5 win 5840
IP tekapo.55555 > pukaki.60391: . ack 49 win 1448
IP tekapo.55555 > pukaki.60391: P 5:9(4) ack 49 win 1448
IP pukaki.60391 > tekapo.55555: . ack 9 win 5840

For each of the data segments, we see an ACK sent in the opposite direction.
Lastly, we show the segments exchanged during connection termination (first,

the client closes its end of the connection, and then the server closes the other end):

IP pukaki.60391 > tekapo.55555: F 49:49(0) ack 9 win 5840
IP tekapo.55555 > pukaki.60391: . ack 50 win 1448
IP tekapo.55555 > pukaki.60391: F 9:9(0) ack 50 win 1448
IP pukaki.60391 > tekapo.55555: . ack 10 win 5840

The above output shows the four segments exchanged during connection termina-
tion (see Figure 61-6).

61.9 Socket Options
Socket options affect various features of the operation of a socket. In this book, we
describe just a couple of the many socket options that are available. An extensive
discussion covering most standard socket options is provided in [Stevens et al.,
2004]. See the tcp(7), udp(7), ip(7), socket(7), and unix(7) manual pages for addi-
tional Linux-specific details.

The setsockopt() and getsockopt() system calls set and retrieve socket options.

For both setsockopt() and getsockopt(), sockfd is a file descriptor referring to a socket.
The level argument specifies the protocol to which the socket option applies—

for example, IP or TCP. For most of the socket options that we describe in this
book, level is set to SOL_SOCKET, which indicates an option that applies at the sockets
API level.

#include <sys/socket.h>

int getsockopt(int sockfd, int level, int optname, void *optval,
 socklen_t *optlen);
int setsockopt(int sockfd, int level, int optname, const void *optval,
 socklen_t optlen);

Both return 0 on success, or –1 on error

Sockets: Advanced Topics 1279

The optname argument identifies the option whose value we wish to set or
retrieve. The optval argument is a pointer to a buffer used to specify or return the
option value; this argument is a pointer to an integer or a structure, depending on
the option.

The optlen argument specifies the size (in bytes) of the buffer pointed to by
optval. For setsockopt(), this argument is passed by value. For getsockopt(), optlen is a
value-result argument. Before the call, we initialize it to the size of the buffer
pointed to by optval; upon return, it is set to the number of bytes actually written to
that buffer.

As detailed in Section 61.11, the socket file descriptor returned by a call to
accept() inherits the values of settable socket options from the listening socket.

Socket options are associated with an open file description (refer to Figure 5-2,
on page 95). This means that file descriptors duplicated as a consequence of dup()
(or similar) or fork() share the same set of socket options.

A simple example of a socket option is SO_TYPE, which can be used to find out
the type of a socket, as follows:

int optval;
socklen_t optlen;

optlen = sizeof(optval);
if (getsockopt(sfd, SOL_SOCKET, SO_TYPE, &optval, &optlen) == -1)
 errExit("getsockopt");

After this call, optval contains the socket type—for example, SOCK_STREAM or
SOCK_DGRAM. Using this call can be useful in a program that inherited a socket file
descriptor across an exec()—for example, a program execed by inetd—since that pro-
gram may not know which type of socket it inherited.

SO_TYPE is an example of a read-only socket option. It is not possible to use
setsockopt() to change a socket’s type.

61.10 The SO_REUSEADDR Socket Option
The SO_REUSEADDR socket option serves a number of purposes (see Chapter 7 of
[Stevens et al., 2004] for details). We’ll concern ourselves with only one common
use: to avoid the EADDRINUSE (“Address already in use”) error when a TCP server is
restarted and tries to bind a socket to a port that currently has an associated TCP.
There are two scenarios in which this usually occurs:

z A previous invocation of the server that was connected to a client performed
an active close, either by calling close(), or by crashing (e.g., it was killed by a signal).
This leaves a TCP endpoint that remains in the TIME_WAIT state until the
2MSL timeout expires.

z A previous invocation of the server created a child process to handle a connec-
tion to a client. Later, the server terminated, while the child continues to serve
the client, and thus maintain a TCP endpoint using the server’s well-known port.

1280 Chapter 61

In both of these scenarios, the outstanding TCP endpoint is unable to accept new
connections. Nevertheless, in both cases, by default, most TCP implementations
prevent a new listening socket from being bound to the server’s well-known port.

The EADDRINUSE error doesn’t usually occur with clients, since they typically use an
ephemeral port that won’t be one of those ports currently in the TIME_WAIT
state. However, if a client binds to a specific port number, then it also can
encounter this error.

To understand the operation of the SO_REUSEADDR socket option, it can help to return
to our earlier telephone analogy for stream sockets (Section 56.5). Like a telephone
call (we ignore the notion of conference calls), a TCP socket connection is identifiable
by the combination of a pair of connected endpoints. The operation of accept() is
analogous to the task performed by a telephone operator on an internal company
switchboard (“a server”). When an external telephone call arrives, the operator
transfers it to some internal telephone (“a new socket”) within the organization.
From an outside perspective, there is no way of identifying that internal telephone.
When multiple external calls are being handled by the switchboard, the only way of
distinguishing them is via the combination of the external caller’s number and the
switchboard number. (The latter is necessary when we consider that there will be
multiple company switchboards within the telephone network as a whole.) Analo-
gously, each time we accept a socket connection on a listening socket, a new socket
is created. All of these sockets are associated with the same local address as the
listening socket. The only way of distinguishing them is via their connections to
different peer sockets.

In other words, a connected TCP socket is identified by a 4-tuple (i.e., a combi-
nation of four values) of the following form:

{ local-IP-address, local-port, foreign-IP-address, foreign-port }

The TCP specification requires that each such tuple be unique; that is, only one
corresponding connection incarnation (“telephone call”) can exist. The problem is
that most implementations (including Linux) enforce a stricter constraint: a local
port can’t be reused (i.e., specified in a call to bind()) if any TCP connection incar-
nation with a matching local port exists on the host. This rule is enforced even
when the TCP could not accept new connections, as in the scenarios described at
the start of this section.

Enabling the SO_REUSEADDR socket option relaxes this constraint, bringing it
closer to the TCP requirement. By default, this option has the value 0, meaning
that it is disabled. We enable the option by giving it a nonzero value before binding
a socket, as shown in Listing 61-4.

Setting the SO_REUSEADDR option means that we can bind a socket to a local port
even if another TCP is bound to the same port in either of the scenarios described
at the start of this section. Most TCP servers should enable this option. We have
already seen some examples of the use of this option in Listing 59-6 (page 1221)
and Listing 59-9 (page 1228).

Sockets: Advanced Topics 1281

Listing 61-4: Setting the SO_REUSEADDR socket option

 int sockfd, optval;

 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd == -1)
 errExit("socket");

 optval = 1;
 if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &optval,
 sizeof(optval)) == -1)
 errExit("socket");

 if (bind(sockfd, &addr, addrlen) == -1)
 errExit("bind");
 if (listen(sockfd, backlog) == -1)
 errExit("listen");

61.11 Inheritance of Flags and Options Across accept()

Various flags and settings can be associated with open file descriptions and file
descriptors (Section 5.4). Furthermore, as described in Section 61.9, various options
can be set for a socket. If these flags and options are set on a listening socket, are
they inherited by the new socket returned by accept()? We describe the details here.

On Linux, the following attributes are not inherited by the new file descriptor
returned by accept():

z The status flags associated with an open file description—the flags that can be
altered using the fcntl() F_SETFL operation (Section 5.3). These include flags
such as O_NONBLOCK and O_ASYNC.

z The file descriptor flags—the flags that can be altered using the fcntl() F_SETFD
operation. The only such flag is the close-on-exec flag (FD_CLOEXEC, described in
Section 27.4).

z The fcntl() F_SETOWN (owner process ID) and F_SETSIG (generated signal) file
descriptor attributes associated with signal-driven I/O (Section 63.3).

On the other hand, the new descriptor returned by accept() inherits a copy of most
of the socket options that can be set using setsockopt() (Section 61.9).

SUSv3 is silent on the details described here, and the inheritance rules for the
new connected socket returned by accept() vary across UNIX implementations.
Most notably, on some UNIX implementations, if open file status flags such as
O_NONBLOCK and O_ASYNC are set on a listening socket, then they are inherited by the
new socket returned by accept(). For portability, it may be necessary to explicitly
reset these attributes on a socket returned by accept().

1282 Chapter 61

61.12 TCP Versus UDP
Given that TCP provides reliable delivery of data, while UDP does not, an obvious
question is, “Why use UDP at all?” The answer to this question is covered at some
length in Chapter 22 of [Stevens et al., 2004]. Here, we summarize some of the
points that may lead us to choose UDP over TCP:

z A UDP server can receive (and reply to) datagrams from multiple clients, with-
out needing to create and terminate a connection for each client (i.e., transmis-
sion of single messages using UDP has a lower overhead than is required when
using TCP).

z For simple request-response communications, UDP can be faster than TCP,
since it doesn’t require connection establishment and termination. Appendix A
of [Stevens, 1996] notes that in the best-case scenario, the time using TCP is

2 * RTT + SPT

In this formula, RTT is the round-trip time (the time required to send a request
and receive a response), and SPT is the time spent by the server processing the
request. (On a wide area network, the SPT value may be small compared to the
RTT.) For UDP, the best-case scenario for a single request-response communi-
cation is

RTT + SPT

This is one RTT less than the time required for TCP. Since the RTT between
hosts separated by large (i.e., intercontinental) distances or many intervening
routers is typically several tenths of a second, this difference can make UDP
attractive for some types of request-response communication. DNS is a good
example of an application that uses UDP for this reason—using UDP allows
name lookup to be performed by transmitting a single packet in each direction
between servers.

z UDP sockets permit broadcasting and multicasting. Broadcasting allows a
sender to transmit a datagram to the same destination port on all of the hosts
connected to a network. Multicasting is similar, but allows a datagram to be sent
to a specified set of hosts. For further details see Chapters 21 and 22 of
[Stevens et al., 2004].

z Certain types of applications (e.g., streaming video and audio transmission)
can function acceptably without the reliability provided by TCP. On the other
hand, the delay that may occur after TCP tries to recover from a lost segment
may result in transmission delays that are unacceptably long. (A delay in
streaming media transmission may be worse than a brief loss of the transmission
stream.) Therefore, such applications may prefer UDP, and adopt application-
specific recovery strategies to deal with occasional packet loss.

An application that uses UDP, but nevertheless requires reliability, must imple-
ment reliability features itself. Usually, this requires at least sequence numbers,
acknowledgements, retransmission of lost packets, and duplicate detection. An
example of how to do this is shown in [Stevens et al., 2004]. However, if more

Sockets: Advanced Topics 1283

advanced features such as flow control and congestion control are also required,
then it is probably best to use TCP instead. Trying to implement all of these features
on top of UDP is complex, and, even when well implemented, the result is unlikely
to perform better than TCP.

61.13 Advanced Features

UNIX and Internet domain sockets have many other features that we have not
detailed in this book. We summarize a few of these features in this section. For full
details, see [Stevens et al., 2004].

61.13.1 Out-of-Band Data
Out-of-band data is a feature of stream sockets that allows a sender to mark trans-
mitted data as high priority; that is, the receiver can obtain notification of the avail-
ability of out-of-band data without needing to read all of the intervening data in the
stream. This feature is used in programs such as telnet, rlogin, and ftp to make it possible
to abort previously transmitted commands. Out-of-band data is sent and received
using the MSG_OOB flag in calls to send() and recv(). When a socket receives notification
of the availability of out-of-band data, the kernel generates the SIGURG signal for the
socket owner (normally the process using the socket), as set by the fcntl() F_SETOWN
operation.

When employed with TCP sockets, at most 1 byte of data may be marked as
being out-of-band at any one time. If the sender transmits an additional byte of out-
of-band data before the receiver has processed the previous byte, then the indica-
tion for the earlier out-of-band byte is lost.

TCP’s limitation of out-of-band data to a single byte is an artifact of the mis-
match between the generic out-of-band model of the sockets API and its spe-
cific implementation using TCP’s urgent mode. We touched on TCP’s urgent
mode when looking at the format of TCP segments in Section 61.6.1. TCP
indicates the presence of urgent (out-of-band) data by setting the URG bit in
the TCP header and setting the urgent pointer field to point to the urgent
data. However, TCP has no way of indicating the length of an urgent data
sequence, so the urgent data is considered to consist of a single byte.

Further information about TCP urgent data can be found in RFC 793.

Under some UNIX implementations, out-of-band data is supported for UNIX
domain stream sockets. Linux doesn’t support this.

The use of out-of-band data is nowadays discouraged, and it may be unreliable in
some circumstances (see [Gont & Yourtchenko, 2009]). An alternative is to maintain
a pair of stream sockets for communication. One of these is used for normal commu-
nication, while the other is used for high-priority communication. An application
can monitor both channels using one of the techniques described in Chapter 63.
This approach allows multiple bytes of priority data to be transmitted. Furthermore,
it can be employed with stream sockets in any communication domain (e.g., UNIX
domain sockets).

1284 Chapter 61

61.13.2 The sendmsg() and recvmsg() System Calls
The sendmsg() and recvmsg() system calls are the most general purpose of the socket
I/O system calls. The sendmsg() system call can do everything that is done by write(),
send(), and sendto(); the recvmsg() system call can do everything that is done by
read(), recv(), and recvfrom(). In addition, these calls allow the following:

z We can perform scatter-gather I/O, as with readv() and writev() (Section 5.7).
When we use sendmsg() to perform gather output on a datagram socket (or writev()
on a connected datagram socket), a single datagram is generated. Conversely,
recvmsg() (and readv()) can be used to perform scatter input on a datagram
socket, dispersing the bytes of a single datagram into multiple user-space buffers.

z We can transmit messages containing domain-specific ancillary data (also
known as control information). Ancillary data can be passed via both stream
and datagram sockets. We describe some examples of ancillary data below.

Linux 2.6.33 adds a new system call, recvmmsg(). This system call is similar to
recvmsg(), but allows multiple datagrams to be received in a single system call.
This reduces the system-call overhead in applications that deal with high levels
of network traffic. An analogous sendmmsg() system call is likely to be added
in a future kernel version.

61.13.3 Passing File Descriptors
Using sendmsg() and recvmsg(), we can pass ancillary data containing a file descriptor
from one process to another process on the same host via a UNIX domain socket.
Any type of file descriptor can be passed in this manner—for example, one obtained
from a call to open() or pipe(). An example that is more relevant to sockets is that a
master server could accept a client connection on a TCP listening socket and pass that
descriptor to one of the members of a pool of server child processes (Section 60.4),
which would then respond to the client request.

Although this technique is commonly referred to as passing a file descriptor,
what is really being passed between the two processes is a reference to the same
open file description (Figure 5-2, on page 95). The file descriptor number employed in
the receiving process would typically be different from the number employed in the
sender.

An example of passing file descriptors is provided in the files scm_rights_send.c
and scm_rights_recv.c in the sockets subdirectory in the source code distribu-
tion for this book.

61.13.4 Receiving Sender Credentials
Another example of the use of ancillary data is for receiving sender credentials via
a UNIX domain socket. These credentials consist of the user ID, the group ID, and
the process ID of the sending process. The sender may specify its user and group
IDs as the corresponding real, effective, or saved set IDs. This allows the receiving
process to authenticate a sender on the same host. For further details, see the
socket(7) and unix(7) manual pages.

Unlike passing file credentials, passing sender credentials is not specified in
SUSv3. Aside from Linux, this feature is implemented in some of the modern BSDs

Sockets: Advanced Topics 1285

(where the credentials structure contains somewhat more information than on
Linux), but is available on few other UNIX implementations. The details of creden-
tial passing on FreeBSD are described in [Stevens et al., 2004].

On Linux, a privileged process can fake the user ID, group ID, and process ID
that are passed as credentials if it has, respectively, the CAP_SETUID, CAP_SETGID, and
CAP_SYS_ADMIN capabilities.

An example of passing credentials is provided in the files scm_cred_send.c and
scm_cred_recv.c in the sockets subdirectory in the source code distribution for
this book.

61.13.5 Sequenced-Packet Sockets
Sequenced-packet sockets combine features of both stream and datagram sockets:

z Like stream sockets, sequenced-packet sockets are connection-oriented. Con-
nections are established in the same way as for stream sockets, using bind(),
listen(), accept(), and connect().

z Like datagram sockets, message boundaries are preserved. A read() from a
sequenced-packet socket returns exactly one message (as written by the peer).
If the message is longer than the buffer supplied by the caller, the excess bytes
are discarded.

z Like stream sockets, and unlike datagram sockets, communication via sequenced-
packet sockets is reliable. Messages are delivered to the peer application error-free,
in order, and unduplicated, and they are guaranteed to arrive (assuming that
there is not a system or application crash, or a network outage).

A sequenced-packet socket is created by calling socket() with the type argument spec-
ified as SOCK_SEQPACKET.

Historically, Linux, like most UNIX implementations, did not support
sequenced-packet sockets in either the UNIX or the Internet domains. However,
starting with kernel 2.6.4, Linux supports SOCK_SEQPACKET for UNIX domain sockets.

In the Internet domain, the UDP and TCP protocols do not support
SOCK_SEQPACKET, but the SCTP protocol (described in the next section) does.

We don’t show an example of the use of sequenced-packet sockets in this book,
but, other than the preservation of message boundaries, their use is very similar to
stream sockets.

61.13.6 SCTP and DCCP Transport-Layer Protocols
SCTP and DCCP are two newer transport-layer protocols that are likely to become
increasingly common in the future.

The Stream Control Transmission Protocol (SCTP, http://www.sctp.org/) was
designed to support telephony signaling in particular, but is also general purpose.
Like TCP, SCTP provides reliable, bidirectional, connection-oriented transport.
Unlike TCP, SCTP preserves message boundaries. One of the distinctive features
of SCTP is multistream support, which allows multiple logical data streams to be
employed over a single connection.

1286 Chapter 61

SCTP is described in [Stewart & Xie, 2001], [Stevens et al., 2004], and in
RFCs 4960, 3257, and 3286.

SCTP is available on Linux since kernel 2.6. Further information about this
implementation can be found at http://lksctp.sourceforge.net/.

Throughout the preceding chapters that describe the sockets API, we equated
Internet domain stream sockets with TCP. However, SCTP provides an alternative
protocol for implementing stream sockets, created using the following call:

socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP);

Starting in kernel 2.6.14, Linux supports a new datagram protocol, the Datagram
Congestion Control Protocol (DCCP). Like TCP, DCCP provides congestion control
(removing the need to implement congestion control at the application level) to
prevent a fast transmitter from overwhelming the network. (We explained conges-
tion control when describing TCP in Section 58.6.3.) However, unlike TCP (but
like UDP), DCCP doesn’t provide guarantees about reliable or in-order delivery,
and thus allows applications that don’t need these features to avoid the delays
that they can incur. Information about DCCP can be found at http://
www.read.cs.ucla.edu/dccp/ and RFCs 4336 and 4340.

61.14 Summary
In various circumstances, partial reads and writes can occur when performing I/O
on stream sockets. We showed the implementation of two functions, readn() and
writen(), that can be used to ensure a complete buffer of data is read or written.

The shutdown() system call provides more precise control over connection ter-
mination. Using shutdown(), we can forcibly shut down either or both halves of a
bidirectional communication stream, regardless of whether there are other open
file descriptors referring to the socket.

Like read() and write(), recv() and send() can be used to perform I/O on a socket, but
calls provide an extra argument, flags, that controls socket-specific I/O functionality.

The sendfile() system call allows us to efficiently copy the contents of a file to a
socket. This efficiency is gained because we don’t need to copy the file data to and
from user memory, as would be required with calls to read() and write().

The getsockname() and getpeername() system calls retrieve, respectively, the local
address to which a socket is bound and the address of the peer to which that socket
is connected.

We considered some details of the operation of TCP, including TCP states and
the TCP state transition diagram, and TCP connection establishment and termina-
tion. As part of this discussion, we saw why the TIME_WAIT state is an important
part of TCP’s reliability guarantee. Although this state can lead to the “Address
already in use” error when restarting a server, we later saw that the SO_REUSEADDR socket
option can be used to avoid this error, while nevertheless allowing the TIME_WAIT
state to serve its intended purpose.

The netstat and tcpdump commands are useful tools for monitoring and debug-
ging applications that use sockets.

Sockets: Advanced Topics 1287

The getsockopt() and setsockopt() system calls retrieve and modify options affecting
the operation of a socket.

On Linux, when a new socket is created by accept(), it does not inherit the listen-
ing sockets open file status flags, file descriptor flags, or file descriptor attributes
related to signal-driven I/O. However, it does inherit the settings of socket options.
We noted that SUSv3 is silent on these details, which vary across implementations.

Although UDP doesn’t provide the reliability guarantees of TCP, we saw that
there are nevertheless reasons why UDP can be preferable for some applications.

Finally, we outlined a few advanced features of sockets programming that we
don’t describe in detail in this book.

Further information
Refer to the sources of further information listed in Section 59.15.

61.15 Exercises
61-1. Suppose that the program in Listing 61-2 (is_echo_cl.c) was modified so that,

instead of using fork() to create two processes that operate concurrently, it instead
used just one process that first copies its standard input to the socket and then
reads the server’s response. What problem might occur when running this client?
(Look at Figure 58-8, on page 1190.)

61-2. Implement pipe() in terms of socketpair(). Use shutdown() to ensure that the resulting
pipe is unidirectional.

61-3. Implement a replacement for sendfile() using read(), write(), and lseek().

61-4. Write a program that uses getsockname() to show that, if we call listen() on a TCP
socket without first calling bind(), the socket is assigned an ephemeral port number.

61-5. Write a client and a server that permit the client to execute arbitrary shell
commands on the server host. (If you don’t implement any security mechanism in
this application, you should ensure that the server is operating under a user
account where it can do no damage if invoked by malicious users.) The client
should be executed with two command-line arguments:

$./is_shell_cl server-host 'some-shell-command'

After connecting to the server, the client sends the given command to the server,
and then closes its writing half of the socket using shutdown(), so that the server sees
end-of-file. The server should handle each incoming connection in a separate child
process (i.e., a concurrent design). For each incoming connection, the server
should read the command from the socket (until end-of-file), and then exec a shell
to perform the command. Here are a couple hints:

z See the implementation of system() in Section 27.7 for an example of how to
execute a shell command.

z By using dup2() to duplicate the socket on standard output and standard error,
the execed command will automatically write to the socket.

1288 Chapter 61

61-6. Section 61.13.1 noted that an alternative to out-of-band data would be to create two
socket connections between the client and server: one for normal data and one for
priority data. Write client and server programs that implement this framework.
Here are a few hints:

z The server needs some way of knowing which two sockets belong to the same
client. One way to do this is to have the client first create a listening socket
using an ephemeral port (i.e., binding to port 0). After obtaining the ephemeral
port number of its listening socket (using getsockname()), the client connects its
“normal” socket to the server’s listening socket and sends a message containing
the port number of the client’s listening socket. The client then waits for the
server to use the client’s listening socket to make a connection in the opposite
direction for the “priority” socket. (The server can obtain the client’s IP
address during the accept() of the normal connection.)

z Implement some type of security mechanism to prevent a rogue process from
trying to connect to the client’s listening socket. To do this, the client could
send a cookie (i.e., some type of unique message) to the server using the nor-
mal socket. The server would then return this cookie via the priority socket so
that the client could verify it.

z In order to experiment with transmitting normal and priority data from the cli-
ent to the server, you will need to code the server to multiplex the input from
the two sockets using select() or poll() (described in Section 63.2).

