Transistors and Logic Circuits

\qquad

Transistor

control high allows
current to flow --
switch is closed (on)
control low stops
current flow
switch is open (off)

NOT Gate One transistor

In = high, switch is closed so current flows to ground Out is low.

In = low, switch is open so current flows to Out Out is high.

NOR Gate Two transistors

NAND Gate Two transistors

AND Gate Three transistors

Logic Gates

In Out On OR Gate

Logic Circuit -- 4 input Multiplexor

Logic Circuit Puzzle 1

Input
Binary
Numbers
A, B

Logic Circuit Puzzle 2

Programmable Logic Array

- Any Logic Truth Table can be implemented
- Uses block of AND gates followed by block of OR gates
- Programmable
- once
- many times
- Used for implementing different circuits

Truth Table to Normal Form

| A | B | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| expression | | |

Normal Form to Truth Table

PLA, Alternate Representation

AND Block uses DeMorgan Equivalence

PLA, Alternate Representation

PLA, Alternate Representation

PLA "Don't Cares"

\mathbf{A}	\mathbf{B}	\mathbf{C}	exp	\mathbf{A}	\mathbf{B}	\mathbf{C}	exp
1	1	1	1	1	1	\mathbf{X}	1
1	1	0	1	1	0	1	1
1	0	1	1	1	0	0	0
1	0	0	0	0	1	1	1
0	1	1	1	0	1	0	0
0	1	0	0	0	0	1	0
0	0	1	0	0	0	0	0
0	0	0	0	$X=$ Don't Care			

PLA "Don't Cares"

