
cs281: Computer Organization
Lab3

1 Combinational Logic Design

Combinational Logic Design refers to the use of logic gates that, when combined, perform some
boolean function. The boolean function results in output(s) that are dependent only on the
input values and are independent of previous input values or states. In other words, the current
inputs completely determine the output(s).

The major design objective is usually to minimize the cost of the hardware needed to implement
a logic function. That cost can usually be expressed in terms of the number of gates, although
for technologies such as programmable logic, there are other limitations, such as the number of
terms that may be implemented.

The design process generally proceeds through the following steps:

1. We begin with a description of the boolean function. This description should clearly
identify the boolean input variables and the set of outputs, each of which must be a single
boolean variable. The description may take the form of an informal English description,
or could use some more formal specification.

2. From the description, the next step is to generate a truth table that enumerates all possible
values of the input variables. So if there are n boolean inputs, the complete truth table
will have 2n rows, and these are normally written in ascending binary value order. With
this standard ordering, we can unambiguously refer to the ith row of the truth table.
Sometimes, the process begins at this step by specifying the boolean function in terms of
its truth table.

3. From the truth table, we can, for each output, express the boolean output variable as
equal to a boolean algebra expression in one of two canonical forms: the sum of products
form, or the product of sums form.

4. From the canonical boolean expression form, one option to yield a lower cost hardware
implementation is to use boolean identities to simplify the boolean expression. However,
this method can be difficult, slow, and error-prone.

5. Alternatively, we can rewrite the truth table (for functions where the number of boolean
inputs ranges from 2 through 5) into an equivalent form called a Karnaugh-map (or K-
map for short). Using this graphical method, we can determine equivalent simpler terms
for either the sum-of-products form or the product-of-sums form.

6. From the simplified equation for each output, we can then translate the boolean expression
into and, or, and not logic gates.

7. In many technologies, implementation of nand gates or nor gates is easier than that of
and and or gates. Any logic function can be realized using only nand gates or only nor
gates, and conversion from and/or gates to these alternative forms is straightforward.
This last step will generally not be pursued in this class.



Assume, consistent with the above design description, that we are designing a piece of conbi-
national logic with a number of input variables and a single output.

A minterm is defined as a boolean and function containing exactly one instance of each input
variable or its inverse. A maxterm is defined as a boolean or function with exactly one instance
of each variable or its inverse. For a combinational logic circuit with n input variables, there
are 2n possible minterms and 2n possible maxterms. If the logic function is true (has value 1)
at row i of the standard truth table, the ith minterm exists and is designated by mi. If the logic
function is false (has value 0) at row i of the standard truth table, the ith maxterm exists and
is designated by Mi. For example, the table below defines a logic function with inputs A, B,
and C and output Z. The final column in the table shows the minterms and the maxterms for
this particular function.

row A B C Z min/max
0 0 0 0 1 m0

1 0 0 1 1 m1

2 0 1 0 0 M2

3 0 1 1 0 M3

4 1 0 0 0 M4

5 1 0 1 1 m5

6 1 1 0 0 M6

7 1 1 1 1 m7

The logic function may be described by the logical OR or its minterms:

Z = m0 + m1 + m5 + m7

A function expressed as a logical OR of distinct minterms is in sum-of-products (SOP) form, so
expanding the minterms, we get

Z = A · B · C + A · B · C + A · B · C + A · B · C

Each variable is inverted if there is a corresponding 0 in the truth table and not inverted if
there is a 1. The shorthand notation for the sum-of-products (i.e. the sum of minterms) is
Z =

∑
m(0, 1, 5, 7).

Similarly, the logic function may be described by the logical AND of its maxterms:

Z = M2 · M3 · M4 · M6

A function expressed as a logical AND of distinct maxterms is in product-of-sums (POS) form,
so expanding the maxterms, we get

Z = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

Each variable is inverted if there is a corresponding 1 in the truth table and not inverted if
there is a 0. The shorthand notation for the product of sums (i.e. the product of maxterms) is
Z =

∏
M(2, 3, 4, 6).

We define an implicant as a single term that covers at least one true value and no false values
of a function. For example, the function Z = A + A · B is shown in the table below:



row A B Z min/max
0 0 0 1 m0

1 0 1 0 M1

2 1 0 1 m2

3 1 1 1 m3

The implicants of this function are A · B, A, B, A · B, and A · B. The non-implicants are A,
B, A · B.

A prime implicant is an implicant that covers one or more minterms of a function, such that
the minterms are not all covered by another single implicant. In the example above, A and B
are prime implicants. The other implicants are all covered by one of the two prime implicants.
An essential prime implicant is a prime implicant that covers an implicant not covered by any
other prime implicant. Thus, A and B are essential prime implicants.

1.1 Karnaugh Maps

A Karnaugh map is effectively another way to write a truth table. See your instructor for a
discussion of the creation of K-maps.



2 Problems

For each of the following boolean logic functions, use K-maps (by hand) to design a minimal logic
circuit to realize the function. Deliverables for each include (a) the truth table, if not already
given, (b) the K-map in standard form with all prime implicants circled, (c) a simplified boolean
expression for the output in terms of the essential prime implicants, and (d) a realization of the
circuit using LogiSim.

1. In general, a multiplexor (mux) is a device that performs multiplexing; it selects one of
multiple input lines and forwards the selected input along to the output. The simplest
multiplexor has two input lines and one line called the selector that selects which input
line should have its value as the output. So a digital 2-1 mux defines a logic function with
three inputs, A and B for the two input lines and S for the selector. When the value of
S is 0, the output of the function is the same as the current value of the A input. When
the value of S is 1, the output of the function is the same as the current value of the B
input.

2. Given two 2-bit words A and B (consisting of a1a0 and b1b0) as input, the boolean function
f should yield 1 whenever A is strictly less than B when the words are interpreted as
unsigned binary integers and should yield 0 otherwise.

3. Use the following truth table to define the boolean function:

row A B C D Z

0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1


