
CS-281, Fall 2011
Data Lab: Manipulating Bits

Assigned: Aug. 29, Due: Mon., Sept. 12, 11:59PM

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers and
floating point numbers. You’ll do this by solving a series of programming “puzzles.” Many of these puzzles
are quite artificial, but you’ll find yourself thinking much more about bits in working your way through
them.

2 Logistics

This is an individual project. All handins are electronic. Clarifications and corrections will be posted on the
course Web page.

3 Handout Instructions

All the files you require for this assignment have been gathered together in a Unix “tar” file. This is an single
archive file containing a set of files. On a Linux lab machine inOlin 219, you should run a web browser and
navigate to the “Supplements” tab of the course web page. Then right-click thedatalab-handout.tar
link from theHomework Distributions section.

Save the file to a directory specific to your cs281 work. If you left-click or download to somewhere else,
you should start by copyingdatalab-handout.tar to a (protected) directory on a Linux machine in
which you plan to do your work. Then, from the directory containing the tar file, give the command

unix> tar xvf datalab-handout.tar

This will cause a number of files to be unpacked in a created datalab-handout directory. The only file you
will be modifying and turning in isbits.c .

The bits.c file contains a skeleton for each of the 14 programming puzzles. Your assignment is to
complete each function skeleton using onlystraightline code for the integer puzzles (i.e., no loops or con-

1



ditionals) and a limited number of C arithmetic and logical operators. Specifically, you areonly allowed to
use the following eight operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list; you can seethe legal operators in the comments for each
function inbits.c . Also, you are not allowed to use any constants longer than 8 bits. See the comments
in bits.c for detailed rules and a discussion of the desired coding style.

4 The Puzzles

This section describes the puzzles that you will be solving in bits.c .

4.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and testsets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function. See the comments inbits.c for more
details on the desired behavior of the functions. You may also refer to the test functions intests.c . These
are used as reference functions to express the correct behavior of your functions, although they don’t satisfy
the coding rules for your functions.

Name Description Rating Max Ops
allEvenBits(x) return 1 iff all even numbered bits of x are set. 2 12
bitMask(x,y) Yield mask of all 1s from bits x to y. 3 16
bitXor(x,y) Computexˆy using only˜ and&. 1 14
copyLSB() Generate word with all bits same as lsb ofx . 2 5
implication(x,y) Return propositional logicx ⇒ y. 2 5
replaceByte(x,n,c) Replace byte n in x with c. 3 10

Table 1: Bit-Level Manipulation Functions.

4.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’scomplement representation of integers. Again,
refer to the comments inbits.c and the reference versions intests.c for more information.

5 Evaluation

Your score will be computed out of a maximum of 62 points basedon the following distribution:

2



Name Description Rating Max Ops
absVal(x) Compute absolute value ofx. 4 10
addOK(x,y) Determine if can computex+ y without overflow 3 20
divpwr2(x,n) Computex/2n 2 15
fitsShort(x) Return 1 iffx can be represented in 16 bit two’s comp. 1 8
isNotEqual(x,y) return 0 ifx == y , and 1 otherwise 2 6
isTmin(x) Return 1 iffx is the minimum twos complement integer. 1 10
minusOne() Return -1. 1 2
sign(x) return 1 if positive, 0 if zero, and -1 if negative 2 10

Table 2: Arithmetic Functions

29 Correctness points.

28 Performance points.

5 Style points.

Correctness points. The 14 puzzles you must solve have been given a difficulty rating between 1 and 4, such
that their weighted sum totals to 29. We will evaluate your functions using thebtest program, which is
described in the next section. You will get full credit for a puzzle if it passes all of the tests performed by
btest , and no credit otherwise.

Performance points. Our main concern at this point in the course is that you can getthe right answer.
However, we want to instill in you a sense of keeping things asshort and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you areallowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each correct function that satisfies the operator limit.

Style points. Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and
your commenting. Your solutions should be as clean and straightforward as possible. Your comments should
be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handout directory — btest , dlc , anddriver.pl —
to help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions inbits.c . To build and
use it, type the following two commands:

unix> make
unix> ./btest

3



Notice that you must rebuildbtest each time you modify yourbits.c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can
use the-f flag to instructbtest to test only a single function:

unix> ./btest -f bitAnd

You can feed it specific function arguments using the option flags-1 , -2 , and-3 :

unix> ./btest -f bitAnd -1 7 -2 0xf

Check the fileREADMEfor documentation on running thebtest program.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use
to check for compliance with the coding rules for each puzzle. The typical usage is:

unix> ./dlc bits.c

The program runs silently unless it detects a problem, such as an illegal operator, too many operators,
or non-straightline code in the integer puzzles. Running with the-e switch:

unix> ./dlc -e bits.c

causesdlc to print counts of the number of operators used by each function. Type./dlc -help
for a list of command line options.

• driver.pl: This is a driver program that usesbtest anddlc to compute the correctness and
performance points for your solution. It takes no arguments:

unix> ./driver.pl

Your instructors will usedriver.pl to evaluate your solution.

6 Handin Instructions

The only file I require from you is the bits.c file. At present, turning in your assignment simply involves
sending the bits.c file to me as an attachment in an email. The send timestamp on the email will determine
any lateness penalty, with anything after 11:59 pm on the duedate either using one of your grace days
for this assignment, or incurring the mandatory 10% penalty. (Likewise for subsequent 24 hour periods of
lateness.)

4



7 Advice

• Don’t include the<stdio.h> header file in yourbits.c file, as it confusesdlc and results in
some non-intuitive error messages. You will still be able touseprintf in your bits.c file for
debugging without including the<stdio.h> header, althoughgcc will print a warning that you
can ignore.

• Thedlc program enforces a stricter form of C declarations than is the case for C++ or that is enforced
by gcc . In particular, any declaration must appear in a block (whatyou enclose in curly braces) before
any statement that is not a declaration. For example, it willcomplain about the following code:

int foo(int x)
{

int a = x;
a * = 3; / * Statement that is not a declaration * /
int b = a; / * ERROR: Declaration not allowed here * /

}

8 The “Beat the Prof” Contest

For fun, we’re offering an optional “Beat the Prof” contest that allows you to compete with other students
and the instructor to develop the most efficient puzzles. Thegoal is to solve each Data Lab puzzle using the
fewest number of operators. Students who match or beat the instructor’s operator count for each puzzle are
winners!

To submit your entry to the contest, type:

unix> ./driver.pl -u ‘‘Your Nickname’’

Nicknames are limited to 35 characters and can contain alphanumerics, apostrophes, commas, periods,
dashes, underscores, and ampersands. You can submit as often as you like. Your most recent submission
will appear on a real-time scoreboard, identified only by your nickname. You can view the scoreboard by
pointing your browser at

http://tashi:8080

5


