CS-281, Fall 2011
Data Lab: Manipulating Bits — Floating Point Edition
Assigned: Oct. 19, Due: Mon., Oct. 24, 11:59PM

1 Introduction

The purpose of this assignment is to become more familidr bittlevel representations of floating point
numbers. You'll do this by solving a series of programmingiZples.” Many of these puzzles are quite
artificial, but you'll find yourself thinking much more abohits in working your way through them.

2 Logistics

This is an individual project. All handins are electronidadfications and corrections will be posted on the
course Web page.

3 Handout Instructions

All the files you require for this assignment have been gath&wgether in a Unix “tar” file. This is an single
archive file containing a set of files. On a Linux lab machin®Ilim 219, you should run a web browser and
navigate to the “Supplements” tab of the course web pagen figlet-click thedat al ab- f | oat s- handout . t ar
link from the Homework Distributions section.

Save the file to a directory specific to your cs281 work. If yefi-tlick or download to somewhere else,
you should start by copyindat al ab- f | oat s- handout . t ar to a (protected) directory on a Linux
machine in which you plan to do your work. Then, from the dioeg containing the tar file, give the
command

uni x> tar xvf datal ab-fl oats-handout.tar

This will cause a number of files to be unpacked in a createalatahandout directory. The only file you
will be modifying and turning inidi t s. c.

Thebi t s. c file contains a skeleton for each of the 4 programming puzXesr assignment is to complete
each function skeleton following the coding guidelinesr these floating point puzzles, yawe allowed to

use while-loops and conditionals, but are still restridethteger operations, as described in the comments
ofbits.c.

4 ThePuzzles

This section describes the puzzles that you will be solvirigjiit s. c.

4.1 Bit Manipulations

Table 1 describes a set of functions that implement a setnatifans on floating point representations. The
“Rating” field gives the difficulty rating (the number of pd&&) for the puzzle, and the “Max ops” field gives
the maximum number of operators you are allowed to use toameht each function. See the comments in
bi t s. c for more details on the desired behavior of the functionss May also refer to the test functions in
t est s. c. These are used as reference functions to express thetdmehewior of your functions, although
they don't satisfy the coding rules for your functions.

Name Description Rating | Max Ops
f |l oat _abs(x) Return absolute value of 2 10
fl oat f2i (x) Return bit-level equivalent dfi nt) x 4 30
fl oat _hal f (x) Computer/2 as a bit-level float 4 30
fl oat i 2f (x) Compute a bit-level float of the same value as integer x4 30
fl oat _)neg(x) Compute bit-level float of the negation of x 2 10
fl oat tw ce(x) | Compute 2.0 *x 4 30

Table 1: Floating Point Manipulation Functions.

5 Evaluation

Your score will be computed out of a maximum of 25 points basmethe following distribution:

12 Correctness points.
8 Performance points.

5 Style points.

Correctness points. The 4 puzzles you must solve have been given a difficulty gdigtween 1 and 4. You
must implementt least four puzzles, and the minimum acceptable correctness & Note that there
are six puzzles provided, so you get to select which four yantwo tackle. You can do 5 or 6 and receive
extra credit. We will evaluate your functions using thieest program, which is described in the next
section. You will get full credit for a puzzle if it passes aflthe tests performed byt est , and no credit
otherwise.

Performance points. Our main concern at this point in the course is that you cantlgetight answer.
However, we want to instill in you a sense of keeping thingstast and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we wartiyioe more clever. Thus, for each function
we've established a maximum number of operators that yoalenwed to use for each function. This limit
is very generous and is designed only to catch egregiousfiidient solutions. You will receive two points
for each correct function that satisfies the operator limit.

Syle points. Finally, we've reserved 5 points for a subjective evaluatwd the style of your solutions and
your commenting. Your solutions should be as clean andy$iifairward as possible. Your comments should
be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handouttdimee— bt est , dl ¢, anddri ver. pl —
to help you check the correctness of your work.

e bt est: This program checks the functional correctness of the fonstinbi t s. ¢. To build and
use it, type the following two commands:

uni x> make
uni x> ./ bt est

Notice that you must rebuildt est each time you modify youbi t s. ¢ file.

You'll find it helpful to work through the functions one at ant, testing each one as you go. You can
use the f flag to instructbt est to test only a single function:

uni x> ./btest -f bitAnd
You can feed it specific function arguments using the optiagsf 1, - 2, and- 3:
uni x> ./btest -f bitAnd -1 7 -2 Oxf

Check the fileREADMVE for documentation on running theest program.

e dl c: This is a modified version of an ANSI C compiler from the MIT ®lgroup that you can use
to check for compliance with the coding rules for each puZklhe typical usage is:

uni x> ./dlc bits.c

The program runs silently unless it detects a problem, sa@mallegal operator, too many operators,
or non-straightline code in the integer puzzles. Runnirttp thie- e switch:

uni x> ./dlc -e bits.c

causegl| ¢ to print counts of the number of operators used by each famciiype. / dl ¢ - hel p
for a list of command line options.

e driver. pl: This is a driver program that usé$ est anddl ¢ to compute the correctness and
performance points for your solution. It takes no arguments

uni x> ./driver. pl

Your instructors will usalr i ver . pl to evaluate your solution.

6 Handin Instructions

The only file | require from you is the bits.c file. At presentrrting in your assignment simply involves

sending the bits.c file to me as an attachment in an email. @ ttmestamp on the email will determine
any lateness penalty, with anything after 11:59 pm on thed#ie either using one of your grace days
for this assignment, or incurring the mandatory 10% pendliikewise for subsequent 24 hour periods of
lateness.)

7 Advice

e Don't include the<st di 0. h> header file in youbi t s. c file, as it confusesll ¢ and results in
some non-intuitive error messages. You will still be ableisepri ntf in yourbi ts. c file for
debugging without including thest di 0. h> header, althouglgcc will print a warning that you
can ignore.

e Thedl c program enforces a stricter form of C declarations thands#se for C++ or that is enforced
bygcc. In particular, any declaration must appear in a block (wbatenclose in curly braces) before
any statement that is not a declaration. For example, itawithplain about the following code:

int foo(int x)

{
int a = x;
a *= 3; /* Statenent that is not a declaration */
int b =a;, /* ERROR Declaration not allowed here */
}

