
cs281: Introduction to Computer Systems
HW6 – archlab

Assigned: November 8, Due: Mon., November 14, 11:59pm

1 Introduction

In this lab, you will continue to learn about the design and implementation of a Y86 central processing unit
(CPU).

The lab is organized into two parts. In Part A you will write some basic Y86 programs and become familiar
with the Y86 tools, learning in more detail the Y86 instruction set architecture (ISA). In part B (and in
conjunction with Lab 11), you will implement the control unit to complete the given datapath for the Y86.

2 Logistics

You will work on Part A alone, but will work on Part B in teams of at most two.

Any clarifications and revisions to the assignment will be posted on the course Web page.

Although all you require for Part A is the specification of the three assembly language programs, I have
included on the course’s user directory (˜cs281) the textbook’s distribution giving you the source for the
Y86 assembler and simulator, along with many example assembly language source files (with the .ys ex-
tension), and also the HCL implementation of the Y86 CPU. If you want to peruse these resources, you
should be able to simply copy the contents of the ˜cs281/sim directory to a directory of your choos-
ing under your home directory in the Olin 219 Linux lab. Also in the ˜cs281 directory is the program
yo2banks, along with its source, which takes as input a

Relative to the sim directory, you will find the following:

• misc subdirectory – In this directory, you will find the code and created executables for yas and yis
and also the examples.c source file given in the description below.

• y86-code subdirectory – This directory contains many example Y86 assembly language source
files and their assembled counterparts.

• seq subdirectory – This directory contains the HCL defined SEQ implementation of the Y86 archi-
tecture.

• pipe subdirectory – This directory contains the HCL defined PIPE implementation of the Y86 ar-
chitecture.

• ptest subdirectory – In this directory, the authors include a set of Perl scripts for testing the HCL
implementations of the Y86 architectures.

1

Since we are building an alternate CPU using Logisim, the last three directories will have limited use for
you, but I include them for those that might want to experiment and investigate this alternative method of
defining a CPU.

3 Part A

Your task is to write and simulate the following three Y86 programs. The required behavior of these pro-
grams is defined by the example C functions in examples.c. Be sure to put your name and ID in a
comment at the beginning of each program.

sum.ys: Iteratively sum linked list elements

Write a Y86 program (sum.ys) that iteratively sums the elements of a linked list. Your program should
consist of a main routine that invokes a Y86 function (sum list) that is functionally equivalent to the C
sum list function in Figure 1. Test your program using the following three-element list:

Sample linked list
.align 4
ele1:

.long 0x00a

.long ele2
ele2:

.long 0x0b0

.long ele3
ele3:

.long 0xc00

.long 0

2

1 /* linked list element */
2 typedef struct ELE {
3 int val;
4 struct ELE *next;
5 } *list_ptr;
6

7 /* sum_list - Sum the elements of a linked list */
8 int sum_list(list_ptr ls)
9 {
10 int val = 0;
11 while (ls) {
12 val += ls->val;
13 ls = ls->next;
14 }
15 return val;
16 }
17

18 /* rsum_list - Recursive version of sum_list */
19 int rsum_list(list_ptr ls)
20 {
21 if (!ls)
22 return 0;
23 else {
24 int val = ls->val;
25 int rest = rsum_list(ls->next);
26 return val + rest;
27 }
28 }
29

30 /* copy_block - Copy src to dest and return xor checksum of src */
31 int copy_block(int *src, int *dest, int len)
32 {
33 int result = 0;
34 while (len > 0) {
35 int val = *src++;
36 *dest++ = val;
37 result ˆ= val;
38 len--;
39 }
40 return result;
41 }

Figure 1: C versions of the Y86 solution functions. See sim/misc/examples.c

3

rsum.ys: Recursively sum linked list elements

Write a recursive version of sum.ys (rsum.ys) that recursively sums the elements of a linked list.

Your program should consist of a main routine that invokes a recursive Y86 function (rsum list) that is
functionally equivalent to the rsum list function in Figure 1. Test your program using the same three-
element list you used for testing list.ys.

copy.ys: Copy a source block to a destination block

Write a program (copy.ys) that copies a block of words from one part of memory to another (non-
overlapping area) area of memory, computing the checksum (Xor) of all the words copied.

Your program should consist of a main routine that calls a Y86 function (copy block) that is functionally
equivalent to the copy block function in Figure 1. Test your program using the following three-element
source and destination blocks:

.align 4
Source block
src:

.long 0x00a

.long 0x0b0

.long 0xc00

Destination block
dest:

.long 0x111

.long 0x222

.long 0x333

4 Evaluation

Part A

Part A is worth 30 points, 10 points for each Y86 solution program. Each solution program will be evaluated
for correctness, including proper handling of the %ebp stack frame register and functional equivalence with
the example C functions in examples.c.

The programs sum.ys and rsum.yswill be considered correct if their respective sum list and rsum list
functions return the sum 0xcba in register %eax.

The program copy.ys will be considered correct if its copy block function returns the sum 0xcba in
register %eax, and copies the three words 0x00a, 0x0b, and 0xc to the 12 contiguous memory locations
beginning at address dest.

4

5 Handin Instructions

• You will be handing in three files:

– Part A: sum.ys, rsum.ys, and copy.ys.

• Make sure you have included your name at the top of each of your handin files.

• Simply email me with your three text files listed above.

5

