cs281: Introduction to Computer Systems

HW6 — archlab

Assigned: November 8, Due: Mon., November 14, 11:59pm

1 Introduction

In this lab, you will continue to learn about the design and implementation of a Y86 central processing unit
(CPU).

The lab is organized into two parts. In Part A you will write some basic Y86 programs and become familiar
with the Y86 tools, learning in more detail the Y86 instruction set architecture (ISA). In part B (and in
conjunction with Lab 11), you will implement the control unit to complete the given datapath for the Y86.

2 Logistics

You will work on Part A alone, but will work on Part B in teams of at most two.
Any clarifications and revisions to the assignment will be posted on the course Web page.

Although all you require for Part A is the specification of the three assembly language programs, I have
included on the course’s user directory (" cs281) the textbook’s distribution giving you the source for the
Y86 assembler and simulator, along with many example assembly language source files (with the . ys ex-
tension), and also the HCL implementation of the Y86 CPU. If you want to peruse these resources, you
should be able to simply copy the contents of the “cs281/sim directory to a directory of your choos-
ing under your home directory in the Olin 219 Linux lab. Also in the “cs281 directory is the program
yo2banks, along with its source, which takes as input a

Relative to the sim directory, you will find the following:

e misc subdirectory — In this directory, you will find the code and created executables for yas and yis
and also the examples. c source file given in the description below.

e y86—code subdirectory — This directory contains many example Y86 assembly language source
files and their assembled counterparts.

e seq subdirectory — This directory contains the HCL defined SEQ implementation of the Y86 archi-
tecture.

e pipe subdirectory — This directory contains the HCL defined PIPE implementation of the Y86 ar-
chitecture.

e ptest subdirectory — In this directory, the authors include a set of Perl scripts for testing the HCL
implementations of the Y86 architectures.

Since we are building an alternate CPU using Logisim, the last three directories will have limited use for
you, but I include them for those that might want to experiment and investigate this alternative method of
defining a CPU.

3 PartA

Your task is to write and simulate the following three Y86 programs. The required behavior of these pro-
grams is defined by the example C functions in examples.c. Be sure to put your name and ID in a
comment at the beginning of each program.

sum. ys: Iteratively sum linked list elements
Write a Y86 program (sum. ys) that iteratively sums the elements of a linked list. Your program should

consist of a main routine that invokes a Y86 function (sum_11ist) that is functionally equivalent to the C
sum_list function in Figure 1. Test your program using the following three-element list:

Sample linked list

.align 4
elel:
.long 0x00a
.long ele2
ele2:
.long 0x0bO
.long ele3
ele3:
.long 0xc00
.long O

0 J o U w N

B W w W wWwWwwww NN NN R
R O W W J o U s W N P O W 0 J o Ul b W N KFEF O W 0 J o U b W N+ O v

/% linked list element =/
typedef struct ELE {

int val;
struct ELE *next;
} *list_ptr;
/* sum_list — Sum the elements of a linked list «/

int sum_list (list_ptr 1s)

{

int val = 0;
while (1s) {
val += ls->val;
ls = ls—->next;
}

return val;

/* rsum_list — Recursive version of sum_list =/
int rsum_list (list_ptr 1s)

{

if (!1s)
return 0;
else {
int val = ls->val;
int rest = rsum_list (ls—>next);

return val + rest;

/+ copy_block - Copy src to dest and return xor checksum of src =/
int copy_block (int xsrc, int xdest, int len)

{

int result = 0;

while (len > 0) {
int val = #*src++;
+*dest++ = val;
result "= val;
len——;

}

return result;

Figure 1: C versions of the Y86 solution functions. See sim/misc/examples.c

rsum.ys: Recursively sum linked list elements

Write a recursive version of sum.ys (rsum.ys) that recursively sums the elements of a linked list.

Your program should consist of a main routine that invokes a recursive Y86 function (rsum_1ist) that is
functionally equivalent to the rsum_11ist function in Figure 1. Test your program using the same three-
element list you used for testing 1ist.ys.

copy . ys: Copy a source block to a destination block

Write a program (copy .ys) that copies a block of words from one part of memory to another (non-
overlapping area) area of memory, computing the checksum (Xor) of all the words copied.

Your program should consist of a main routine that calls a Y86 function (copy_block) that is functionally
equivalent to the copy block function in Figure 1. Test your program using the following three-element
source and destination blocks:

.align 4

Source block

src:
.long 0x00a
.long 0x0bO
.long 0xc00

Destination block
dest:
.long Ox111
.long 0x222
.long 0x333

4 Evaluation

Part A

Part A is worth 30 points, 10 points for each Y86 solution program. Each solution program will be evaluated
for correctness, including proper handling of the $ebp stack frame register and functional equivalence with
the example C functions in examples.c.

The programs sum. ys and rsum. ys will be considered correct if their respective sum_1ist and rsum_1list
functions return the sum Oxcba in register $eax.

The program copy . ys will be considered correct if its copy_block function returns the sum Oxcba in
register $eax, and copies the three words 0x00a, 0x0b, and Oxc to the 12 contiguous memory locations
beginning at address dest.

5 Handin Instructions

e You will be handing in three files:
— Part A: sum.ys, rsum.ys, and copy.ys.
e Make sure you have included your name at the top of each of your handin files.

e Simply email me with your three text files listed above.

