
Denison University

1

Exceptional Control Flow:
Signals and Nonlocal Jumps

CS-281: Introduction to Computer Systems

Instructor:
Dr. Thomas C. Bressoud

Denison University

2

ECF Exists at All Levels of a
System

Exceptions
Hardware and operating system kernel software

Process Context Switch
Hardware timer and kernel software

Signals
Kernel software

Nonlocal jumps
Application code

Previously

Now

Denison University

3

The World of Multitasking
System runs many processes concurrently

Process: executing program
State includes memory image + register values + program
counter

Regularly switches from one process to another
Suspend process when it needs I/O resource or timer event
occurs
Resume process when I/O available or given scheduling
priority

Appears to user(s) as if all processes executing
simultaneously

Denison University

4

Programmer’s Model of Multitasking
Basic functions

fork spawns new process
Called once, returns twice

exit terminates own process
Called once, never returns
Puts it into “zombie” status

wait and waitpid wait for and reap terminated children
execve runs new program in existing process

Called once, (normally) never returns

Programming challenge
Understanding the nonstandard semantics of the functions
Avoiding improper use of system resources

E.g. “Fork bombs” can disable a system

Denison University

5

Unix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Denison University

6

Shell Programs
A shell is an application program that runs
programs on behalf of the user.

sh
 Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
csh BSD Unix C shell (tcsh: enhanced csh at CMU and
elsewhere)

int main() {
 char cmdline[MAXLINE];

 while (1) {
 /* read */
 printf("> ");
 Fgets(cmdline, MAXLINE, stdin);
 if (feof(stdin))
 exit(0);

 /* evaluate */
 eval(cmdline);
 }
}

Execution is a
sequence of read/
evaluate steps

Denison University

7

Simple Shell eval Function
void eval(char *cmdline) {
 char *argv[MAXARGS]; /* argv for execve() */
 int bg; /* should the job run in bg or fg? */
 pid_t pid; /* process id */

 bg = parseline(cmdline, argv);
 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 if (!bg) { /* parent waits for fg job to terminate */
 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else /* otherwise, don’t wait for bg job */
 printf("%d %s", pid, cmdline);
 }
}

Denison University

8

What Is a “Background Job”?
Users generally run one command at a time

Type command, read output, type another command

Some programs run “for a long time”
Example: “delete this file in two hours”

A “background” job is a process we don't want to wait
for

unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours

unix> (sleep 7200 ; rm /tmp/junk) &
[1] 907
unix> # ready for next command

Denison University

9

Problem with Simple Shell Example
Our example shell correctly waits for and reaps
foreground jobs

But what about background jobs?
Will become zombies when they terminate
Will never be reaped because shell (typically) will not terminate
Will create a memory leak that could run the kernel out of
memory
Modern Unix: once you exceed your process quota, your shell
can't run any new commands for you: fork() returns -1

unix> limit maxproc # csh syntax
maxproc 202752
unix> ulimit -u # bash syntax
202752

Denison University

10

ECF to the Rescue!
Problem

The shell doesn't know when a background job will finish
By nature, it could happen at any time
The shell's regular control flow can't reap exited background
processes in a timely fashion
Regular control flow is “wait until running job completes, then
reap it”

Solution: Exceptional control flow
The kernel will interrupt regular processing to alert us when a
background process completes
In Unix, the alert mechanism is called a signal

Denison University

11

Signals
A signal is a small message that notifies a process
that an event of some type has occurred in the
system

akin to exceptions and interrupts
sent from the kernel (sometimes at the request of another
process) to a process
signal type is identified by small integer ID’s (1-30)
only information in a signal is its ID and the fact that it
arrivedID Name Default Action Corresponding Event
2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or

ignore)11 SIGSEGV Terminate &
Dump

Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Denison University

12

Sending a Signal
A signal is generated and the kernel sends a signal to
a destination process by updating some state in the
context of the destination process

Kernel sends a signal for one of the following reasons:
Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)
Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process

Denison University

13

Receiving a Signal
The kernel delivers and a destination process
receives a signal when it is forced by the kernel to
react in some way to the delivery of the signal

Three possible ways to react:
Ignore the signal (do nothing)
Terminate the process (with optional core dump)
Catch the signal by executing a user-level function called
signal handler

Akin to a hardware exception handler being called in
response to an asynchronous interrupt

Denison University

14

Pending and Blocked Signals
A signal is pending if sent (generated) but not yet
received (delivered)

There can be at most one pending signal of any particular
type
Important: Signals are not queued

If a process has a pending signal of type k, then
subsequent signals of type k that are sent to that process
are discarded

A process can block the receipt of certain signals
Blocked signals can be generated, but will not be received
until the signal is unblocked

A pending signal is received at most once

Denison University

15

Signal Concepts

Kernel maintains pending and blocked bit vectors in
the context of each process

pending: represents the set of pending signals
Kernel sets bit k in pending when a signal of type k is
delivered
Kernel clears bit k in pending when a signal of type k is
received

blocked: represents the set of blocked signals
Can be set and cleared by using the sigprocmask
function

Denison University

16

Process Groups
Every process belongs to exactly one process
group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group

20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current
process
setpgid()
Change process group of a
process

Denison University

17

Sending Signals with /bin/kill
/bin/kill program
sends arbitrary signal
to a process or process
group

Examples
/bin/kill –9 24818
Send SIGKILL to process
24818

/bin/kill –9 –24817
Send SIGKILL to every
process in process group
24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Denison University

18

Sending Signals from the
Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in
the foreground process group.

SIGINT – default action is to terminate each process
SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group

20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Denison University

19

Example of ctrl-c and ctrl-z
219k> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
219k> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
219k> fg
./forks 17
<types ctrl-c>
219k> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state)
Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Denison University

20

Sending Signals with kill
void fork12()
{
 pid_t pid[N];
 int i, child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 while(1); /* Child infinite loop */

 /* Parent terminates the child processes */
 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }

 /* Parent reaps terminated children */
 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

Denison University

21

Receiving Signals
Suppose kernel is returning from an exception
handler and is ready to pass control to process p

Kernel computes pnb = pending & ~blocked
The set of pending nonblocked signals for process p

If (pnb == 0)
Pass control to next instruction in the logical flow for p

Else
Choose least nonzero bit k in pnb and force process p to
receive signal k
The receipt of the signal triggers some action by p
Repeat for all nonzero k in pnb
Pass control to next instruction in logical flow for p

Denison University

22

Default Actions
Each signal type has a predefined default action,
which is one of:

The process terminates
The process terminates and dumps core
The process stops until restarted by a SIGCONT signal
The process ignores the signal

Denison University

23

Installing Signal Handlers
The signal function modifies the default action
associated with the receipt of signal signum:

handler_t *signal(int signum, handler_t *handler)

Different values for handler:
SIG_IGN: ignore signals of type signum
SIG_DFL: revert to the default action on receipt of signals of
type signum
Otherwise, handler is the address of a signal handler

Called when process receives signal of type signum
Referred to as “installing” the handler
Executing handler is called “catching” or “handling” the
signal
When the handler executes its return statement, control
passes back to instruction in the control flow of the process

Denison University

24

Signal Handling Example
void int_handler(int sig) {
 safe_printf("Process %d received signal %d\n", getpid(), sig);
 exit(0);
}

void fork13() {
 pid_t pid[N];
 int i, child_status;
 signal(SIGINT, int_handler);
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 while(1); /* child infinite loop
 }
 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }
 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

219k> ./forks 13
Killing process 25417
Killing process 25418
Killing process 25419
Killing process 25420
Killing process 25421
Process 25417 received signal 2
Process 25418 received signal 2
Process 25420 received signal 2
Process 25421 received signal 2
Process 25419 received signal 2
Child 25417 terminated with exit status 0
Child 25418 terminated with exit status 0
Child 25420 terminated with exit status 0
Child 25419 terminated with exit status 0
Child 25421 terminated with exit status 0
219k>

Denison University

25

Signals Handlers as Concurrent
Flows

A signal handler is a separate logical flow (not
process) that runs concurrently with the main
program

 “concurrently” in the “not sequential” sense

Process A

while (1)
 ;

Process A

handler(){
 …
}

Process B

Time

Denison University

26

Another View of Signal Handlers as
Concurrent Flows

Signal generated

Signal delivered

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Denison University

27

Signal Handler Funkiness
Pending signals are not
queued

For each signal type,
just have single bit
indicating whether or
not signal is pending

Even if multiple
processes have sent this
signal

int ccount = 0;
void child_handler(int sig)
{
 int child_status;
 pid_t pid = wait(&child_status);
 ccount--;
 safe_printf(
 "Received signal %d from process %d\n",
 sig, pid);
}

void fork14()
{
 pid_t pid[N];
 int i, child_status;
 ccount = N;
 signal(SIGCHLD, child_handler);
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 sleep(1); /* deschedule child */
 exit(0); /* Child: Exit */
 }
 while (ccount > 0)
 pause(); /* Suspend until signal occurs */
}

219k> ./forks 14
Received SIGCHLD signal 17 for process 21344
Received SIGCHLD signal 17 for process 21345

Denison University

28

Living With Nonqueuing Signals
Must check for all terminated jobs

Typically loop with wait

void child_handler2(int sig)
{
 int child_status;
 pid_t pid;
 while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {
 ccount--;
 safe_printf("Received signal %d from process %d\n",
 sig, pid);
 }
}

void fork15()
{
 . . .
 signal(SIGCHLD, child_handler2);
 . . .
}

219k> ./forks 15
Received signal 17 from process 27476
Received signal 17 from process 27477
Received signal 17 from process 27478
Received signal 17 from process 27479
Received signal 17 from process 27480
219k>

Denison University

29

More Signal Handler Funkiness
Signal arrival during long system calls (say a read)
Signal handler interrupts read call

Linux: upon return from signal handler, the read call is
restarted automatically
Some other flavors of Unix can cause the read call to fail
with an EINTER error number (errno)
in this case, the application program can restart the slow
system call

Subtle differences like these complicate the writing
of portable code that uses signals

Consult your textbook for details

Denison University

30

A Program That Reacts to
Externally Generated Events (Ctrl-c)
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
 safe_printf("You think hitting ctrl-c will stop the bomb?\n");
 sleep(2);
 safe_printf("Well...");
 sleep(1);
 printf("OK\n");
 exit(0);
}

main() {
 signal(SIGINT, handler); /* installs ctl-c handler */
 while(1) {
 }
}

external.c

219k> ./external
<ctrl-c>
You think hitting ctrl-c will stop
the bomb?
Well...OK
219k>

Denison University

31

A Program That Reacts to Internally
Generated Events
#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {
 safe_printf("BEEP\n");

 if (++beeps < 5)
 alarm(1);
 else {
 safe_printf("BOOM!\n");
 exit(0);
 }
}

main() {
 signal(SIGALRM, handler);
 alarm(1); /* send SIGALRM in
 1 second */

 while (1) {
 /* handler returns here */
 }
}

219k> ./internal
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
219k> internal.c

Denison University

32

Async-Signal-Safety

Function is async-signal-safe if either reentrant (all
variables stored on stack frame, CS:APP2e 12.7.2) or
non-interruptible by signals.
Posix guarantees 117 functions to be async-signal-
safe

write is on the list, printf is not
One solution: async-signal-safe wrapper for printf:

void safe_printf(const char *format, ...) {
 char buf[MAXS];
 va_list args;

 va_start(args, format); /* reentrant */
 vsnprintf(buf, sizeof(buf), format, args); /* reentrant */
 va_end(args); /* reentrant */
 write(1, buf, strlen(buf)); /* async-signal-safe */
}

safe_printf.c

Denison University

33

Nonlocal Jumps: setjmp/longjmp
Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

Controlled to way to break the procedure call / return
discipline
Useful for error recovery and signal handling

int setjmp(jmp_buf j)
Must be called before longjmp
Identifies a return site for a subsequent longjmp
Called once, returns one or more times

Implementation:
Remember where you are by storing the current register
context, stack pointer, and PC value in jmp_buf
Return 0

Denison University

34

setjmp/longjmp (cont)
void longjmp(jmp_buf j, int i)

Meaning:
return from the setjmp remembered by jump buffer j
again ...
… this time returning i instead of 0

Called after setjmp
Called once, but never returns

longjmp Implementation:
Restore register context (stack pointer, base pointer, PC
value) from jump buffer j
Set %eax (the return value) to i
Jump to the location indicated by the PC stored in jump buf j

Denison University

35

setjmp/longjmp Example
#include <setjmp.h>
jmp_buf buf;

main() {
 if (setjmp(buf) != 0) {
 printf("back in main due to an error\n");
 else
 printf("first time through\n");
 p1(); /* p1 calls p2, which calls p3 */
}
...
p3() {
 <error checking code>
 if (error)
 longjmp(buf, 1)
}

Denison University

36

Limitations of Nonlocal Jumps
Works within stack discipline

Can only long jump to environment of function that has
been called but not yet completed

jmp_buf env;

P1()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 } else {
 P2();
 }
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{
 longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmpAfter longjmp

Denison University

37

Limitations of Long Jumps (cont.)
Works within stack discipline

Can only long jump to environment of function that has
been called but not yet completed

jmp_buf env;

P1()
{
 P2(); P3();
}

P2()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 }
}

P3()
{
 longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

Denison University

38

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {
 siglongjmp(buf, 1);
}

main() {
 signal(SIGINT, handler);

 if (!sigsetjmp(buf, 1))
 printf("starting\n");
 else
 printf("restarting\n");

 while(1) {
 sleep(1);
 printf("processing...\n");

 }
}

restart.c

219k> ./restart
starting
processing...
processing...
processing...
restarting
processing...
processing...
restarting
processing...
processing...
processing...

Ctrl-c

Ctrl-c

Denison University

39

Summary
Signals provide process-level exception handling

Can generate from user programs
Can define effect by declaring signal handler

Some caveats
Very high overhead

>10,000 clock cycles
Only use for exceptional conditions

Don’t have queues
Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow
within process

Within constraints of stack discipline

