Denison University

Exceptional Control Flow:
Signals and Nonlocal Jumps

CS-281: Introduction to Computer Systems

Instructor:
Dr. Thomas C. Bressoud

ECF Exists at All Levels of a

System

- Exceptions
- Hardware and operating system kernel soktware

- Process Context Switch Previously
- Hardware timer and kernel software

- Signals J
- Kernel software \

~ Nonlocal jumps
- Application code > Now

The World of Multitasking

System runs many processes concurrently

(

Process: executing program

~ State includes memory image + register values + program
counter

(

Regularly switches from one process to another

~ Suspend process when it needs 1/O resource or timer event
occurs

- Resume process when I/O available or given scheduling
priority

(

(

Appears to user(s) as if all processes executing
simultaneously

Denison University

Programmer’s Model of Multitasking

~ Basic functions
- fork spawns new process
~ Called once, returns twice
_ exit terminates own process
~ Called once, never returns
~ Puts it into “zombie” status
~ wait and waitpid wait for and reap terminated children
_ execve Funs new program in existing process
~ Called once, (normally) never returns

- Programming challenge
~ Understanding the nonstandard semantics of the functions
~ Avoiding improper use of system resources
_E.g. “Fork bombs” can disable a system

Denison University

Unix Process Hierarchy

[0]

Cenin_>
Corandenia > Corandehita

Denison University

Shell Programs

~ A shell is an application program that runs
programs on behalf of the user.

o sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
o esh BSD Unix C shell (tesh: enhanced csh at CMU and

elsewhere)
int main() { Execution is a
char cmdline[MAXLINE] ; sequence of read/

evaluate steps
while (1) {

/* read */
printf("> "),
Fgets (cmdline, MAXLINE, stdin);
if (feof(stdin))
exit (0) ;

/* evaluate */
eval (cmdline) ;

Simple Shell eval Function

void eval (char *cmdline) {
char *argv[MAXARGS]; /* argv for execve () */

int bg; /* should the job run in bg or fg? */
pid t pid; /* process id */
bg = parseline(cmdline, argv);
if (!builtin command(argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0);
}
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */
printf ("%d %s", pid, cmdline);

What Is a “Background Job™?

- Users generally run one command at a time
- Type command, read output, type another command

~ Some programs run “for a long time”
- Example: “delete this file in two hours”

unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours

- A “background” job is a process we don't want to wait
for
unix> (sleep 7200 ; rm /tmp/junk) &

[1] 907
unix> # ready for next command

Denison University

Problem with Simple Shell Example

~ Our example shell correctly waits for and reaps
foreground jobs

- But what about background jobs?
- Will become zombies when they terminate
< Will never be reaped because shell (typically) will not terminate

~ Will create a memory leak that could run the kernel out of
memory

~ Modern Unix: once you exceed your process quota, your shell
can't run any new commands for you: fork() returns -1

unix> limit maxproc # csh syntax
maxproc 202752

unix> ulimit -u # bash syntax
202752

Denison University

ECF to the Rescue!

< Problem
~ The shell doesn't know when a background job will finish
~ By nature, it could happen at any time

- The shell's regular control flow can't reap exited background
processes in a timely fashion

- Regular control flow is “wait until running job completes, then
reap it”

- Solution: Exceptional control flow

- The kernel will interrupt regular processing to alert us when a
background process completes

< In Unix, the alert mechanism is called a signal

Signals

~ A signal is a small message that notifies a process
that an event of some type has occurred in the
system
~ akin to exceptions and interrupts

- sent from the kernel (sometimes at the request of another
process) to a process

~ signal type is identified by small integer ID’s (1-30)
~ only information in a signal is its ID and the fact that it
ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or

11 SIGSEGV Terminate & Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Sending a Signal

- A signal is generated and the kernel sends a signal to
a destination process by updating some state in the
context of the destination process

- Kernel sends a signal for one of the following reasons:

- Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)

- Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process

Receiving a Signal

- The kernel delivers and a destination process
receives a signal when it is forced by the kernel to
react in some way to the delivery of the signal

~ Three possible ways to react:
~ Ignore the signal (do nothing)
~ Terminate the process (with optional core dump)
~ Catch the signal by executing a user-level function called
signal handler

~ Akin to a hardware exception handler being called in
response to an asynchronous interrupt

Pending and Blocked Signals

~ A signal is pending if sent (generated) but not yet
received (delivered)
~ There can be at most one pending signal of any particular
type
- Important: Signals are not queued

- If a process has a pending signal of type k, then
subsequent signals of type k that are sent to that process

are discarded

- A process can block the receipt of certain signals

~ Blocked signals can be generated, but will not be received
until the signal is unblocked

- A pending signal is received at most once

Denison University

Signal Concepts

~ Kernel maintains pending and blocked bit vectors in
the context of each process
~ pending: represents the set of pending signals

- Kernel sets bit k in pending when a signal of type k is
delivered

= Kernel clears bit k in pending when a signal of type k is
received

~ blocked: represents the set of blocked signals

o Can be set and cleared by using the sigprocmask
function

Denison University

Process Groups

- Every process belongs to exactly one process
group

Background Background
@ @ process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 BERIEEAT Return process group of current
Foreground process
process group
20 setpgid()

Change process group of a
process ©

Sending Signals with /bin/kill

~ /bin/kill program

sends arbitrary signal linux> ./forks 16
Childl: pid=24818 pgrp=24817
tO a process Or ProCesS cpild2: pid=24819 pgrp=24817

group

linux> ps

PID TTY TIME CMD
E I 24788 pts/2 00:00:00 tcsh
~ eXampies 24818 pts/2 00:00:02 forks

/bin/kill -9 24818 |24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps
giréci;'GK'LL to process linux> /bin/kill -9 -24817

linux> ps
PID TTY TIME CMD

. . 24788 pts/2 00:00:00 tecsh
_/bin/kill -9 -24817 54853 prs/2 00:00:00 ps

Send SIGKILL to every linux>
process in process group
24817

Denison University

Sending Signals from the

~ Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in
the foreground process group.

__SIGINT - default action is to terminate each process
__SIGTSTP - default action is to stop (suspend) each process

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group

Denison University

Example of ctrl-c and ctrl-z

219k> ./forks 17 STAT (process state)
Child: pid=28108 pgrp=28107 Legend:
Parent: pid=28107 pgrp=28107
<tYPeSd°§r1‘z> First letter:
Suspende . ;
219k> ps w S._ sleeping
PID TTY STAT TIME COMMAND T: stopped
27699 pts/8 Ss 0:00 -tcsh R: running
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17 Second letter:
28309 ?35/8 B U300 o2 s: session leader
forks 17 +: foreground proc group
<types ctrl-c>
219k> ps w See “man ps” for more
PID TTY STAT TIME COMMAND details
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

Denison University

Sending Signals with kil1

void forkl2()
{

pid_t pid[N];
int i, child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
while(1l); /* Child infinite loop */

/* Parent terminates the child processes */
for (1 = 0; i < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT) ;
}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid) ;

20

Denison University

Receiving Signals

Suppose kernel is returning from an exception
handler and is ready to pass control to process p

(

~ Kernel computes pnb = pending & ~blocked
- The set of pending nonblocked signals for process p

o If (pnb == 0)
- Pass control to next instruction in the logical flow for p
- Else

= Choose least nonzero bit k in pnb and force process p to
receive signal k

~ The receipt of the signal triggers some action by p
- Repeat for all nonzero k in pnb

~ Pass control to next instruction in logical flow for p

2

Denison University

Default Actions

- Each signal type has a predefined default action,
which is one of:
~ The process terminates
- The process terminates and dumps core
~ The process stops until restarted by a SIGCONT signal
~ The process ignores the signal

22

Denison University

Installing Signal Handlers

~ The signal function modifies the default action
associated with the receipt of signal signum:
- handler t *signal (int signum, handler t *handler)

_ Different values for handler:
- SIG_IGN: ignore signals of type signum
~ SIG_DFL: revert to the default action on receipt of signals of
type signum
~ Otherwise, handler is the address of a signal handler
~ Called when process receives signal of type signum
- Referred to as “installing” the handler

~ Executing handler is called “catching” or “handling” the
signal

-~ When the handler executes its return statement, control
passes back to instruction in the control flow of the process

23

Signal Handling Example

void int handler (int sig) {
safe printf ("Process %d received signal %d\n", getpid(), siqg);

exit (0);
}
219k> ./forks 13
void forkl3() { Killing process 25417
pid t pid[N]; Killing process 25418
int i, child status; Killing process 25419
signal (SIGINT, int handler); Killing process 25420
for (i = 0; i < N; i++) Killing process 25421
if ((pid[i] = fork()) == 0) Process 25417 received signal 2
while(l); /* child infin:Process 25418 received signal 2
} Process 25420 received signal 2
for (i = 0; 1 < N; 1i++) { Process 25421 received signal 2
printf ("Killing process %d\n'Process 25419 received signal 2
kill (pid[i], SIGINT) ; Child 25417 terminated with exit status
} Child 25418 terminated with exit status
for (i = 0; 1 < N; i++) { Child 25420 terminated with exit status

o O O o o

pid t wpid = wait (&child sta Child 25419 terminated with exit status
if (WIFEXITED(child status)) Child 25421 terminated with exit status
printf ("Child %d termina 219k>
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);

24

Signals Handlers as Concurrent

Flows

- A signal handler is a separate logical flow (not
process) that runs concurrently with the main
program

= “concurrently” in the “not sequential”’ sense

Process A Process A Process B
while (1) handler () {

}

Time

25

Denison University

Another View of Signal Handlers as
Concurrent Flows

Process A Process B

user code (main)

kernel code }context switch

Signal generated—> |

curr

user code (main)

kernel code }context switch

Signal delivered—>
user code (handler)

kernel code

next user code (main)

26

Denison University

Signal Handler Funkiness

int ccount = 0; - Pending signals are not
x{roid child handler (int sig) queued
int child status; ~For each signal type,
pid_t pid = wait(&child status); just have Single bit
:Z‘f’:f;;;!’ltf(indicating whether or
"Received signal %d from process %d\n", not signal is pending
sig, pid);
} . .
~Even if multiple
‘{’°id el () processes have sent this
pid t pid[N]; signal

int i, child status;
ccount = N;
signal (SIGCHLD, child handler);
for (i = 0; i < N; i++)
if ((pid[i] = fork()219k> ./forks 14
sleep(l); /* desReceived SIGCHLD signal 17 for process 21344
exit(0); /* ChiReceived SIGCHLD signal 17 for process 21345

}

while (ccount > 0)
pause(); /* Suspend until signal occurs */

27

Living With Nonqueuing Signals

- Must check for all terminated jobs
~ Typically loop with wait

void child handler2 (int sigq)
{
int child_status;
pid_t pid;
while ((pid = waitpid(-1, &child status, WNOHANG)) > 0) {
ccount--;
safe_printf ("Received signal %d from process %d\n",
sig, pid);
}
}

void forkl5() 219> ./forks 15

{ Received signal 17 from process 27476
L. Received signal 17 from process 27477
signal (SIGCc Received signal 17 from process 27478
L Received signal 17 from process 27479

} Received signal 17 from process 27480

219k>

28

More Signal Handler Funkiness

> Signal arrival during long system calls (say a read)

= Signal handler interrupts read call
~ Linux: upon return from signal handler, the read call is
restarted automatically
- Some other flavors of Unix can cause the read call to fail
with an EINTER error number (errno)

in this case, the application program can restart the slow
system call

= Subtle differences like these complicate the writing
of portable code that uses signals
< Consult your textbook for details

29

Denison University

A Program That Reacts to
Externally Generated Events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {
safe printf ("You think hitting ctrl-c will stop the bomb?\n") ;

sleep(2);

gafe printf("Nell...")s

sleep(1l); 219k> ./external

printf ("OK\n") ; ekrl=e>

exit (0) ; You think hitting ctrl-c will stop
} the bomb?

Well...OK

main () { 219k>

signal (SIGINT, handler); /* installs ctl-c handler */
while (1) {
}

}

30

Denison University

A Program That Reacts to Internally
Generated Events

#include <stdio.h>
#include <signal.h>

main() {
signal (SIGALRM, handler) ;
alarm(l); /* send SIGALRM in
*
int beeps = 0; 1 second */
while (1) {

* SIGALRM handl o
/ andler */ /* handler returns here */

void handler (int sig) {

safe_printf ("BEEP\n") ; } }
if (++beeps < 5)
alarm(1l) ;
else { 219k> ./internal
safe_printf ("BOOM!\n") ; BEEP
exit (0); BEEP
} BEEP
} BEEP
BEEP
. BOOM!
internal.c 21 0k>

31

Async-Signal-Safety

~ Function is async-signal-safe if either reentrant (all
variables stored on stack frame, CS:APP2e 12.7.2) or
non-interruptible by signals.

~ Posix guarantees 117 functions to be async-signal-
safe
_ write is on the list, printf is not

= One solution: async-signal-safe wrapper for printf:

void safe printf (const char *format, ...) {
char buf [MAXS];
va list args;

va_ start (args, format); /* reentrant */
vsnprintf (buf, sizeof (buf), format, args); /* reentrant */
va_end(args) ; /* reentrant */
write(l, buf, strlen (buf)):; /* async-signal-safe */

}

safe_printf.c

32

Nonlocal Jumps: setjmp/longjmp

- Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location
- Controlled to way to break the procedure call / return
discipline
~ Useful for error recovery and signal handling

~ int setjmp (Jmp buf Jj)
- Must be called before longjmp
- ldentifies a return site for a subsequent longjmp
- Called once, returns one or more times

- Implementation:

-~ Remember where you are by storing the current register
context, stack pointer, and PC value in jmp buf

o Return O

33

Ui
setjmp/longjmp (cont)

~ void longjmp (jmp buf j, int 1)
- Meaning:
~return from the setjmp remembered by jump buffer j
again ...
~ ... this time returning i instead of O
~ Called after setjmp
~ Called once, but never returns

~ longjmp Implementation:

~ Restore register context (stack pointer, base pointer, PC
value) from jump buffer j

= Set %eax (the return value) to i
~ Jump to the location indicated by the PC stored in jump buf j

34

Denison University

setimp/longimp Example

#include <setjmp.h>
jmp_buf buf;

main() {
if (setjmp(buf) !'= 0) {
printf ("back in main due to an error\n");
else

printf ("first time through\n");
Pl(); /* pl calls p2, which calls p3 */
}
p3() {
<error checking code>
if (error)
longjmp (buf, 1)

35

Denison University

Limitations of Nonlocal Jumps

- Works within stack discipline

_Can only long jump to environment of function that has

been called but not yet completed
Y P Before longjmpAfter longjmp

jmp_buf env; env

P1()
{

if (setjmp(env)) {

/* Long Jump to here */
} else {

P2();
}

}

P2 ()
{ . . .R0O:; . . . B3(O;)}

P3()
{

longjmp (env, 1) ;
}

36

Limitations of Long Jumps (cont.)

- Works within stack discipline
_ Can only long jump to environment of function that has

been called but not yet completed

jmp_buf env;

P1()

{
P2(); P3();

}

P2()

{
if (setjmp (env)) {

}
}

P3()

{
longjmp (env, 1);

}

/* Long Jump to here */

......... »
env

At setjmp

env
....... »
P2 returns
env
i AP

At longjmp

Denison University

37

Putting It All Together: A Program

That Restarts Itself When ctr1-c’d

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler (int sig) {
siglongjmp (buf, 1);
}

main () {
signal (SIGINT, handler);

if (!sigsetjmp(buf, 1))
printf ("starting\n") ;
else
printf ("restarting\n") ;

while (1) {
sleep (1) ;

}

printf ("processing...\n");

219k> ./restart

starting

processing...

processing. ..

processing...

restarting
processing. .e— Ctrl-c
processing...

restarting

processing...

processing. .«——Ctrl-c
processing...

Denison University

38

Denison University

Summary

< Signals provide process-level exception handling
- Can generate from user programs
- Can define effect by declaring signal handler
- Some caveats
- Very high overhead
~>10,000 clock cycles

~ Only use for exceptional conditions
- Don’t have queues

= Just one bit for each pending signal type
~ Nonlocal jumps provide exceptional control flow
within process
= Within constraints of stack discipline

39

