Denison University

Cache Memories

CS-281: Introduction to Computer Systems

Instructor:
Thomas C. Bressoud

Denison University

Caches

~ Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

~ Fundamental idea of a memory hierarchy:
o For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
~ Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

~ Thus, the storage at level k+1 can be slower, and thus larger and cheaper
per bit.
_ Big Idea: The memory hierarchy creates a large pool of storage
that costs as much as the cheap storage near the bottom, but
that serves data to programs at the rate of the fast storage near

the top.

Denison University

General Cache Concepts

Smaller, faster, more expensive
Cache | 4 " 9 " 10 " 3 | memory caches a subset of
the blocks

Data is copied in block-sized

transfer units

Larger, slower, cheaper memory
Memory | 0 ” 1 “ 2 “ 3 | viewed as partitioned into “blocks”
Lall s eIl 71
L Il o a0 Il 12}
L a2 [a3 [24 J[35 |
0 0000000000000 0 00

Denison University

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache | g || o [2a J[3 | Hit!
Memory 1 o [1 [2 [3 |
La il s 6l 71|
L 8 Il o J[10 I 11 |
L2 |l 13 I 14 [45 |
00000000 00O0COCEOGEOGOOSGOSOO

Denison University

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Block b is not in cache:
Cache 8 12 14 3 Miss!
Block b is fetched from
12 Request: 12 memory
M Block b is stored in cache
emory I 0 “ 1 “ 2 “ 3 | * Placement policy:
| 4 || 5 || 6 || 7 | determines where b goes
* Replacement policy:
I g “ 2 “ 10 “ 11 | determines which block
I 12 " 13 “ 14 “ 15 | gets evicted (victim)
0 00 00000O0COCOCEOGEOGEOGSEOSOO

General Caching Concepts:

Types of Cache Misses

o Cold (compulsory) miss
~ Cold misses occur because the cache is empty.

o Conflict miss

~ Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

~ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

~ Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

~ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
o Capacity miss

~ Occurs when the set of active cache blocks (working set) is larger than the
cache.

Examples of Caching in the Hierarchy

Denison University

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
Registers 4-8 bytes words CPU core 0 Compiler
TLB Address translations On-Chip TLB 0 Hardware
L1 cache 64-bytes block On-Chip L1 1 Hardware
L2 cache 64-bytes block On/Off-Chip L2 10 Hardware
Virtual Memory 4-KB page Main memory 100| Hardware + OS

Buffer cache Parts of files Main memory 100 oS
Disk cache Disk sectors Disk controller 100,000| Disk firmware
Network buffer Parts of files Local disk 10,000,000 AFS/NFS client
cache
Browser cache Web pages Local disk 10,000,000 Web browser
Web cache Web pages Remote server disks 1,000,000,000f Web proxy

server

Cache Memories

B Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
= Hold frequently accessed blocks of main memory

B CPU looks first for data in caches (e.g., L1, L2, and L3), then

Denison University

in main memory.

B Typical system structure:

CPU chip
Register file
Cache <::>
memories au
System bus Memory bus

1L 7T

Bus interface

Main
memory

. |
Dl <—>

Denison University

General Cache Organization (S, E, B)

E = 2¢ lines per set

(] I eese [
| I Joeee 1]
S=Zssets< | ” |..o.|:|
|| | - - I

Cache size:
C =S xE x B data bytes

[] [ee] [ofafo] - Jeu]
__/

valid bit | ~——
B = 2b bytes per cache block (the data)

Denison University

CaChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
P A ~ * Locate data starting
r at offset
| " |. LN J .l |
Address of word:

| I oo | | thits | sbits | b bits |

S = 2¢ sets < | I oo | tag set block
index~ offset
00000 0000OCFOGFEOGNOGEONONONOOOONONONONONOO /‘)/
| " |. LN J .l |

\

data begins at this offset

=
[ag] [ofafaf"-Jo1]
— 7

valid bit! —
B = 2° bytes per cache block (the data)

Denison University

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
[tag] [ofsl2]3]la](s]s]fz7] |

thits | 0..01 | 100 |

[tag | |0|1|2|3|EI find set
L tag |0|1|2|3|E|

S=128 sets<

\ [toe] [o]2l2]3][a]s][6][7]

Denison University

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

. . Address of int:
valid? + match: assume yes = hit [
| {_thits | 0..01 [100]

ag| [ofalz2lzlalls]s]7]

-+

block offset

Denison University

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

. . Address of int:
valid? + match: assume yes = hit [
| {_thits | 0..01 [100]

[oe] [ol2l2I]alls]e]7]

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1@02]’ miss
0 [0000,] miss

Tag Block

Carnegie Mellon

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

x

x
B
extt

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [OlllzL miss
8 [1000,], ”r‘]'_ss
0 [0000,] t
v Tag Block
Set 0
Set 1 M n
L L
15
Denison University
A H |ghe r Leve' Exa m p | e assume: cold (empty) cache,

a[0][0] goes here

int sum array rows (double a[l6][16])
{
int i, Jj;

e s []
for (j = 0; J < 16; j++)

return sum;

int sum array cols(double a[l6][16])

{ L]
dounls]
double sum = 0;

(J = 0; 1 < 16; i++) Y

for (i = 0; J < 16; J++) 32 B=4doubles

sum += ali]l[j];
return sum;

} blackboard

for

Denison University

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

| thits | 0.01 | 100 |

ltae] lolafolzlalslels] tag/l_@lﬂ’z alalslels]
|fag| IOl’l 7|2I4|‘§|6|7l |tag| I0|1 7|3I4|5|6|7l find set

Ltae] lolafolzlalslels] Ltae] lolafolzlals]el7]

Ltae] lolafolzlalslels] Ltae] lolslol3lalsl6l7]

Denison University

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

| tbits | 0.01] 100]

compare both

valid? + match: yes = hit

4
e T LLELERL] minnpannnn

block offset

Denison University

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

| tbits | 0.01] 100]

compare both

valid? + match: yes = hit

d
el ol 2 lel7] (o] [LLElels]elz]

block offset

short int (2 Bytes) is here

No match:
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Denison University

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], mi_ss
0 [0000,] hit

v Tag Block

Set 0

Set1H I

20

Denison University

H Ignore the variables sum, i, j
A Higher Level Example ’ !
assume: cold (empty) cache,

int sum array rows (double a[l6][16]) a[OHO]goeshere

{

int i, 3

|
M I

double sum = 0; | |
for (i = 0; 1 < 16; i++) | || |
for (j = 0; J < 16; j++)
sum += ali]l[J]; | ” |
return sum;
) I | |
___‘Y’__-J

32 B =4 doubles

int sum array rows (double a[l6][16])

int i, Jj;
double sum = 0;

for (j = 0; 1 < 16; i++)
for (i = 0; 3 < 16; j++)
sum += afli]l[j];
return sum;

} blackboard

2

What about writes?

B Multiple copies of data exist:
= L1, L2, Main Memory, Disk
® What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
* Need a dirty bit (line different from memory or not)
® What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
* Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)
® Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

22

Denison University

Intel Core i7 Cache Hierarchy

Access: 30-40 cycles

L3 unified cache Block size: 64 bytes for all

__ caches.

Processor package
i— Core 0 Core 3 : L1 i-cache and d-cache:
i . 32 KB, 8-way,
Regs Access: 4 cycles
: ' i
i L1 L1 L1 . L1 i L2 unified cache:
: d-cache | | i-cache d-cache | |i-cache| | | 256 KB, 8-way,
i | | o | | Access: 11 cycles
L2 unified cache L2 unified cache L3 unified cache:
E 8 MB, 16-way,

Main memory

23

Cache Performance Metrics

B Miss Rate
= Fraction of memory references not found in cache (misses / accesses)
=1-hit rate
= Typical numbers (in percentages):
* 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
B Hit Time
® Time to deliver a line in the cache to the processor
* includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2
B Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

24

Denison University

Lets think about those numbers

B Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

® Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

B This is why “miss rate” is used instead of “hit rate”

25

Denison University

Writing Cache Friendly Code

B Make the common case go fast
= Focus on the inner loops of the core functions

B Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

26

The Memory Mountain

B Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

B Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

27

Denison University

Memory Mountain Test Function

/* The test function */

void test (int elems, int stride) {
int i, result = 0;
volatile int sink;

for (1 = 0; 1 < elems; 1 += stride)
result += datali];
sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test (elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)

{

double cycles;

int elems = size / sizeof (int);
test (elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */

return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

28

Intel Core i7
The Memory Mountain 2HELL (i
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

29

Intel Core i7
The Memory Mountain 2K (i
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Slopes of
spatial
locality

30

oo
Intel Core i7
The Memory Mountain 2HELL (i
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

L Ridges of
N Temporal
locality
Slopes of
spatial
locality

Denison University

Today

= Rearranging loops to improve spatial locality

Miss Rate Analysis for Matrix Multiply

B Assume:
= Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

® Analysis Method:
= Look at access pattern of inner loop

33

Matrix Multiplication Example

Variable sum
held in register

B Description:
= Multiply N x N matrices
= O(N3) total operations

= N reads per source
element

= N values summed per
destination

= but may be able to
hold in register

34

Denison University

Layout of C Arrays in Memory (review)

B Carrays allocated in row-major order
= each row in contiguous memory locations
B Stepping through columns in one row:
= for (i = 0; 1 < N; i++)
sum += al[0][1];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
* compulsory miss rate = 4 bytes / B
B Stepping through rows in one column:
= for (1 = 0; 1 < n; i++)
sum += al[i][0];
= accesses distant elements
= no spatial locality!
= compulsory miss rate = 1 (i.e. 100%)

35

Denison University

Matrix Multiplication (ijk)

Inner loop:
(*,j) _
(i) (i)
sum += a[i][k] * b[k][j]; A B C
T
Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

36

Denison University

Matrix Multiplication (jik)

Inner loop:
(*,)
(i,j)
(i) d
sum += af[i] [k] * b[k][]]; A] BI Ci
Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

37

Denison University

Matrix Multiplication (kij)

Inner loop:

i,k) (k,*)

L (i,*)

A B C
c[i][J] +#= r * b[k][]]

Fixed Row-wise Row-wise

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

38

Matrix Multiplication (ikj)

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

Denison University

Inner loop:
i,k) (k,*)
- (i,*)
A B C
e[il [§] #= & * BLRI[I12 I I I
Fixed Row-wise Row-wise

39

Matrix Multiplication (jki)

Inner loop:
(*/k)
k.j)
|
A B
cli][j] += alil[k] * r [I
Column- Fixed
wise

Misses per inner loop iteration:
A B (
1.0 0.0 1.0

Denison University

(*.J)

Column-
wise

40

Denison University

Matrix Multiplication (kji)

Inner loop:
(*,k *i)
k,j)
]
e[il[j§] += alil [kl ¥ g; A] BI CI
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

4

Summary of Matrix Multiplication

ijk (& jik):
e 2 |oads, O stores
* misses/iter = 1.25

kij (& ikj):
e 2 |oads, 1 store
* misses/iter = 0.5

jki (& kji):
e 2 |oads, 1 store
* misses/iter = 2.0

42

Denison University

Core i7 Matrix Multiply Performance

jki / ki

iik / jik

kij / ikj

43

Denison University

= Using blocking to improve temporal locality

Example: Matrix Multiplication

/* Multiply n x n matrices a and b */

—

Denison University

45

Cache Miss Analysis

B Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

B First iteration:

= n/8+n=9n/8 misses

= Afterwards in cache:
(schematic) -

Denison University

8 wide
46

Cache Miss Analysis

® Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

® Second iteration:
= Again:
n/8 + n = 9n/8 misses

B Total misses:
= 9n/8 * n2=(9/8) * n3

Denison University

8 wide

47

Blocked Matrix Multiplication

Denison University

/* Multiply n x n matrices a and b */

/* B x B mini matrix multiplications */

il

Block size Bx B

48

Cache Miss Analysis

B Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks Mfit into cache: 3B>< C

B First (block) iteration:
= B2/8 misses for each block M
= 2n/B * B2/8 = nB/4
(omitting matrix c)

= Afterwards in cache [}

Denison University

n/B blocks

Block size Bx B

49

Cache Miss Analysis

B Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks Mfit into cache: 3B2< C

B Second (block) iteration:
= Same as first iteration [|
= 2n/B * B2/8 =nB/4

B Total misses:
= nB/4 * (n/B)? =n3/(4B)

Denison University

n/B blocks
K_H
L[]

Block size Bx B

50

Denison University

Summary

® No blocking: (9/8) * n3
® Blocking: 1/(4B) * n3

B Suggest largest possible block size B, but limit 3B2 < C!

B Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
* Input data: 3n%, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

51

Denison University

Concluding Observations

B Programmer can optimize for cache performance
= How data structures are organized
= How data are accessed
* Nested loop structure
* Blocking is a general technique
® All systems favor “cache friendly code”
= Getting absolute optimum performance is very platform specific
= Cache sizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code

= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

52

