Denison University

Machine-Level Programming |: Basics

CS-281: Introduction to Computer Systems

Instructor:
Thomas C. Bressoud

Denison University

Intel x86 Processors

_ Totally dominate laptop/desktop/server market

~ Evolutionary design
~ Backwards compatible up until 8086, introduced in 1978
~ Added more features as time goes on

~ Complex instruction set computer (CISC)
~ Many different instructions with many different formats
< But, only small subset encountered with Linux programs

< Hard to match performance of Reduced Instruction Set Computers
(RISC)

o But, Intel has done just that!
< In terms of speed. Less so for low power.

Denison University

Intel x86 Evolution: Milestones

Name Date Transistors MHz

- 8086 1978 29K 5-10
_ First 16-bit processor. Basis for IBM PC & DOS
~ 1MB address space

- 386 1985 275K 16-33
~ First 32 bit processor, referred to as IA32
~ Added “flat addressing”
~ Capable of running Unix

= 32-bit Linux/gcc uses no instructions introduced in later models

~Pentium 4F 2004 125M 2800-3800
~ First 64-bit processor, referred to as x86-64
~Corei7 2008 731M 2667-3333

Denison University

Intel x86 Processors: Overview

X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium Il
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Corei7

IA: often redefined as latest Intel architecture

Denison University

Intel x86 Processors, contd.

~Machine Evolution P
Integrated:Memory Controller:-:3:Ch DDR3:

386 1985 0.3M

< Pentium 1993 3.1M

© Pentium/MMX 1997 4.5M Core 0. Core 1 Core2 - Core3
<~ PentiumPro 1995 6.5M

<~ Pentium IlI 1999 8.2M %

~ Pentium 4 2001 42M s}

_ Core 2 Duo 2006 291M g Shared L3 Cache

< Corei7 2008 731M

~Added Features
< Instructions to support multimedia operations
<~ Parallel operations on 1, 2, and 4-byte data, both integer & FP
< Instructions to enable more efficient conditional operations

Denison University

More Information

< Intel processors (Wikipedia)
~ Intel microarchitectures

Denison University

New Species: iab4, then IPF, then ltanium,...

Name Date Transistors

~ltanium 2001 10M
~ First shot at 64-bit architecture: first called I1A64
~ Radically new instruction set designed for high performance
< Can run existing IA32 programs
~0n-board “x86 engine”
~ Joint project with Hewlett-Packard

~ltanium 2 2002 221M
~ Big performance boost
~Itanium 2 Dual-Core 2006 1.7B

~Itanium has not taken off in marketplace

= Lack of backward compatibility, no good compiler support, Pentium 4
got too good

Denison University

x86 Clones: Advanced Micro Devices (AMD)

_Historically
~AMD has followed just behind Intel
A little bit slower, a lot cheaper

_Then

~Recruited top circuit designers from Digital Equipment Corp. and other
downward trending companies

~Built Opteron: tough competitor to Pentium 4
~Developed x86-64, their own extension to 64 bits

Intel’s 64-Bit
~ Intel Attempted Radical Shift from I1A32 to 1A64

_ Totally different architecture (Itanium)
- Executes IA32 code only as legacy
~ Performance disappointing
~ AMD Stepped in with Evolutionary Solution
o x86-64 (now called “AMD64")
~ Intel Felt Obligated to Focus on IA64
~ Hard to admit mistake or that AMD is better
~ 2004: Intel Announces EM64T extension to IA32
_ Extended Memory 64-bit Technology
~ Almost identical to x86-64!
~ All but low-end x86 processors support x86-64
~ But, lots of code still runs in 32-bit mode

Denison University

Our Coverage

- 1A32
_ The traditional x86

~ x86-64/EM64AT
- The emerging standard

~ Presentation
~ Book presents IA32 in Sections 3.1—3.12
~ Covers x86-64 in 3.13
~ We will cover both simultaneously

Denison University

Definitions

~ Architecture: (also instruction set architecture: ISA) The
parts of a processor design that one needs to understand to
write assembly code.

- Examples: instruction set specification, registers.

~ Microarchitecture: Implementation of the architecture.
o Examples: cache sizes and core frequency.

~ Example ISAs (Intel): x86, IA, IPF

Assembly Programmer’s View

CPU _ nddresses | V1EMOTY
Registers Object Code
PC . Data Program Data
Condiﬁon OS Data
Codes _ Instructions
_ Programmer-Visible State Stack
< PC: Program counter
~ Address of next instruction
_ Called “EIP” (IA32) or “RIP” (x86-64)
© Register file
= Memory

~ Heavily used program data
= Byte addressable array

= Code, user data, (some) OS data

~ Condition codes

_ Store status information about most
recent arithmetic operation = Includes stack used to support

rocedures
~ Used for conditional branching P

Denison University

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gcc -0O1 pl.c p2.c -o p
* Use basic optimizations (-01)
= Put resulting binary in file p

text C program (pl.c p2.c)
Compiler (gcc -S9)
text Asm program (pl.s p2.s)
Assembler (gcc or as)
binary Object program (pl.o0 p2.0) Static libraries
' (.a)
Linker (gcc or 1d)
binary Executable program (p)

Denison University

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int vy) sum:
{ pushl S%ebp
int €& = =+yp movl %esp, %ebp
return t; movl 12 (%ebp), %eax
} addl 8 (%ebp), $eax
popl %ebp
/ﬁret

Some compilers use instruction
“leave”

Obtain with command
/usr/local/bin/gcc -0O1 -S code.c

Produces file code. s

Denison University

Assembly Characteristics: Data Types

B “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

B Floating point data of 4, 8, or 10 bytes

® No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

Denison University

Assembly Characteristics: Operations

® Perform arithmetic function on register or memory data

® Transfer data between memory and register
= Load data from memory into register
= Store register data into memory

® Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

Denison University

Object Code

Code for sum

B Assembler
0x401040 <sum>:

0x55 = Translates .sinto .o
0x89 = Binary encoding of each instruction
Oxeb .
oizb = Nearly-complete image of executable code
0x45 = Missing linkages between code in different
0x0c files
0x03 _
0x45 ® Linker
8Xgi = Resolves references between files
X Total of 11 byt
0xc3 * fotalo ytes = Combines with static run-time libraries

e Each instruction .
1,2, or 3 bytes E.g., code formalloc, printf

« Starts at address = Some libraries are dynamically linked

0x401040 * Linking occurs when program begins
execution

Denison University

Machine Instruction Example
® C Code

= Add two signed integers

lint t = x+y; |

B Assembly
| = Add 2 4-byte integers
= “Long” words in GCC parlance

|addl 8 (%ebp), seax

Similar to expression: = Same instruction whether signed
X 4=y or unsigned

More precisely: = Operands:

int eax; x: Register %eax

int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] t: Register Seax

—Return function value in $eax

0x80483ca: 03 45 08 | ® Object Code
= 3-byte instruction
= Stored at address 0x80483ca

Denison University

Disassembling Object Code

Disassembled

080483c4 <sum>:
80483c4: 55 push sebp
80483c5: 89 eb mov %esp, $ebp
80483c7: 8b 45 0Oc mov Oxc (%ebp) , $eax
80483ca: 03 45 08 add 0x8 (%ebp) , $eax
80483cd: 5d pop %ebp
80483ce: c3 ret

® Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
= Produces approximate rendition of assembly code
= Can be run on either a. out (complete executable) or . o file

Denison University

Alternate Disassembly
Disassembled

Object
0x401040:
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push %ebp
Oxes 0x080483c5 <sum+l>: mov %esp, $ebp
0x8b 0x080483c7 <sum+3>: mov Oxc (%ebp) , seax
0x45 0x080483ca <sum+6>: add 0x8 (%ebp) , seax
0x0c 0x080483cd <sum+9>: pop sebp
0x03 0x080483ce <sumt+1l0>: ret
0x45
0x08
0x5d
Oxed ® Within gdb Debugger

gdb p

disassemble sum

= Disassemble procedure
x/11lxb sum

= Examine the 11 bytes starting at sum

20

Denison University

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE : file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, $ebp
30001003: o6a ff push SOXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9l

® Anything that can be interpreted as executable code
B Disassembler examines bytes and reconstructs assembly source

2

Denison University

Integer Registers (1A32) Origin
(mostly obsolete)
(Seax Sax %ah %al
. Secx Scx $ch scl
(%]
% Sedx %dx | %dh | %dl |
2 <
E“j Seabx sbx[%oh | %bl |
g . : —
$esi Boi | |
L |$3edi B | |
2 S stack
i~ SD °SP | | pointer
o base
%%EEk)ID 6bp| | pointer
\)
16-bit virtuYaI registers
(backwards compatibility) »

Moving Data: IA32 Seax

® Moving Data secx
movl Source, Dest: Sedx
® QOperand Types sebx
= Jmmediate: Constant integer data sesi
= Example: $0x400, $-533 sedi
» Like C constant, but prefixed with *$’ =
sesp
* Encoded with 1, 2, or 4 bytes -
= Register: One of 8 integer registers sebp

* Example: $eax, %edx
* But $esp and $ebp reserved for special use
= Others have special uses for particular instructions
= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%eax)
* Various other “address modes”

Denison University

23

mov1 Operand Combinations

Source Dest Src,Dest C Analog
e Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147, (%eax) *p = -147;
novl < Reg Reg movl %eax, $edx temp2 = templ;
Mem movl %eax, (%edx) *p = temp;
KMem Reg mov]l (%eax), %edx temp = *p;

Cannot do memory-memory transfer with a single instruction

Denison University

24

Denison University

Simple Memory Addressing Modes

® Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx), %$eax

® Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movl 8 (%ebp) , %edx

25

Denison University

Using Simple Addressing Modes

swap:
. _ . pushl %ebp
void swap (int *xp, int *yp) movl Sesp, Sebp }Eet
{ iat 80 © Sume pushl %ebx P
int tl = *yp; N
*xp = tl; movl 8 (%ebp), %edx
*yp = t0; movl 12 (%ebp), %ecx
} movl (%edx), %ebx
movl (%ecx), %eax > Body
movl %eax, (%edx)
movl %ebx, (%ecx)

popl Sebx
popl Sebp Finish

ret

26

Denison University

swap:

void swap (int *xp,
{
t0
el

int =
imit
*Xp
*yp

*Xp;
= *ypj

€ls
0

int *yp)

pushl
mov 1l
pushl

movl
movl
mov1l
mov1l
mov1l
mov1l

popl
popl
ret

Using Simple Addressing Modes

sebp
o o Set
sesp, sebp U
%ebx P

\
8 (%ebp), %edx
12 (%ebp), S%ecx
(%edx), %ebx

Bod

(%ecx), %eax > oay
%eax, (%edx)
%ebx, (%ecx))
%ebx
sebp Finish

27

Understanding Swap

void swap(int *xp, int *yp)
{
int t0 = *xp;
int tl = *yp;
*xp = tl;
*yp = t0;
}
Register Value
Fedx Xp
pecx YP movl 8
sebx t0 movl 1
Seax tl movl (
movl (
movl %
movl %

[)
. Stack
. in memor
Offset (V)
12 yp
8 Xp
4 Rtn adr
0 |old %ebp [#=—— %ebp
-4 |0ld %ebx [=—— %esp
, %edx # edx = xp
), %ecx # ecx = yp
%ebx # ebx = *xp (t0)
Seax # eax = *yp (tl)
Sedx) # *xp = tl
%ecx) # *vyp = t0

28

Seax

$edx

$ecx

$ebx

$esi

$edi

%esp

%ebp

0x104

movl
movl
movl
movl
movl
movl

H = H S

Understanding Swap

Address
123 0x124
456 0x120
Ox1llc
0x118
0x114
0x120 0x110
OX124 OXlOC
Rtnadr | 9x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

29

Denison University

Address
Understanding Swap 123 | o0x124
456 0x120
Ox1llc
Seax 0x118
sedx| 0x124 Ox114
0x120 0x110
$ecx
0x124 0x10c
$ebx

Rtn adr 0x108
%esi %ebp —0 0x104
sedi 4 0x100

sesp movl 8 (%ebp), %edx # edx = xp

= movl 12 (%ebp), %ecx # ecx = yp
tebp 0x104 movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)

movl %eax, (%edx) # *xp = tl

movl %ebx, (%ecx) # *yp = t0

30

Denison University

. Address
Understanding Swap 123 | o0x124
456 0x120
Ox1llc
Seax 0x118
sedx| O0x124 Ox114
0x120
$ecx 0x120 0x110
Xp 8 | 0x124 |ox10c
Sabx 4 Rtn adr 0x108
%esi %ebp —>0 0x104
sedi 4 0x100
sesp movl 8 (%ebp), %edx # edx = xp
N movl 12 (%ebp), %ecx # ecx = yp
$eb 0x104
4 " movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0
3

Denison University

. Address
Understanding Swap 123 | o0x124
456 0x120
Ox1llc
Seax 0x118
Offset
sedx| 0x124 Ox114
0x120
secx| 0x120 0x110
0x124 0x10c
$ebx 123
Rtn adr 0x108
%esi %ebp —0 0x104
sedi 4 0x100
sesp movl 8 (%ebp), %edx # edx = xp
N movl 12 (%ebp), %ecx # ecx = yp
$eb 0x104
4 . movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0
32

Seax

456

$edx

0x124

$ecx

0x120

$ebx

123

$esi

$edi

%esp

Q

sebp

0x104

movl
movl
movl
movl
movl
movl

H = H

123

456

0x120

0x124

Rtn adr

Understanding Swap

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104

edx = xp
ecx = yp

ebx
eax

*Xp

Il
*

b

e}

Il
o+ %
=

O

0x100

33

Denison University

Address
Understanding Swap 456 | ox124
456 0x120
Ox1llc
Seax 456 0x118
sedx| O0x124 Ox114
0x120 0x110
$ecx 0x120
0x124 0x10c
$ebx 123

Rtn adr 0x108
sesi %ebp —0 0x104
sedi 4 0x100

sesp movl 8 (%ebp), %edx # edx = xp

= movl 12 (%ebp), %ecx # ecx = yp
tebp 0x104 movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)

movl %eax, (%edx) # *xp = tl

movl %ebx, (%ecx) # *yp = t0

34

Denison University

Address
Understanding Swap 456 | ox124
123 0x120
Ox1llc
Seax 456 0x118
Offset
sedx| O0x124 Ox114
yp 12 0120 | ox110
$ecx 0x120
Xp 8 | 0x124 |ox10c
$ebx 123 4 Rtn adr OX]_O8
%esi %ebp —>0 0x104
sedi 4 0x100
sesp movl 8 (%ebp), %edx # edx = xp
= movl 12 (%ebp), %ecx # ecx = yp
tebp 0x104 movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %$ebx, (%ecx) # *yp = t0
35

Complete Memory Addressing Modes

® Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

= D: Constant “displacement” 1, 2, or 4 bytes

Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except for $esp
= Unlikely you’d use %$ebp, either

S: Scale: 1, 2, 4, or 8 (why these numbers?)

® Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg|Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg[Ri]]

36

Data Representations: IA32 + x86-64

® Sizes of C Objects (in Bytes)

. C Data Type Generic 32-bit Intel IA32 x86-64
= unsigned 4 4 4
" int 4 4 4
* longint 4 4 8
* char 1 1 1
= short 2 2 2
= float 4 4 4
* double 8 8 8
* long double 8 10/12 16
= char * 4 4 8

37

Denison University

x86-64 Integer Registers
$rax %eax %$r8 $r8d
$rbx %ebx %r9 $r9d
Frcx %ecx $rl0 $r10d
$rdx $edx $rll $rlld
%rsi gesi %rl2 $rl2d
$rdi $edi %rl3 $r13d
%rsp $esp %rl4 $rldd
$rbp %ebp %rl5 $rl5d
= Extend existing registers. Add 8 new ones.
= Make $ebp/%rbp general purpose .

Denison University

Instructions

® Long word 1 (4 Bytes) <> Quad word gq (8 Bytes)

® New instructions:
" movl = movqg
= addl = addg
= sall = salq
= etc.

B 32-bit instructions that generate 32-bit results
= Set higher order bits of destination register to @
= Example: addl

39

32-bit code for swap

swap:
pushl %ebp
void swap (int *xp, int *yp) movl %esp, Sebp fft
{ iat 80 © Sume pushl %ebx P
int tl = *yp;
*xp = tl; movl 8 (%ebp), %edx
*yp = t0; movl 12 (%ebp), %ecx
} movl (%edx), %ebx
o o > Body
movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx))
popl Sebx
popl %Sebp Finish

ret

40

Denison University

64-bit code for swap

swap:

Set
void swap (int *xp, int *yp) } Up
{ o °

ink &0 = “mme movl (%rdi), %edx
int tl = *yp; movl (%rsi), %eax
*xp = tl; movl %eax, (%rdi) Body
*yp = t0; movl %edx, (%rsi)
}

ret } Finish

B QOperands passed in registers (why useful?)
= First (xp) in $rdi, second (yp) in $rsi
= 64-bit pointers

® No stack operations required

® 32-bit data

= Data held in registers $eax and $edx

= movl operation #

Denison University

64-bit code for long int swap

swap_ 1:

Set
void swap (long *xp, long *yp) } Up
{ (o) o)

long t0 = *xp; movqg ($rdi), S%Srdx
long tl = *yp; movq ($rsi), Srax
*xp = tl; movq $rax, (%rdi) Body
*yp = t0; movqg $rdx, (%rsi)
}

ret } Finish
B 64-bit data

= Data held in registers $rax and $rdx

= movgoperation

o _n

= “q” stands for quad-word

42

Machine Programming |: Summary

® History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
® C, assembly, machine code

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

B Assembly Basics: Registers, operands, move

= The x86 move instructions cover wide range of data movement
forms

B |ntro to x86-64

= A major departure from the style of code seen in I1A32

43

