Denison		

Floating Point

CS-281: Introduction to Computer Systems

Instructor:

Thomas C. Bressoud

Denison University

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
 - lacksquare Represents rational number: $\sum_{k=-j}^i b_k imes 2^k$

Denison University

Fractional Binary Numbers: Examples

- Value Representation
- 2 7/810.111₂
- 63/64 0.111111₂
- Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...₂ are just below 1.0

$$01/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■Use notation 1.0 – ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value Representation

- 0.0101010101[01]...2
- 0.001100110011[0011]...2
- 0.0001100110011[0011]...2

Denison University

IEEE Floating Point

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

 $(-1)^{s} M 2^{E}$

- Sign bit s determines whether number is negative or positive
- **Significand M** normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	exp	frac

Denison University

Precisions

Single precision: 32 bits

Double precision: 64 bits

s exp frac

1 11-bits 52-bits

Extended precision: 80 bits (Intel only)

s exp frac

1 15-bits 63 or 64-bits

Normalized Values

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- **Exponent coded as biased value:** E = Exp Bias

 - \bigcirc Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $M = 1.XXX...X_2$
 - xxx...x: bits of frac
 - \bigcirc Minimum when 000...0 (M = 1.0)
 - \bigcirc Maximum when 111...1 ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Denison University

Normalized Encoding Example

Significand

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

```
0 10001100 11011011011010000000000
```

s exp frac

Denormalized Values

- **Condition:** exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- **Significand coded with implied leading 0:** *M* = 0.xxx...x₂
 - » xxx...x: bits of frac
- Cases
 - \odot exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - \odot exp = 000...0, frac \neq 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

1

Denison University

Special Values

- \bigcirc Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - © E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - \odot E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

13

Denison University

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

				Denison Universit			
_		1-					
Dyna	Dynamic Range (Positive Only)						
	s exp frac	E	Value				
	0 0000 000	-6	0				
	0 0000 001	-6	1/8*1/64 = 1/512	closest to zero			
- " '	0 0000 010	-6	2/8*1/64 = 2/512				
Denormalized numbers							
numbers	0 0000 110	-6	6/8*1/64 = 6/512				
	0 0000 111	-6	7/8*1/64 = 7/512	largest denorm			
	0 0001 000	-6	8/8*1/64 = 8/512	smallest norm			
	0 0001 001	-6	9/8*1/64 = 9/512	Smallest norm			
	0 0110 110	-1	14/8*1/2 = 14/16				
Namediand	0 0110 111	-1	15/8*1/2 = 15/16	closest to 1 below			
Normalized numbers	0 0111 000	0	8/8*1 = 1				
numbers	0 0111 001	0	9/8*1 = 9/8	closest to 1 above			
	0 0111 010	0	10/8*1 = 10/8				
	0 1110 110	7	14/8*128 = 224				
	0 1110 111	7	15/8*128 = 240	largest norm			
	0 1111 000	n/a	inf				

Distribution of Values

6-bit IEEE-like format

e = 3 exponent bits
f = 2 fraction bits
Bias is 23-1-1 = 3

Notice how the distribution gets denser toward zero.

8 values

-15.000911.2500-7.5000-3.7500

Denormalized
Normalized

16

Denison University

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

S	exp	frac
1	3-hits	2-hits

47

Denison University

Interesting Numbers

{single,double}

Description exp frac Numeric Value

- Zero 00...00 00...00 0.0
- Smallest Pos. Denorm.
 00...00 00...01 2^{-{23,52}} x 2^{-{126,1022}}
 - Single \approx 1.4 x 10⁻⁴⁵
 - Double $\approx 4.9 \times 10^{-324}$
- **Largest Denormalized** 00...00 11...11 $(1.0 ε) x 2^{-{126,1022}}$
 - **Single** ≈ 1.18 x 10^{-38}
 - **■** Double $\approx 2.2 \times 10^{-308}$
- Smallest Pos. Normalized 00...01 00...00 1.0 x 2^{-{126,1022}}
 - Just larger than largest denormalized
- One
 01...11 00...00 1.0
- Largest Normalized
 11...10
 11...11
 (2.0 ε) x 2^{127,1023}
 - **Single** ≈ 3.4×10^{38}
 - **■** Double $\approx 1.8 \times 10^{308}$

Special Properties of Encoding

- FP Zero Same as Integer Zero
 - \bigcirc All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - \bigcirc Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - •What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

19

Denison University

Floating Point Operations: Basic Idea

- $0x +_f y = Round(x + y)$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

• What are the advantages of the modes?

21

Denison University

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half wav—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00110_2	10.012	(>1/2—up)	2 1/4
2 7/8	$10.11\frac{100}{2}$	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

23

Denison University

FP Multiplication

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: $s1 ^ s2$ Significand M: $M1 \times M2$
 - \bigcirc Exponent E: E1 + E2

Fixing

- \bigcirc If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Denison University

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume *E1* > *E2*
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- \bigcirc If $M \ge 2$, shift M right, increment E
- \odot if M < 1, shift M left k positions, decrement E by k
- Overflow if *E* out of range
- Round M to fit frac precision

- 2

Denison University

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - **float** single precision
 - **double** double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - \bigcirc int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - \bigcirc int \rightarrow float
 - Will round according to rounding mode

27

Denison University

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

Assume neither **d** nor **f** is NaN

 $\cdot x == (int)(float) x$

Floating Point

- Background: Fractional binary numbers
- **IEEE** floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

29

Denison University

Summary

- **IEEE Floating Point has clear mathematical properties**
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Creating Floating Point Number

- Steps
- frac exp Normalize to have leading 1 1 4-bits 3-bits
 - Round to fit within fraction
 - Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format **Example Numbers**

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Denison University

Normalize

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result >

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

- \bigcirc Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.000 <mark>1000</mark>	010	N	1.000
19	1.001 <mark>1000</mark>	110	Υ	1.010
138	1.0001010	011	Υ	1.001
63	1.111 <mark>1100</mark>	111	Υ	10.000

33

Denison University

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64