Denison University

Bits, Bytes, and Integers

CS-281: Introduction to Computer Systems
2nd Lecture

Professor:
Thomas C. Bressoud

Today: Bits, Bytes, and Integers

B Representing information as bits
|




Encoding Byte Values
B Byte = 8 bits

= Binary 00000000, to 11111111,
= Decimal: 010 to 25519

® Hexadecimal 0016 to FFig

* Base 16 number representation
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

= Write FA1D37B1sin C as %éé
— OxFA1D37B 1001
_ Oxfald37b 1011

= H|O| QW[ |©|o| S| oy u|s|w|N ko

HR|R| Rk =
b b e e P T B T N G EA TSI IS
=
o
[y
o

Denison University

Byte-Oriented Memory Organization

O S

S &

LI T T g I T 1T 1 1]

B Programs Refer to Virtual Addresses
= Conceptually very large array of bytes
= Actually implemented with hierarchy of different memory types
= System provides address space private to particular “process”
= Program being executed
= Program can clobber its own data, but not that of others

B Compiler + Run-Time System Control Allocation

= Where different program objects should be stored
= All allocation within single virtual address space




Machine Words

® Machine Has “Word Size”
= Nominal size of integer-valued data
* Including addresses
= Most current machines use 32 bits (4 bytes) words
* Limits addresses to 4GB
* Becoming too small for memory-intensive applications
= High-end systems use 64 bits (8 bytes) words
* Potential address space = 1.8 X 10%° bytes
* x86-64 machines support 48-bit addresses: 256 Terabytes
= Machines support multiple data formats
* Fractions or multiples of word size
= Always integral number of bytes

Denison University

Word-Oriented Memory Organization
32-bit  64-bit
= Addresses Specify Byte Locations ~ Words Words ~ CY'eS  Add"
= Address of first byte in word 0000
= Addresses of successive words differ Aidr 0001
by 4 (32-bit) or 8 (64-bit) 0000 0002
Addr 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 0010
Addr
= 0011
0008 0012
Addr 0013
0012 0014
0015
6




Denison University

Data Representations

C Data Type Typical 32-bit Intel 1A32 x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16
pointer 4 4 8

Byte Ordering

® How should bytes within a multi-byte word be ordered in
memory?
® Conventions
= Big Endian: Sun, PPC Mac, Internet
* Least significant byte has highest address
= Little Endian: x86
= Least significant byte has lowest address




Byte Ordering Example

B Big Endian

= Least significant byte has highest address
® little Endian

= Least significant byte has lowest address
B Example

= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
| [ Joi]23fasfer | | |

Little Endian 0x100 0x101 0x102 0x103
| | | 67 [ 45 [ 23 | o1 | | |

Reading Byte-Reversed Listings

B Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

B Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pPop %ebx

8048366 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢c: 83 bb 28 007300 00 00 cmpl $50x0,0x28 (%ebx)

® Deciphering Numbers

= Value: Ox12ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

® Reverse: ab 12 00 00




Examining Data Representations

B Code to Print Byte Representation of Data
= Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes (pointer start, int len){
int i;
for (i = 0; i < len; i++)
printf (”%p\t0x%.2x\n" ,start+i, start[i]);
printf ("\n") ;
}

Printf directives:
%p: Print pointer
%x: Print Hexadecima

Denison University

show bytes Execution Example

int a = 15213;
printf("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux):

int a = 15213;

Ox11ffffcb8 Ox6d
Ox11ffffcb9 0x3b
Ox11ffffcba 0x00
Ox11ffffcbb 0x00




Denison University

Decimal: 15213
Representmg |nteger5 Binary: 0011 1011 0110 1101
Hex: 3 B 6 D
int A = 15213; long int C = 15213;
IA32, x86-64 Sun
1A32 x86-64 Sun
6D 00
3B 00 6D » 6D 00
00 3B 3B 3B 00
00 6D 00 » 00 3B
00 » 00 6D
00
int B = -15213; 00
00
I1A32, x86-64 Sun 50
93 FF
c4 FF |
FF c4 \
FF 93 Two’s complement representation
(Covered later)
13

Denison University

Representing Pointers

int B = -15213;
int *P = &B;
Sun IA32 x86-64
EF D4 oC
FF F8 89
FB FF EC
2C BF FF
FF
7F
00
00

Different compilers & machines assign different locations to objects




Denison University

Representing Strings
eghaer S[6] = Vilg243%g
B StringsinC
= Represented by array of characters
= Each character encoded in ASCII format Linux/Alpha Sun
* Standard 7-bit encoding of character set 31 |« > 31
* Character “0” has code 0x30 38 | o[ 38
— Digit i has code 0x30+i 32 |+ IEY.
= String should be null-terminated 34 |+ SIET
* Final character =0 33 |+ | 33
B Compatibility 00 |+ - 00
= Byte ordering not an issue
15

Denison University

Today: Bits, Bytes, and Integers

® Bit-level manipulations




Denison University

Boolean Algebra

B Developed by George Boole in 19th Century
= Algebraic representation of logic
* Encode “True” as 1 and “False” as 0

And Or
= A&B =1 when both A=1 and B=1 = A|B=1when either A=1 or B=1

&[0 1 10 1
0(0 O 0|0 1
1(0 1 1(1 1
Not Exclusive-Or (Xor)
= ~“A =1 when A=0 = AAB =1 when either A=1 or B=1, but not both
~ A0 1
0|1 0|0 1
1]0 1(1 0

Denison University

General Boolean Algebras

B QOperate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

® All of the Properties of Boolean Algebra Apply




Bit-Level Operationsin C

B QOperations &, |, ~, A Available in C
= Apply to any “integral” data type
* long, int, short, char, unsigned
= View arguments as bit vectors
= Arguments applied bit-wise

B Examples (char data type)
= ~@x41 - OxBE
= ~01000001, - 10111110:
" ~Qx00 - OxFF
= ~00000000,; — 11111111,
= Ox69 & Ox55 = 0x41
* 01101001, & 01010101, — 01000001;
= 0x69 | 0x55 = 0x7D
" 01101001, | 01010101, = 01111101;

Contrast: Logic Operations in C

B Contrast to Logical Operators
= &&, I, !
* View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1
= Early termination

B Examples (char data type)
= 10x41 - 0x00

10x00 - 0x01

110x41 - 0x01

0x69 && Ox55 = 0x01
0x69 || Ox55 = 0x01
p & *p (avoids null pointer access)

20




Denison University

Shift Operations
B Left Shift: X <<y Argument x | 01100010
= Shift bit-vector X left y positions << 3 00010000
— Throw away extra bits on left Log. >> 2 | 00011000

= Fill with @’s on right
B Right Shift: X >> vy
= Shift bit-vector X right y positions

Arith. >> 2| 00011000

Argument x| 10100010

* Throw away extra bits on right
<< 3 00010000

= Logical shift
* Fill with @’s on left Log. >> 2 | 00101000
= Arithmetic shift Arith. >> 2| 11101000

= Replicate most significant bit on right
® Undefined Behavior

= Shift amount < 0 or > word size

2

Denison University

Today: Bits, Bytes, and Integers

B |ntegers

= Representation: unsigned and signed
[ ]
n

22




Denison University

Encoding Integers

Unsigned Two’s Complement
w—1 X w=2 .
B2U(X) = x; 2 B2T(X) = -x,,2""+ Y x2'
i=0 i=0
short int x = 15213; \
short int y = -15213;

Sign

B Cshort 2 bytes long

Decimal Hex Binary B It
X 15213| 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

® Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

23

Carnegie Mellon

Encoding Example (Cont.)
X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768
Sum 15213 -15213 n




Denison University

Numeric Ranges

B Unsigned Values

B Two’s Complement Values

= UMin =0 - TMin = 2wl
000..0 100...0
= w_
" UMax 2"-1 - TMax = 2%1-1
111..1 0111
® Other Values
= Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00| 10000000 0000OOOO
-1 -1 FF FF| 11111111 11111111
0 0 00 00| 00000000 0000OOOOO

25

Denison University

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

B QObservations

= |TMin| = TMax+1
* Asymmetric range
= UMax = 2*TMax+1

® C Programming

* #Hinclude <limits.h>

= Declares constants, e.g.,
= ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform
specific

26




Denison University

Unsigned & Signed Numeric Values
| x| lB2up)|  [B2T(X) | ® Equivalence
0000 0] 0] = Same encodings for nonnegative
0001 11 1] values
0010 2 < ® Uniqueness
0011 3 3] _
0100 4 4 = Every bit pattern represents
0101 ? ? unique integer value
0110 E E = Each representable integer has
0111 7 7 unigue bit encoding
1000 8 8| ® = Can Invert Mappings
1001 o = = U2B(x) = B2U(x)
1010 110 6| , _ _
1011 11 5 = Bit pattern for unsigned integer
1100 112 | -4 = T2B(x) = B2T(x)
1101 113 | =1 = Bit pattern for two’s comp
1110 114 | |2 integer
1111 15 =1
27

Denison University

Today: Bits, Bytes, and Integers

B |ntegers

n
= Conversion, casting
n

28




Denison University

Mapping Between Signed & Unsigned

’ Unsigned
Two’s Complement T20 g

X e

Maintain Same Bit Pattern

Unsigned u2T Two’s Complement
LL)C 'EJEEE;)(I'EQEE] ;K

Maintain Same Bit Pattern

B Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret

29

Carnegie Mellon

Mapping Signed <= Unsigned
Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 - - 5
0110 6 6
0111 7 — ) 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15
30




Carnegie Mellon

Mapping Signed <= Unsigned
Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15
31

Denison University

Relation between Signed & Unsigned

’ Unsigned
Two’s Complement 120 g

X

A4

X > |28 B2U > UX

Maintain Same Bit Pattern

w—1 0
ux -]
S 8 1 S  IEER i A B

T X x=0
s {x+2w

Large negative weight
becomes
Large positive weight

32




Conversion Visualized

B 2’s Comp. — Unsigned _
UMax
UMax -1

= Ordering Inversion
= Negative — Big Positive

/'j: TMax +1

TMax

[ TMax @

2’s Complement

® @
Range _g .J/ 0 -
2

Denison University

Unsigned
Range

33

Denison University

Signed vs. Unsigned in C

B Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 4294967259U

B Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

= |mplicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

34




Casting Surprises

B Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

= Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation  Evaluation

0 ou == unsigned

-1 0 < signed

-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned

-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

35

Denison University

Summary
Casting Signed < Unsigned: Basic Rules
B Bit pattern is maintained

B But reinterpreted
B Can have unexpected effects: adding or subtracting 2%

B Expression containing signed and unsigned int
= intiscasttounsigned!!

36




Denison University

Today: Bits, Bytes, and Integers

[

[

B |ntegers
|
= Expanding, truncating
|

[

37

Denison University

Sign Extension
® Task:

= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

® Rule:
= Make k copies of sign bit:
8 X = Xy g e Xyyoq s Xy s Xz 100 X
_
-l ~
k copies of MSB ~ [

38




Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) vy;

Decimal Hex Binary
X 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
% -15213 Cc4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

® Converting from smaller to larger integer data type
B C automatically performs sign extension

39

Denison University

Summary:
Expanding, Truncating: Basic Rules

B Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

B Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod
= For small numbers yields expected behaviour

40




Denison University

Today: Bits, Bytes, and Integers

]
]
B |ntegers
[ |
[ ]
= Addition, negation, multiplication, shifting
]

4

Negation: Complement & Increment

® Claim: Following Holds for 2’s Complement
~x + 1 = -x
® Complement
= QObservation: ~x + x == 1111..111 == -1

x |1lo]ol1]1]1]o]1]

+ ~x |ol1]l1lololo]1]o]

-1 [aafa[afa]a[a]4]

® Complete Proof?

42




Denison University

Complement & Increment Examples

x=15213

Decimal| Hex Binary
x 15213| 3B 6D| 00111011 01101101
~xX -15214| C4 92( 11000100 10010010
~x+1 -15213| C4 93( 11000100 10010011
y -15213| C4 93( 11000100 10010011
x=0
Decimal Hex Binary
0 0 00 00| 00000000 00000000
~0 -1| FF FF| 11111111 11111111
~0+1 0| 00 00| 00000000 00000000

43

Denison University

Unsigned Addition

Operands: w bits w (111 L.l

+v 1] [..]
u+v ][] L.l
Discard Carry: wbits ~ UAdd, (v ,v) [1T17 [

True Sum: w+1 bits

HHHE

B Standard Addition Function
= |gnores carry output

® |mplements Modular Arithmetic

s = UAdd,(u,v) = u+v mod2v¥

2W
UAdd, (1) = { u+v U+v<

u+v=-2" u+v=2"




Denison University

Mathematical Properties

B Modular Addition Forms an Abelian Group
= Closed under addition
0 =UAdd,(u,v) =2%-1
= Commutative
UAdd (u,v) = UAdd (v, u)
Associative
UAdd (t, UAdd (u, v)) = UAdd, (UAdd (t, u), v)
0 is additive identity
UAdd,(u,0) = u
Every element has additive inverse
» Let UComp,, (u) =2%—-u
UAdd (u, UComp,(u)) = 0

45

Denison University

Two’s Complement Addition

Operands: w bits 7 I I I
+ v LIIT L.

u+v [ITTT1] [L]

Discard Carry: w bits  TAdd, (u ,v) L1 | | [l

True Sum: w+1 bits

HHEE

® TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v

= Willgive s ==

46




Denison University

TAdd Overflow

/ <'9>O

Negative Overflow

u+v+ 2%  u+v<TMin,, (NegOver)
TAdd,,(u,v) = Ju+v

[u+v— 2¥  TMax,, <u+v (PosOver)

TMin,, su+v=TMax,,

® Functionality True Sum
= True sum requires w+1 0111.1 2v-1 1
bits PosO¥’  TAdd Result
= Drop off MSB 0100..0 2w-l 4 011..1
= Treat remaining bits as
2’s comp. integer 0000..0 0+ 000...0
1011...1 _2W—1_1 -~ 100...0
1000..0 —pw 1 NegOver
47
Denison University
Characterizing TAdd
Positive Overflow
® Functionality TAdd(u , v) |
= True sum requires w+1 bits 50 v
= Drop off MSB
= Treat remaining bits as 2’s V< 0
comp. integer 1

48




Mathematical Properties of TAdd

® |[somorphic Group to unsigneds with UAdd
= TAdd,(u,v)= U2T(UAdd,(T2U(u ), T2U(v)))

= Since both have identical bit patterns

® Two’s Complement Under TAdd Forms a Group
= Closed, Commutative, Associative, O is additive identity
= Every element has additive inverse

-u u=TMin,,
TComp,,(u) {

TMin,, u=TMin,

49

Denison University

Multiplication

® Computing Exact Product of w-bit numbers x, y
= Either signed or unsigned
B Ranges
= Unsigned:0<x*y<(2w—-1)2 = 22w—-2w+l + 1
= Up to 2w bits
= Two’s complement min: x * y > (-2w-1)*(2w-1-1) = —22w-24 w1
= Up to 2w-1 bits
= Two’s complement max: x * y < (-2w1) 2 = 22w=2
= Up to 2w bits, but only for (TMin,)?
® Maintaining Exact Results

= Would need to keep expanding word size with each product computed
= Done in software by “arbitrary precision” arithmetic packages

50




Denison University

Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bits - V| | | L. LL1LI1T1T11]
UMult, (v ,v) [T11

alafals
HHIEE

Discard w bits: w bits

® Standard Multiplication Function
= |gnores high order w bits

® |mplements Modular Arithmetic
UMult,(u,v)= u -v mod 2%

Denison University

Code Security Example #2

® SUN XDR library

= Widely used library for transferring data between machines

|void* copy_elements(void *ele src[], int ele_cnt, size t ele_size);

eIe_SV
o—

.\

o—
malloc(ele_cnt * ele_size)




Carnegie Mellon

XDR Code

void* copy elements(void *ele_src[], int ele_cnt, size t ele size) ({
/*
* Allocate buffer for ele cnt objects, each of ele_size bytes
* and copy from locations designated by ele_src
*/
void *result = malloc(ele_cnt * ele size);
if (result == NULL)
/* malloc failed */
return NULL;
void *next = result;
int i;
for (i = 0; i < ele_cnt; i++) {
/* Copy object i to destination */
memcpy (next, ele_src[i], ele_size);
/* Move pointer to next memory region */
next += ele_size;
}

return result;

53

Denison University

XDR Vulnerability

malloc(ele_cnt * ele_size)

® \What if:
= ele cnt =22041
" ele size = 4096 =212

= Allocation =7??

® How can | make this function secure?

54




Denison University

Signed Multiplication in C

. w LI L. L1

Operands: w bits
oy L1 L. LI
True Product: 2*w bits - V[T 1] [J [CITITTI1 [LJ L[]
LI

TMult (v ,v) (T1T1 [

Discard w bits: w bits

® Standard Multiplication Function
= |gnores high order w bits

= Some of which are different for signed vs.
unsigned multiplication

= Lower bits are the same

55

Denison University

Power-of-2 Multiply with Shift

B QOperation
" u << kgivesu * 2k

= Both signed and unsigned k
. w OO [ [OId
Operands: w bits
* 2k [o [ [olfdlo] [ [Loflo
True Product: w+k bits u- 2171 [..] LT To] Lo [ollo]
Discard k bits: w bits UMult, (v, 29 Q] 11 [ [
TMult, (u , 2¢)
B Examples
= u << 3 == u * 8
B u<<5-u<<3 == u * 24

= Most machines shift and add faster than multiply
= Compiler generates this code automatically

56




Compiled Multiplication Code

C Function

int mull2 (int x)
{

return x*12;

}

Compiled Arithmetic Operations Explanation
leal (%eax,%eax,2), %eax t <- x+x*2
sall $2, %eax return t << 2;

B C compiler automatically generates shift/add code when
multiplying by constant

57

Unsigned Power-of-2 Divide with Shift

® Quotient of Unsigned by Power of 2
= u > kgives |u / 2¢]
= Uses logical shift

k
u [ [ 1O LI IO Binary Point
Operands:  / » O E bW E 0 /
w2 @ E IO E OO0 B

Division: =T =
. u/ 2k ol T1
Result:  L#/Z]
Division Computed Hex Binary
X 15213 15213 3B 6D| 00111011 01101101
x> 1 7606.5 7606 1D B6| 00011101 10110110
x >> 4 950.8125 950 03 B6| 00000011 10110110
x >> 8 | 59.4257813 59 00 3B| 00000000 00111011

58




Denison University

Compiled Unsigned Division Code

C Function

unsigned udiv8 (unsigned x)

{

return x/8;

}

Compiled Arithmetic Operations Explanation

| shrl $3, %eax | # Logical shift
return x >> 3;

B Uses logical shift for unsigned

B For Java Users
= Logical shift written as >>>

59

Denison University

Signed Power-of-2 Divide with Shift

B Quotient of Signed by Power of 2
= x >> kgives | x / 2]
= Uses arithmetic shift
= Rounds wrong direction whenu < 0

X HENIEE RN Binary Point
Operands:
[ 2k |$||_|_Un4n|$||_unn/
Division: /2« O OO0 L 08 L M
Result: RoundDown(x / 25) [ ] CL 111 .1
Division Computed Hex Binary

y -15213 -15213 C4 93| 11000100 10010011

y > 1 -7606.5 -7607 E2 49| 11100010 01001001

y >> 4 -950.8125 -951 FC 49| 11111100 01001001

y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

60




Denison University

Correct Power-of-2 Divide

B Quotient of Negative Number by Power of 2
= Want [ x / 2K] (Round Toward 0)
= Compute as | (x+2k-1)/ 2k|
" InC: (x + (1<<k)-1) >> k
* Biases dividend toward 0

Case 1: No rounding k

Dividend: w G L] CTal Ll [alal
+2k 1 [.] [.]

11 L] L] Binary Point
Divisor: [ ook [ [ ol [ G /

[u/2¢] B @ EEED @ 0@ @ B

Biasing has no effect

61

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: y Mmoo,
2 @ ol G o G

LI L O L 11
H_J

Incremented by 1 Binary Point

Divisor: | 2k [al [ [oladn] L] [olol /

[x/2¢] O EHEEED @ 00 = M
H_J

Incremented by 1

Biasing adds 1 to final result

62




Denison University

Compiled Signed Division Code

C Function

int idiv8 (int x)
{

return x/8;

}

Compiled Arithmetic Operations Explanation
testl %eax, %eax if x <0
js L4 x += 7;
38 # Arithmetic shift
sarl $3, %eax return x >> 3;
ret
L4:
addl $7, %eax B Uses arithmetic shift for int
Jp L B ForJava Users

= Arith. shift written as >>

63

Arithmetic: Basic Rules

® Addition:
= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level
= Unsigned: addition mod 2%
* Mathematical addition + possible subtraction of 2w
= Signed: modified addition mod 2" (result in proper range)
= Mathematical addition + possible addition or subtraction of 2w

® Multiplication:
= Unsigned/signed: Normal multiplication followed by truncate, same
operation on bit level
= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2" (result in proper range)

64




Arithmetic: Basic Rules

B Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m |eft shift
= Unsigned/signed: multiplication by 2k
= Always logical shift

B Right shift
= Unsigned: logical shift, div (division + round to zero) by 2
= Signed: arithmetic shift
* Positive numbers: div (division + round to zero) by 2k

* Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

65

Denison University

Today: Integers

Summary

66




Denison University

Properties of Unsigned Arithmetic

B Unsigned Multiplication with Addition Forms Commutative
Ring

= Addition is commutative group

Closed under multiplication
0 =UMult (u,v) = 2¥-1

Multiplication Commutative
UMult (u,v) = UMult (v, u)

Multiplication is Associative

UMult, (t, UMult (u, v)) = UMult, (UMult(t, u), v)
1 is multiplicative identity

UMult,(u,1) = u

Multiplication distributes over addtion
UMult (t, UAdd (u, v)) = UAdd, (UMult (t, u), UMult (t, v))

67

Properties of Two’s Comp. Arithmetic

® |somorphic Algebras
= Unsigned multiplication and addition
* Truncating to w bits
= Two’s complement multiplication and addition
* Truncating to w bits

® Both Form Rings
= |somorphic to ring of integers mod 2%

B Comparison to (Mathematical) Integer Arithmetic

= Both are rings

= |ntegers obey ordering properties, e.g.,
u>0 = u+v>v
u>0,v>0 = u-v>0

= These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)

68




Denison University

Why Should | Use Unsigned?

® Don’t Use Just Because Number Nonnegative

= Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += al[i+l];
= (Can be very subtle
#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

® Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

B Do Use When Using Bits to Represent Sets
= Logical right shift, no sign extension

69




