Bits, Bytes, and Integers

CS-281: Introduction to Computer Systems 2nd Lecture

Professor:

Thomas C. Bressoud

Denison University

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

mal w

Encoding Byte Values

- Byte = 8 bits
 - Binary 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

4e	t De	Cill Binal
0	0	0000
1	1	0001
2	2	0010
3	3	0011
1 2 3 4 5 6 7	1 2 3 4 5 6 7 8	0100
5	5	0101
6	6	0110
7	7	0111
8		1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Denison University

Byte-Oriented Memory Organization

- Programs Refer to Virtual Addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others
- Compiler + Run-Time System Control Allocation
 - Where different program objects should be stored
 - All allocation within single virtual address space

Machine Words

- Machine Has "Word Size"
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹⁹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

5

Denison University

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

7

Denison University

Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

- Big Endian
 - Least significant byte has highest address
- Little Endian
 - Least significant byte has lowest address
- Example
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

Big Endi	an	0x100	0x101	0x102	0x103	
		01	23	45	67	
Little End	lian	0x100	0x101	0x102	0x103	
		67	45	23	01	

Denison University

Reading Byte-Reversed Listings

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code
- Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl $\$0x0,0x28(\$ebx)$

- Deciphering Numbers
 - Value:
 - Pad to 32 bits:
 - Split into bytes:
 - Reverse:

0x12ab

0x000012ab

00 00 12 ab

ab 12 00 00

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives: %p: Print pointer %x: Print Hexadecimal

11

Denison University

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00
```


Representing Strings

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0
- Compatibility
 - Byte ordering not an issue

char S[6] = "18243";

1

Denison University

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

- A&B = 1 when both A=1 and B=1
- A | B = 1 when either A=1 or B=1

&	0	1
0	0	0
1	0	1

0 0 1 1 1 1

Not

Exclusive-Or (Xor) A^B = 1 when either A=1 or B=1, but not both

- ~A = 1 when A=0
 - ~ 0 1 1 0

٨	0	1
0	0	1
1	1	0

Denison University

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

All of the Properties of Boolean Algebra Apply

Denison University

Bit-Level Operations in C

- Operations &, I, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (char data type)
 - ~0x41 → 0xBE
 - $\sim 01000001_2 \rightarrow 10111110_2$
 - $\sim 0 \times 000 \rightarrow 0 \times FF$
 - $\sim 0000000002 \rightarrow 1111111112$
 - $0x69 \& 0x55 \rightarrow 0x41$
 - 01101001_2 & 01010101_2 → 01000001_2
 - $0x69 \mid 0x55 \rightarrow 0x7D$
 - 01101001_2 | 01010101_2 → 01111101_2

19

Denison University

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&**&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Examples (char data type)
 - $!0x41 \rightarrow 0x00$
 - $!0x00 \rightarrow 0x01$
 - $!!0x41 \rightarrow 0x01$
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - $0x69 | 10x55 \rightarrow 0x01$
 - p && *p (avoids null pointer access)

Shift Operations

- Left Shift: X << y</p>
 - Shift bit-vector X left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: X >> Y
 - Shift bit-vector X right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on right
- Undefined Behavior
 - Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Denison University

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Sign

Bit

Encoding Integers

$$B2U(X) = \sum_{i=0}^{w-1} x_i \, \mathcal{Z}^i$$

Two's Complement

$$B2T(X) = -x_{w-1} ^{w-1} + \sum_{i=0}^{w-2} x_i ^{w} ^{i}$$

short int x = 15213; short int y = -15213;

■ C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

23

Carnegie Mellon

Encoding Example (Cont.)

$$x = 15213$$
: 00111011 01101101
 $y = -15213$: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

Numeric Ranges

- Unsigned Values
 - *UMin* = 0 000...0
 - $UMax = 2^w 1$ 111...1
- Two's Complement Values
 - $TMin = -2^{w-1}$ 100...0
 - $TMax = 2^{w-1} 1$ 011...1
- Other Values
 - Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

25

Denison University

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

- Observations
 - \blacksquare | TMin | = TMax + 1
 - Asymmetric range
 - UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

X	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	<u>-8</u>
1001	9	<u>-7</u>
1010	10	<u>–6</u>
1011	11	<u>-5</u>
1100	12	<u>-4</u>
1101	13	<u>-3</u>
1110	14	<u>-2</u>
1111	15	-1

- Equivalence
 - Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
- ⇒ Can Invert Mappings
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

27

Denison University

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers: keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Carnegie Mellon

Carnegie Mellon

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

_ =
■
. / 10
+/- 16

31

Denison University

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Large negative weight becomes

Large positive weight

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Denison University

UMax

Conversion Visualized

- 2's Comp. → Unsigned
 - Ordering Inversion

Denison University

Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix

OU, 4294967259U

- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=
 - **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

35

Denison University

Summary

Casting Signed ← Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

37

Denison University

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:
 - $X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$

Denison University

Sign Extension Example

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Нех	Binary		
X	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011		

- Converting from smaller to larger integer data type
- C automatically performs sign extension

39

Denison University

Summary:

Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

41

Denison University

Negation: Complement & Increment

- Claim: Following Holds for 2's Complement
 - $\sim x + 1 == -x$
- Complement
 - Observation: ~x + x == 1111...111 == -1

- -1 1111111
- Complete Proof?

Complement & Increment Examples

x = 15213

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
~x		C4 92		
~x+1	-15213	C4 93	11000100 10010011	
У	-15213	C4 93	11000100 10010011	

x = 0

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

43

Denison University

Unsigned Addition

Operands: w bits

$$u$$
 \square

True Sum: w+1 bits

$$u + v$$
 ...

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition

$$0 \le \mathsf{UAdd}_w(u, v) \le 2^w - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_w(t, UAdd_w(u, v)) = UAdd_w(UAdd_w(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u,0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

45

Denison University

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits $TAdd_w(u, v)$

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

47

Denison University

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

Positive Overflow

Negative Overflow

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns
- Two's Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

49

Denison University

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned
- Ranges
 - Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
 - Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*−1 bits
 - Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for $(TMin_w)^2$
- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
 - Done in software by "arbitrary precision" arithmetic packages

XDR Code

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /*
        * Allocate buffer for ele_cnt objects, each of ele_size bytes
        * and copy from locations designated by ele_src
        */
        void *result = malloc(ele_cnt * ele_size);
        if (result == NULL)
            /* malloc failed */
            return NULL;
        void *next = result;
        int i;
        for (i = 0; i < ele_cnt; i++) {
                 /* Copy object i to destination */
                  memcpy(next, ele_src[i], ele_size);
            /* Move pointer to next memory region */
            next += ele_size;
        }
        return result;
}</pre>
```

53

Denison University

XDR Vulnerability

malloc(ele_cnt * ele_size)

- What if:
 - ele_cnt = 2²⁰ + 1
 - ele_size = 4096 = 2¹²
 - Allocation = ??
- How can I make this function secure?

Denison University Power-of-2 Multiply with Shift Operation • $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * 2^k$ kBoth signed and unsigned Operands: w bits 0 ... 0 1 0 ••• 0 0 $u \cdot 2^k$ • • • 0 0 True Product: w+k bits $\mathrm{UMult}_{w}(u, 2^{k})$ Discard *k* bits: *w* bits $\mathrm{TMult}_{w}(u, 2^{k})$ Examples ■ u << 3 u << 5 - u << 3</p> Most machines shift and add faster than multiply Compiler generates this code automatically

Compiled Multiplication Code

C Function

Compiled Arithmetic Operations

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

57

Denison University

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $|\mathbf{u} / \mathbf{2}^k|$
 - Uses logical shift

Computed **Binary** Division Hex 00111011 01101101 15213 15213 3B 6D 00011101 10110110 $x \gg 1$ 7606.5 7606 1D B6 x >> 4 950.8125 950 03 B6 00000011 10110110 x >> 8 59.4257813 59 00 3B 00000000 00111011

Compiled Unsigned Division Code

C Function

Compiled Arithmetic Operations

shrl \$3, %eax

Explanation

Logical shift
return x >> 3;

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

59

Denison University

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $|x / 2^k|$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

Result: RoundDown $(x / 2^k)$

	Division	Computed	Hex	Binary	
У	-15213	-15213	C4 93	11000100 10010011	
y >> 1	-7606.5	-7607	E2 49	11100010 01001001	
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001	
y >> 8	-59.4257813	-60	FF C4	1111111 11000100	

Denison University

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $[x / 2^k]$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1<<k)-1) >> k
 - Biases dividend toward 0

Biasing has no effect

61

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Incremented by 1

Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax
js L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

Explanation

```
if x < 0
x += 7;
# Arithmetic shift
return x >> 3;
```

Uses arithmetic shift for int

For Java Users

Arith. shift written as >>

63

Denison University

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

- Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting
- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

65

Denison University

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \leq \text{UMult}_w(u, v) \leq 2^w - 1$$

Multiplication Commutative

$$UMult_w(u, v) = UMult_w(v, u)$$

Multiplication is Associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_{\omega}(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

67

Denison University

Properties of Two's Comp. Arithmetic

- Isomorphic Algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two's complement multiplication and addition
 - Truncating to w bits
- Both Form Rings
 - Isomorphic to ring of integers mod 2^w
- Comparison to (Mathematical) Integer Arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

15213 * 30426 == -10030 (16-bit words)

Why Should I Use Unsigned?

- *Don't* Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- *Do* Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension