Sounds, Sequences, Searching, and Sorting

- Physics of sounds
- Sounds as objects in Python
 - Getting information about sounds (samples, sampling rate, duration, length)
 - Playing and exploring sounds
- Looping over sounds
 - Getting individual samples
 - For a sample, getting value, left and right channel
 - Creating integer list of sample values
 - Creating a sound from a list of integer values
- Manipulations on sounds
 - splicing
 - scaling (frequency and amplitude)
 - merging
 - echo
 - others
- Sequences
 - Operations that work for all sequences
 - for x in <sequence>
 - Ien(<sequence>)
 - <val> in <sequence>
 - seq1> + <seq2>
 - <seq> * n
 - s[i] -- accessing element
 - s[i:j] -- slicing
 - sequence methods: s.index(<val>), s.count(<val>)
 - Operations that work for lists and change them
 - s[i] = <val> -- changing existing elements
 - del s[i] -- deleting an individual element
 - del s[i:j] -- deleting a sublist
 - list methods:
 - s.append(<val>)
 - s.insert(i, <val>)
 - s.pop(i)
 - s.remove(<val>)
 - s.reverse()
 - Operations that are string methods, typically returning new strings
 - str.upper()
 - str.find(<substring>[,start])
 - str.lower()
- Search
 - linear search -- and average case and worst case number of steps to find something
 - binary search
 - conceptual solution
 - given an example problem, performing algorithm "by hand"
 - coding a solution
 - worst case number of steps to find something
- Sorting
 - Insertion Sort

- conceptual solution
- given an example problem, performing algorighm "by hand"
 coding a solution (or at least really understanding the code we developed)