
The Performance Cost of Virtual Machines on Big Data
Problems in Compute Clusters

Neal Barcelo
Denison University
Granville, OH 4023

barcel_n@denison.edu

Nick Legg
Denison University
Granville, OH 4023

legg_n@denison.edu

Advisor: Dr. Thomas
Bressoud

Denison University
Granville, OH 4023

bressoud@denison.edu

ABSTRACT
To facilitate better management of large data-in-
tensive compute clusters, many cluster owners and
providers of cloud computing environments are lo-
oking at virtualization technology as a potential
solution. However, virtual machines exhibit per-
formance degradation when compared with phys-
ical machines since a virtual machine is unable to
execute privileged instructions without first going
through the virtualization software.

The purpose of our research is to construct a cloud
computing environment and assess the perform-
ance cost of large-scale cluster computing on large
data sets using virtual machines as opposed to phys-
ical machines.

We developed and tested three different workloads:
a synthetic disk-dominant application, a CPU-in-
tensive real-world scientific modeling application,
and a real-world ground density modelling appli-
cation that exhibits a hybrid of CPU and disk op-
erations. These workloads were then evaluated
on Denison’s own compute cluster running both
physical and virtual machines to assess the perfor-
mance penalties that may be incurred by using a
cluster of virtual machines.

1. INTRODUCTION
The motivation behind compute clusters is driven
largely by an ever-expanding set of problems which
have two outstanding requirements: these prob-
lems require larger and larger storage capacities as
the amount of data being processed grows. This
massive amount of data must somehow be parti-

Submitted to MCURCSM 2008 Wooster, OH

tioned and delivered to the set of compute nodes in
the cluser. Further, these problems need plenty of
processing power in order to be solved in a reason-
able amount of time. These emerging "Big Data"
computing problems are becoming much more com-
mon in today’s world.

Big Data computing is a recent phenomenon. Some
of the examples of these Big Data sets shown in
Figure 1 include: one day’s worth of Instant Mes-
saging text in 2002 amounts to 750 GB, 200 traf-
fic cameras in London collect 8TB of data daily,
the World Wide Web consists of approximately 1
PB of data, the Human Genomics project has col-
lected about 7000 PB of data, and annual email
traffic is greater than 300 PB not counting spam.
Certainly, a large amount of storage capacity is re-
quired to even save this amount of data - on the or-
der of terabytes and petabytes - but what scientists
and users want to do with the data is even more
important. Storing massive amounts of data can be
solved by large distributed file system servers, but
scientists need that data to be easily and quickly
accessible in order to process it all in some reason-
able time frame. Processing this amount of data
requires new models of data access and program-
ming. Parallel databases and closely synchronized
networks of parallel computers simply cannot scale
to these “Big Data” sizes.

Compute clusters can offer an excellent solution to
Big Data computing problems. A closely linked
cluster of computer systems connected by a very
high speed network can provide cluster owners with
a cost-effective and time-effective Big Data com-
puting machine. A cluster is not a super com-
puter; rather it is a closely networked system of
individual computers similar to the average user’s
desktop machine. As such, the massive amounts
of data involved in Big Data computing must be
partitioned and distributed among all nodes in the
cluster. To solve this issue, cluster owners make
use of a Distributed File System (DFS). A variety
of distributed file systems are available and each



have their own sets of pros and cons. Once data
distribution is adequately resolved, there must also
be some method by which programmers can par-
tition and distribute processing tasks among the
cluster’s nodes.

Figure 1: “Big Data” means very large data sets

However, clusters are not without their share of
problems. Clusters are often partitioned and dis-
tributed to various users as smaller “sub-clusters”.
This paradigm is known as cloud computing; the
cluster as a whole is seen as a “compute cloud”
from which partitions of machines can be pulled
out and distributed to users.

Clusters generally range from a few dozen up to
thousands of networked individual machines with
the number of cores reaching into the tens of thou-
sands, so we need to deal with installing and man-
aging software packages on each of those nodes.
This is very time consuming, particularly since dif-
ferent users of the cluster will have varying soft-
ware requirements: one user may need all of his
nodes to run Ubuntu GNU/Linux with GCC 4.1
while another user may need all of her nodes to run
FreeBSD with GCC 3.5. Unfortunately, since soft-
ware installation is so time-intensive, users who
receive an allocation of machines with their soft-
ware requirements will be more inclined to simply
"keep" these machines to themselves in case they
need them again in the future. This phenomenon
has been called "cluster squatting" and as a result
the compute cloud is often divided into smaller
and smaller pieces while used nodes are never re-
cycled back into the pool of "free" cluster nodes.

Current practice is to prescribe a specific system
for the entire cloud and users must take it or leave
it; the operating system, runtime scheduler, and

software stack are all set in stone.

A possible solution to both the time-consuming
software setups and the cluster squatting issue is
to create a cluster of virtual machines. Using vir-
tual machines, the cluster could be partitioned out
to multiple users much more easily - software in-
stallation setups would be provided by the user, as
users themselves would be able to create their own
virtual machine image containing their desired op-
erating system and software packages. Further-
more, the virtual cluster idea would solve the clus-
ter squatting issue by providing the ability to re-
distribute and repartition load across all existing
physical cluster nodes; virtual machines which are
not actively processing data can be put to sleep or
brought offline until they are needed again and as
such users cannot "hog" physical cluster nodes.

To manage a virtual cluster, special software is
needed. In our research we used an open source
project started by the team at Intel Research Pitts-
burgh. The software project, Tashi, is a cluster
management system based on the very idea of con-
trolling a cluster of virtual machines to define vir-
tual clusters that can be apportioned to individ-
ual users. Tashi is designed to be virtual machine
manager agnostic, that is the system supports the
use of multiple virtual machine managers such as
KVM, Xen, VMware, and so on. Tashi also does
not rely upon any particular distributed file system,
so the cluster is easily customizable.

In the following section, we will discuss in detail
the background information on distributed com-
puting and virtual machines required to complete
our research. In section 3 we discuss our research
methods and describe more thoroughly our three
distinct workloads. In section 4 we discuss the
results garnered from our research. In section 5
we summarize our conclusions and in section 6 we
look to some possible future research directions.

2. BACKGROUND
To get to the point of performance assessment we
needed to first become familiar with the required
underlying technologies. These included the pro-
gramming paradigm of choice for big data (Map-
Reduce by Google) and virtual machine technol-
ogy.

2.1 Hadoop Programming Model
In our research we used an open source implemen-
tation of Google’s Map-Reduce distributed com-
puting paradigm called Hadoop. The Map-Reduce
programming model executes programs in two dis-
tinct phases: map and reduce.



In the map phase of a Map-Reduce application, in-
put is intelligently divided up among the available
compute nodes as a series of input shares consist-
ing of key/value pairs. Each input share is then
assigned to a map task. A map task processes its
share of the input and generates its results in the
form of new key/value pairs.

The reduce phase gathers these output key/value
pairs from multiple map tasks together and merges
where possible to form a single aggregate output.

Figure 2: A simple wordcount example

A simple example of Map-Reduce is a word count
application. Suppose we have twelve books rang-
ing from Darwin’s Origin of the Species to Dickens’
Great Expectations stored as plain text and we want
to create a list of all words appearing in these texts
as well as how frequently they occur. This is quite
a bit of data to handle that clearly doesn’t need to
be done iteratively; this work can be done in par-
allel. A Map-Reduce version of the word count
application would have its two phases: map and
reduce.

The map phase would split the text files up in some
intelligent manner, n lines of text per each map
task. Then we will see m map tasks distributed
across our compute nodes. The map tasks will
then have to do the actual work of stepping through
its input text and creating key/value pairs x/y for
each word it finds. In this case, the key x will be
the actual word and the value will always be y = 1

since a new pair will be created every time a word
is found in the input text (see Figure 2). A pos-

sible optimization here would be to optimize this
step by combining the values of like keys into a
single key/value pair to decrease the work load for
the reduce phase.

As map tasks are completed, the reduce phase can
begin. Some static number of reduce tasks will be
created to handle the m map task outputs which
will need to be reduced. These reduce tasks will
step through their input and merge key/value pairs
with like keys. When all reduce tasks have com-
pleted, the key/value pairs resultant from the map
phase will have been merged together according
to like keys and the reduce phase will output a list
of finalized key/value pairs containing every word
appearing in the original input text along with that
word’s frequency y of occurence within the input
text.

The Map-Reduce model is popular: Google claims
it has implemented hundreds of programs using
this model and that it sees over one thousand Map-
Reduce jobs executed on its clusters daily. Addi-
tionally, Microsoft Research has recently created
a more generalized form of Map-Reduce parallel
computing called Dryad.

Hadoop itself merely provides us with the frame-
work for running Map-Reduce applications; it only
needs to know the network identities of each com-
pute node it may distribute work to and which ap-
plication to run. As such, Hadoop does not inter-
fere with our plans of running our virtual cluster -
it simply will not know the difference between vir-
tual and physical machines. Furthermore, while
Hadoop offers its own distributed file system for
large-scale data storage (HaDoop File System, or
HDFS) it is not necessary to make use of it; we can
run Map-Reduce applications with any distributed
file system we require.

2.2 Virtual Machines
A virtual machine (VM) is a software implemen-
tation of a computer.

There are a variety of Virtual Machine Managers
(VMMs) available; these software packages allow
real, physical computers to launch virtual machines.
Some examples of VMMs include the open source
projects KVM and Xen as well as the proprietary
VMware.

A VMM must be installed on a physical machine’s
host operating system; in order to launch virtual
machines we first need to start with a host oper-
ating system executing the instruction set archi-
tecture appropriate to the host hardware platform.
The VMM installs an extra layer over the host op-



Figure 3: Virtual machine architecture

erating system to allow virtual machines (also cal-
led guest operating systems) to communicate with
the host operating system which can, in turn, com-
municate directly with the hardware (see Figure 3).

Figure 4: Screenshot of host OS Fedora GNU/Linux
running Windows Server 2003 as a KVM guest

A VM is created as a virtual machine image which
can be stored on disk. Once launched, a VM re-
sides primarily in memory; depending on its pa-
rameters it may or may not write back to its im-
age as its permanent "hard drive". Thanks to this,
we can launch any number of VMs from a sin-
gle image and we can also easily "pause" virtual
machines and migrate them to other physical ma-
chines within a cluster to facilitate load balancing.
Furthermore, users can easily create their own im-
ages containing the operating system (GNU/Linux,
Windows, etc) and software packages (GCC, Java,
etc) they require.

Users can run multiple virtual machines per phys-
ical machine. For example, one VM per physical
processor core provides a decent balance. There is
however a clear performance degredation within
virtual machines. Within a VM, non-privileged

instructions are executed directly by the hardware.
For privileged instructions, however, the VM must
go through the VMM which must communicate
with the host operating system which then finally
must communicate with the hardware itself in or-
der to execute these privileged instructions. It is
important to note here the difference between a
virtual machine and an emulator: a virtual ma-
chine can execute non-privileged user mode in-
structions as if it were a physical machine but an
emulator is a pure software layer which must du-
plicate a target machine’s instruction set in order to
“trick” emulated software into thinking it is being
run on real hardware. Because of this, virtual ma-
chines are much faster than emulators especially
when it comes to user mode instructions.

3. METHODS
Virtual machine performance varies greatly depend-
ing on the type of instructions being executed: user
mode instructions are typically close to physical
machine performance while privileged instructions
such as I/O perform more slowly. In order to eval-
uate both instruction types, we used a CPU-inten-
sive as well as a disk-intensive benchmark. Finally
we ran a real-world seismic ground modeling ap-
plication consisting of both CPU and disk oper-
ations. Each test over all three applications was
conducted five times on both physical and virtual
machines at each scaling factor of working cores
using the KVM virtual machine manager; our re-
sults reflect the average timing data over these five
samples.

The amount of execution time required for each of
these three workloads limited us to only five sam-
ples for each experiement set. For example: two of
our disk-dominant experiments required, depend-
ing on the amount of working cores, between 30
minutes to five hours of execution time per sam-
ple; we ran five samples of these two experiments
on a physical cluster which required well over 40
hours for each experiment - then the same exper-
iments had to be re-executed using a virtualized
cluster which takes at least as much time as the
physical cluster. The result is that just these two
of our experiments took over 80 hours of cluster
time each. Because of this, we decided to limit
ourselves to five samples of each experiment to
give a feel for the statistical variation across these
experiments while still allowing this phase of our
research to be feasible during our time allotment.

In our research we set up two separate clusters to
evaluate and distribute the work load. The main
cluster, Denison cluster 1, consists of 12 dual-core
Intel Pentium D processors running at 3.0 GHz
with 1 GB RAM and 80 GB hard drives. These



machines were connected via a 1000 Mbit net-
work. This cluster also contains four quad-core
Intel Core 2 Quad machines with 250 GB hard
drives and 2 GB RAM; these machines served as
our NFS servers for our disk-dominant applica-
tion.

Denison cluster 2 was built using six machines
containing dual-core Intel Core 2 Duo processors
running at 2.13 GHz with 2 GB RAM and 80 GB
hard drives. These machines were connected via a
100 Mbit network.

3.1 CPU-intensive
With 40 lines of text as input parameter sets and
minimal output, a model of extra-galactic jets by
Dr. Homan, Physics, of Denison University pre-
sented itself to us as an excellent CPU-intensive
application. The model is a radiative transfer model
of extra-galactic radio jets. These are jets of plasma,
electrons and protons in a magnetic field, which
flow from the centers of galaxies. In an effort to
understand the properties of the magnetic fields
and particles within the jets, this simulation runs
a variety of models with numerous permutations
of the model variables. The model then compares
the results of each permutation to the actual ra-
dio emission coming from the jets. In the end the
model is looking for a possible range of variables
which explain the properties of these jets.

For our purposes, we used 40 lines of sight, or
permutations of model variables and looked at the
relative compute times when this parallel compu-
tation was executed on both virtual and physical
clusters. The nature of the model is that every
line of sight is independent of every other line of
sight which allowed for the parallel distribution
of the computation across the cluster without los-
ing any precision or requiring communication be-
tween computational pieces. Our cluster performed
the computations independently and wrote the re-
sults of each run to a single text file. The output
required for this application was also minimal and
the majority of the run time lied solely in the com-
putation.

We ran this test on 24, 16, 8, 4, 2, and 1-core clus-
ters using Denison cluster 1.

3.2 Disk-dominant
In an effort to observe the effects of significant in-
put and output with the distributed file system, we
created a synthetic application that would encom-
pass both of these attributes. The high level view
of the application consisted of two phases. The
first phase was to input the data and the second
phase to perform some work over the data. For the

storage input set, two differing sized files of ran-
domly generated binary integers were used. The
sizes were created differently at 10 GB and 100
GB to allow observation of the effect of volume.
We also appropriately sized the data with an effort
to avoid unintended caching effects. As each run
of the simulation was performed, the data was read
in via standard input and a check sum was per-
formed. This application was run with and with-
out moderate user mode processing tasks (check
sums) to examine the impact of an I/O-only job
versus heavy I/O with a relatively small computa-
tion. After this step there was a small output via
standard output. The disk intensive side of the ap-
plication relied primarily upon the large input as
little output was written. The goal of this appli-
cation was to measure the performance of DFS
I/O under virtualization on the running platform.
The two distributed file systems used in this ex-
periment were NFS and HDFS. NFS data was dis-
tributed across four servers while HDFS replicates
data, which is distributed across the cluster.

Map-Reduce applications are characterized by the
set of map tasks receiving an allocation of the in-
put data set (their input split) and performing their
map task on the data; therefore Map-Reduce ap-
plications display a basic cycle of reading from
the DFS followed by computation over the data.
This is exactly the cycle performed by our syn-
thetic disk task, so it represents the structure of
typical Big Data applications implemented within
the Map-Reduce programming paradigm.

We ran this test on 24, 12, 6, and 2-core clusters
using Denison cluster 1.

3.3 Hybrid
This application presented a real world problem
with balanced Input/Output and computation. De-
veloped by the team at Intel Research Pittsburgh,
the application reads a small (< 1MB) input file
and runs a complex, CPU-intensive ground model-
ing algorithm on the input parameters. Its output is
fairly disk-intensive (> 9GB map phase output, >
500MB reduce phase output). This application re-
quires heavy-duty computing power, so we had to
scale it down to run well on our cluster. This was
done by modifying the input parameters in order
to diminish the depth that the application would
model. We ran this test on 12, 6, 3, and 1-core
clusters using Denison cluster 2.

4. RESULTS
In the following section we present elapsed real
time as our fundamental metric for each experi-
mental variable as we scale the number of cores



applied to the parallel program. It is important
to note that when scaling beyond four cores, the
resultant times showed less variability and con-
formed to expected trends. However when using
very few cores, variability increased dramatically
and the observed results were therefore less con-
sistent. Under normal circumstances, the concept
of a cluster with fewer than four cores is trivial and
most likely not be used.

4.1 Plasma Jets
As expected, the KVM virtual machines performed
admirably compared to physical machines in this
test since nearly all of the computation involves
user mode instructions; the virtual machine cluster
was on average 3.03% slower than physical ma-
chines (see Figure 5).

Figure 5: CPU-intensive workload results

The most significant trend observed was that as the
number of cores increased, the overhead dimin-
ished increasingly. It is important to note that there
is no contention on accessing data as the size of
the input is trivial. Therefore, there is no overhead
associated with increasing the number of cores.
This is encouraging as most jobs involving heavy
computational problems will want to use a clus-
ter with excessive cores without the fear of losing
efficiency to overhead.

4.2 Synthetic Disk
The disk-intensive benchmark started to show some
important differences between physical and vir-
tual machines. The primary difference between
this application and the CPU-intensive application
is that the ratio of privileged instructions to user
mode instructions was much greater than that of
the CPU-intensive application. Therefore, there
was significant overhead as each privileged instruc-
tion issued will take longer to execute. The vir-
tual machine cluster was on average 22% slower
than physical machines. Considering the two in-
put sizes and the two Distributed File Systems we

have four variations. These variations are 10 GB
under HDFS, 100 GB under HDFS, 10 GB under
NFS, and 100 GB under NFS.

Figure 6: 10GB HDFS Non-Normalized

Figure 7: 100GB HDFS Non-Normalized

Looking at the results individually by the four sec-
tions we observe some interesting trends. First, we
examine the HDFS implementation using a 10 GB
input set (Figure 6). We see a range of 33% to
38% overhead. The most important trend to note
in this instance is that as the number of cores in-
creases, the overhead also increases. This is the
opposite result as observed in the CPU-intensive
application. Next looking at the same implementa-
tion, however using the 100 GB input set, a range
of 29% to 44% overhead was observed (see Fig-
ure 7). In general, we see the same positive corre-
lation between number of cores and overhead.

Looking now at the implementation using NFS we
observe some similar trends. For the 10 GB in-
put set our range of overhead ranges from 20% to
24%. Comparing this to the HDFS overhead for
10 GB input we see a drastic decrease. Looking
lastly at the 100 GB input, our range of overhead is



Figure 8: 10GB NFS Non-Normalized

Figure 9: 100GB NFS Non-Normalized

from 14% to 25%. This data set also demonstrates
a slight correlation between number of cores and
overhead. Analyzing the four data sets as a whole
the most noteworthy observation is the difference
in overhead between HDFS and NFS. NFS per-
formed significantly greater than HDFS across the
board (Figures 8 and 9). The other observation
of the data as a whole is that most sets demon-
strated a trend of increasing cores implying in-
creasing overhead.

In order to evaluate the data across the different
number of cores used, we normalized the data ac-
cording to the physical performance average on
the respective number of cores. This demonstrated
the average overhead cost due to virtualization with-
out scaling. This was done on all four variations
(see Figures 10 and 11).

Examining the cause of this trend deals with the
fact that as the number of cores increases, there
is an increased contention on the data being ac-
cessed. This was not a problem in the CPU-intensive

Figure 10: 10GB NFS/HDFS Normalized

Figure 11: 100GB NFS/HDFS Normalized

application as there was little input to be read. With
this large input file being served up from a lim-
ited number of sources, we observe potential con-
tention and increased communication.

4.3 Seismic Ground Modeling
With a mix of CPU and disk operations, this test
provides a real-world big data application. Virtual
overhead ranged from 21% for the 12 core test up
to 73% for single core, with large sampling vari-
ance under both physical and virtual implemen-
tation (see Figure 12). Realistic use of this ap-
plication would always involve significant paral-
lelism. There were certain unexpected results ob-
served in this application even when run on physi-
cal machines. As the number of cores increases it
is expected that the overall execution time would
decrease as more cores are working on the same
amount of data. For all applications this was true
with the exception of this one. We observed that
the fastest time was found when using a single
core. The reason for this is still unknown and pos-



sibly lies within the implementation of the appli-
cation on our cluster. Ignoring this outlier, the ap-
plication scaled as expected when increasing the
number of cores.

Figure 12: Seismic ground modelling results

5. CONCLUSIONS
Looking at the results of all three applications as
a whole the following trends and averages were
observed.

For CPU-intensive tasks with little system interac-
tion, virtualization incurred a mere 3% overhead.
For Disk-dominant tasks with heavy system inter-
action, virtualization overhead averaged 22%. For
our real-world big data application, virtualization
overhead for reasonable levels of parallelization
was a very acceptable 21%, but showed the po-
tential dangers of virtualization under low levels
of parallelization. Understanding the range of cost
and overhead that will be associated with applica-
tions run on virtual clusters gives cluster managers
and users the knowledge to make the decision on
whether virtualization is the right choice for their
uses. In general, while virtualization incurs non-
trivial costs, cluster management requires solutions
and the benefits often justify this cost.

6. FUTURE DIRECTIONS
Possible future directions include extending this
research to cover different virtual machine plat-
forms and file systems as well as differing appli-
cation bases. The only virtual machine platform
used in this study was Kernel Virtual Machines,
however others such as Xen or VMware are equally
competitive and the knowledge of the relative draw-
backs compared with KVM would be largely ad-
vantageous when considering a virtual cluster im-
plementation. The two main file systems used in
our study were NFS and HDFS however, this is a
very limited selection. There are many other dis-

tributed file systems that are of interest to the high
performance computing community.

7. ACKNOWLEDGMENTS
This research was supported by funds from the
Anderson Endowment of Denison University and
the Bowen Endowment of Denison University.

Thanks to Dr. Homan of Denison University for
his radiative transfer model of extra-galactic jets.

Thanks to Intel Research Pittsburgh and Dr. Dave
O’Halloran for the seismic ground modeling ap-
plication.

Tashi is developed by Michael Ryan
(michael.p.ryan@intel.com) at Intel Research Pitts-
burgh. Special thanks to Michael Ryan at Intel
Research Pittsburgh for helping us get the seismic
ground modeling application up and running on
our cluster.

8. SOURCES
1. Noll, Michael. "Running Hadoop On Ubuntu
Linux (Single-Node Cluster)." 31 Aug 2008. 12
July 2008 <http://www.michael-noll.com/wiki/
Running_Hadoop_On_Ubuntu_Linux
_(Single-Node_Cluster)>.

2. Noll, Michael. "Running Hadoop On Ubuntu
Linux (Multi-Node Cluster)." 5 Sep 2008. 12 July
2008 <http://www.michael-noll.com/wiki/
Running_Hadoop_On_Ubuntu_Linux
_(Multi-Node_Cluster)>.

3. Noll, Michael. "Writing An Hadoop MapRe-
duce Program In Python." 10 Oct 2008. 12 July
2008 <http://www.michael-noll.com/wiki/
Writing_An_Hadoop_MapReduce_Program_In
_Python>.

4. Oxer, Jonathan, Kyle Rankin, and Bill Childers.
Ubuntu Hacks. O’Reilly Media, 2006.

5. Pfister, Gregory. In Search of Clusters. 2nd Ed.
Prentice Hall PTR, 1997.

6. von Hagen, William.
Professional Xen Virtualization. Indianapolis, IN:
Wrox Press, 2008.


