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ABSTRACT

In 1983 Conway and Gordon and Sachs proved that every embedding of the complete
graph on six vertices, K6, is intrinsically linked. In 2004 it was shown that all straight-
edge embeddings of K6 have either one or three linked triangle pairs. We expand this
work to characterize the straight-edge embeddings of K7 and determine the number and
types of links in every embedding which forms a convex polyhedron of seven vertices.
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1. Introduction

In 1983, Conway and Gordon [3] and Sachs [11] proved that the complete graph
on six vertices, K6 is intrinsically linked. A graph is intrinsically linked if every
embedding of the graph in R

3 contains a homologically non-trivial link of two or
more components. This result has spawned a significant amount of work, including
the complete classification of minor minimal examples for intrinsically linked graphs
by Robertson, Seymour and Thomas [10]. After the completion of this classification,
work has turned to finding graphs in which every embedding has a more complex
structure [2, 4–6].

Continuing this work, we consider straight line embeddings of the complete
graph. Although every embedding of K6 has 10 disjoint triangle pairs that may be
linked, in 2004 Hughes [7] and in 2007 Huh and Jeon [8] proved that every straight-
edge embedding of K6 has only one or three pairs of linked (triangle) components.
There are four such embeddings of K6: one with four external vertices, one with five
external vertices and two with six external vertices. In the above work [7], it was
showed that three of the four graphs are topologically equivalent, so they needed
to only consider two embeddings denoted K1

6 and K2
6 (see Figs. 1 and 2).

1431

http://dx.doi.org/10.1142/S0218216510008467


December 7, 2010 13:14 WSPC/S0218-2165 134-JKTR 00846

1432 L. D. Ludwig & P. Arbisi

5 5

33

44

Fig. 1. K1
6 : one (3–3) link; external degree of each vertex indicated.
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Fig. 2. K2
6 : three (3–3) links link; external degree of each vertex indicated.

We expand this work by classifying and enumerating all 2-component links
contained in straight-edge embeddings of K7 that form convex polyhedra with seven
vertices (it is well known that there are five such graphs up to isomorphism, see, for
example, [12]; see Figs. 4–8.) This work may be of interest to molecular chemists
who are trying to synthesize topologically complex molecules. One could imagine
that the vertices of these graphs represent atoms and the edges are the bonds of a
molecule.

Theorem 1.1. The minimum number of linked components in any straight-edge
embedding of K7 which forms a convex polyhedron of seven vertices is twenty-one,
and the maximum number of linked components in K7 is forty-eight. Specifically,
we have the following:

First, a brief explanation of the table in Fig. 3. Consider the column headed
with K1

7 . According to the table, any straight-edge embedding of K7 which has an
external degree set denoted by K1

7 will always have 7 (3–3) links and 14 (3–4) links.
Now consider the column headed K4

7 . Due to the arrangement of the vertices on the



December 7, 2010 13:14 WSPC/S0218-2165 134-JKTR 00846

Linking in Straight-Edge Embeddings of K7 1433

Fig. 3. Number of (3–3) and (3–4) links in straight line embeddings of K7.

hull, as well as the positioning of the internal edges, this is a much more complicated
case. A straight-edge embedding of K7 which has an external degree set denoted by
K4

7 can have 4 possible amounts of (3–3) links. Moreover, there exists embeddings
of K4

7 with 13 (3–3) links and 23 (3–4) links as well as embeddings with 13 (3–3)
links and 26 (3–4) links.

In order to prove the main result, we systematically consider each of the five
families of straight-edge embeddings of K7 and remove a vertex and its adjoining
edges to obtain either K1

6 or K2
6 . We begin by making some elementary observa-

tions about the hull of convex polyhedra formed by K7 when a vertex is removed.
These results are used to analyze the possible linked pairs in each of the Ki

7

(i = 1, . . . , 5).

2. Necessary Preliminaries

To distinguish the five convex polyhedra, we label each by its external degree set,
[δ1, δ2, δ3, δ4, δ5, δ6, δ7]. Here, the external degree δi of a vertex vi is the number of
edges on the hull of the convex polyhedron incident to that vertex. A variation of
Steinitz’s Theorem [13] guarantees that every 3-connected planar graph has essen-
tially only one planar embedding, see, for example, [14, Exercise 8.2.46]. So the
placement of the vertices on the convex hulls of the embeddings in Figs. 4–8 are
unique up to isomorphism.
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Fig. 4. K1
7 [3, 3, 4, 4, 4, 6, 6].
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Fig. 5. K2
7 [3, 3, 3, 5, 5, 5, 6].
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Fig. 6. K3
7 [3, 3, 4, 4, 5, 5, 6].
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Fig. 7. K4
7 [3, 4, 4, 4, 5, 5, 5].
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Fig. 8. K5
7 [4, 4, 4, 4, 4, 5, 5].

Theorem 2.1 (Steinitz’s Theorem). A graph G is the edge graph of a polyhedron
if and only if G is a simple planar graph which is 3-connected.

If we refer to the degree of a vertex, we actually mean the external degree, unless
otherwise stated. Also, for ease of notation, when we refer to an embedding of K7

we actually mean a straight-edge embedding of K7 that forms a convex polyhedron
with 7 vertices. As K7 has seven vertices, it can have two types of links: a link
composed of two 3-cycles or a link composed of a 3-cycle and a 4-cycle. We refer to
these as (3–3) links or (3–4) links.

The table in Fig. 9 addresses the consequences of removing a vertex of degree
3 to 6 from a straight line embedding of K7. Let v be a vertex on the hull of the
polyhedron formed by K7. This vertex will have i = 3, . . . , 6 neighboring vertices
on the hull that form an i-gon. When v is removed, the resulting polyhedron hull is
formed by K6, so the faces of the polyhedron are triangles. Therefore, the resulting
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Fig. 9. The resulting degree changes when a vertex v of given degree is removed from K7.

i-gon will be triangulated by the new edges exposed after the removal of v and
its adjacent edges, as denoted in the table. Those familiar with graph theory will
recognize Type 6.1–3 as the maximal outerplanar graphs on six vertices. Notice that
Type 6.1 is a special case. A Type 6.1 removal always results in K1

6 , as a degree 3
vertex will increase to a degree 5.

3. Proof of the Main Result: (3–3) Links

We now classify the number of (3–3) links and (3–4) links found in the five families
of convex embeddings of K7 determined by their external degree sets. We will see
that the number of links in four of these five embeddings varies depending on the
conformation considered.

Again, our method is to consider an embedding of K7 with particular degree
set and remove a vertex. We then examine which version(s) of K6 results (result)
and count the number of (3–3) links accordingly.
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Proposition 3.1. Every embedding of K1
7 has 7 (3–3) links. Every embedding of

K2
7 and K3

7 have either 7 or 9 (3–3) links.

Proof. Fix a vertex v in Ki
7 (i = 1, 2, 3). If there exists a different vertex u with

degree 6, then the removal of v will cause the degree of u to decrease by 1, resulting
in K1

6 . As K1
6 only has 1 (3–3) link, K1

7 has 7 (3–3) links, one for each removal of
a given vertex.

This shows that K2
7 and K3

7 will have at least 6 (3–3) links, one for each vertex
removed that is not of degree 6. Now consider the vertex, s, of degree six in K2

7 and
K3

7 . For K2
7 , a straightforward counting argument shows that a Type 6.3 polygon

from the table in Fig. 9 cannot occur. If a Type 6.1 polygon occurs, K1
6 results. If a

Type 6.2 polygon occurs, K2
6 results. Similarly, for K3

7 , a Type 6.2 polygon cannot
occur. If a Type 6.1 polygon occurs, K1

6 results. If a Type 6.3 polygon occurs, either
K1

6 or K2
6 occurs. We conclude that K2

7 and K3
7 have either 7 or 9 (3–3) links.

Now consider the (3–3) links in K4
7 . By Steinitz’s Theorem, Fig. 10 is the only

planar representation of the edge graph of the polyhedron formed in case K4
7 . Notice

that the degree 3 vertex is only incident to the degree 5 vertices. Similarly, Fig. 11
is the only planar representation of the edge graph of the polyhedron formed by
K5

7 . Here it should be noted the degree 5 vertices are not adjacent on the external
hull.

Proposition 3.2. Every straight-edge embedding of K4
7 has either 9, 11, 13, or 15

(3–3) links.

Proof. By Fig. 10 and the table in Fig. 9, if the degree 3 vertex is removed from
K4

7 , K2
6 results producing 3 (3–3) links. Since the degree 3 vertex is not adjacent

to any degree 4 vertex, the removal of a degree 4 vertex results in K1
6 producing 1

(3–3) link each.
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Fig. 10. Planar K4
7 .
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Fig. 11. Planar K5
7 .
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The removal of a degree 5 vertex, v, has two cases. To establish them, consider
the two degree 4 vertices adjacent to v and the degree three vertex. Orient the
polyhedron such that the plane formed by these three vertices lies in the xy-plane
of R

3 and vertex v has a positive z-coordinate. With this orientation, at most two
vertices could have a positive z coordinate:

Case I. v is the only vertex in this orientation with a positive z coordinate, Fig. 12.

Case II. There exists another degree 5 vertex, u, with positive z-coordinate, Fig. 13.
To see why there is only two cases, we consider the possibilities of the other two

vertices, a degree five and a degree four, having a positive z coordinate. If all three
degree 5 vertices had positive z-coordinates, the degree 3 vertex would be adjacent
to two degree four vertices on the polyheral hull, contradicting Fig. 10. On the
other hand, suppose the remaining degree 4 vertex had a positive z coordinate.
This would cause the vertex itself to be internal to the convex hull or cause the
vertex to be externally connected to the degree five vertex v, contradicting the
hypothesis.

In Case I, removal of v will expose the two internal edges connecting the degree 4
vertices and the degree 3 vertex, resulting in a Type 5 removal from the table in
Fig. 9. Hence Case I results in K2

6 .
In Case II, when the edge connecting vertex v and the degree 5 vertex below

the plane is removed, one of the degree 4 vertices will have two internal edges
exposed (the edges adjoining it to u and the degree 3 vertex). Again, a Type 5
removal results, but as the degree 4 vertex increases in degree by one, K1

6 results
in this case.

We now calculate the frequency of the (3–3) links. By the argument above, the
number of (3–3) links in K4

7 is only affected by the positioning of the degree 5
vertices. To see how the removal of a degree five vertex affects the (3–3) links,
consider Figs. 15–18. These perspectives are created by placing the three degree
4 vertices in the xy-plane and giving the degree 3 vertex a positive z coordinate,
then looking down the positive portion of the z-axis. These represent aerial views of
the tetrahedron formed by the degree 3 vertex and the three degree 4 vertices with
the degree 5 vertices, v, u, and x, placed accordingly. Without loss of generality, we

v

u

4

4
3

5

Fig. 12. Case I.

v

u

4

4
3

5

Fig. 13. Case II.
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assume the vertices u, v, and x do not intersect the edges of the tetrahedron. The
argument given earlier in the proof insures there are only four possible arrangements
of the degree 5 vertices up to symmetry. In these four cases, each of the degree
five vertices will either behave like Case I or Case II. This is summarized in the
Fig. 14.

We end this section by discussing the (3–3) links in K5
7 .

Proposition 3.3. Every straight-edge embedding of K5
7 has either 13, 15, or 17

(3–3) links.

Proof. From Fig. 11 and the table in Fig. 9 we see that whenever a degree 5 vertex
is removed, K1

6 is formed. When a degree 4 vertex is removed, a Type 4 removal

Fig. 14. Summary of (3–3) links in K4
7 due to removal of degree 5 vertex.

vx

u

Fig. 15. Case 1.

vx

u

Fig. 16. Case 2.

v

x

u

Fig. 17. Case 3.

v

x u

Fig. 18. Case 4.
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occurs according to the table in Fig. 9. As the degree 5 vertices are not adjacent on
the hull of K5

7 , the diagonal edge exposed with a Type 4 removal will either consist
of two degree 4 vertices or two degree 5 vertices. If the two vertices associated with
the diagonal edge are of degree 4, then K2

6 will result due to this Type 4 removal.
Similarly, if the two vertices are of degree 5, then K1

6 will result.
We next consider the possible internal structure of K5

7 that determines the
number of (3–3) links. Recall the degree 5 vertices are not adjacent on the con-
vex hull. This insures that each degree 5 vertex has an external edge to each
degree 4 vertex. We now focus on the five-cycle (v1, v2, v3, v4, v5) consisting of the
degree 4 vertices. Using the internal edges incident to the vertices in the five-cycle,
we can divide the five-cylce into a number of different triangles, as depicted in
Figs. 19–23.

Consider the three triangles depicted in Fig. 19 (respectively, 20–23). If we
denote the degree 5 vertices as v6 and v7, we claim that the internal edge E

v1

v3

v5

v4

v2c
b

a

Fig. 19. Incident to V1.

v1

v3

v5

v4

v2

d

e

f

Fig. 20. Incident to V2.

v1

v3

v5

v4

v2

g

h
c

Fig. 21. Incident to V3.

v1

v3

v5

v4

v2

f

i

a

Fig. 22. Incident to V4.
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v1

v3

v5

v4

v2

d

j

g

Fig. 23. Incident to V5.

connecting v6 and v7 will pass through only one of the triangles a − j depicted
in each of Fig. 19 (respectively, 20–23). Since v6 (v7) connects to all of the degree 4
vertices by external edges, the 3 triangles from Fig. 19 (respectively, 20–23) and v6

(v7) form three tetrahedra, T1, T2, T3, with Ti and Ti+1 sharing a common face and
T1 and T3 sharing only v6 (v7). Any ray emanating from v6 can thus intersect the
interior of at most one of the Ti. It follows that the edge E must intersect exactly
one of the Ti, else it would not be an interior edge. Since E must puncture the face
of Ti opposite v6 (v7), our claim thus follows.

v1

v3

v5

v4

v2(i)

(ii)
b∩ d∩h∩ i

b∩e∩ i ∩ j

h∩ e∩h∩ j

b∩ e∩g∩ i
b∩ f ∩h∩ j

(iii)
a∩d∩h

(iii)

(iii)
c∩f∩j

(iii)
b∩ f∩g

a∩ e ∩g

(ii)

(ii)
c∩e ∩ i∩ j

(ii)

(ii)

(iii)
c∩d∩ i

Fig. 24. K5 formed by the degree 4 vertices.
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We now consider the K5 subgraph determined by vertices v1 − v5, see Fig. 24.
Using the triangles depicted in Figs. 19–23, we see that the K5 has three types of
triangular regions, labelled (i), (ii), or (iii). Since E is an internal edge, it will have
to pass through one of the three types of regions. If E passes through region (i) in
K5, then a removal of any degree 4 vertex will not expose E and K2

6 will result. If E

passes through region (ii), then the removal of the degree 4 vertex associated with
region (ii) will expose E, resulting in K1

6 . Removal of any other degree 4 vertex
in this situation will not expose E and result in K2

6 . Finally, if E passes through
region (iii), the removal of either degree 4 vertex associated with region (iii) will
expose E. In this situation, removal of each degree 4 vertex will result in two copies
of K1

6 and three copies of K2
6 .

4. Proof of the Main Result: (3–4) Links

We now focus on the (3–4) links formed in straight-edge embeddings of K7. Consider
a triangle of K7 that belongs to a (3–3) link. The four remaining vertices form K4, so
the triangle is actually linked to two or four triangles (see Figs. 25(a) and 25(b), note
that the triangular faces B1 through B4 refer to both figures). This is a consequence
of Lemma 4.2 and the fact that in straight-edge embeddings, the linking number
of two triangles is either −1, +1, or 0. This idea is crucial to the arguments for the
(3–4) links, so we state it as a proposition and will refer to these cases as 2-link
tetrahedron and 4-link tetrahedron.

Proposition 4.1. A triangle in a (3–3) link in K7 is in two or four distinct (3–3)
links.

As the next two propositions show, the number of (3–4) links in an embed-
ding of K7 is determined by the number of 2-link tetrahedrons and 4-link tetrahe-
drons it contains. We will see that 4-link tetrahedrons are less common and a given

v1

v3

v4

v2

A

v1

v2

v3

v4

A

(a) 2-link tetrahedron (b) 4-link tetrahedron

Fig. 25. B1 = {v1, v2, v4}, B2 = {v1, v2, v3}, B3 = {v1, v3, v4}, B4 = {v2, v3, v4}.
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embedding can have at most one. To begin, we need the following lemma which is
a modification of Observations 1 and 2 in Flapan et al. [4].

Lemma 4.2. Let A, B, and C be triangles in a straight-edge embedding of K7

with A disjoint from B and C, and B and C sharing one edge. Define B + C as
[E(B)∪E(C)]− [E(B)∩E(C)]. That is, B + C is the 4-cycle formed by the union
of the edges of B and C with the intersecting edge between B and C removed. If
lk(X, Y ) is the mod 2 linking number of any two cycles X and Y, then lk(A, B) +
lk(A, C) = lk(A, B + C).

Proposition 4.3. Every triangle that is part of a 2-link tetrahedron is linked to
exactly two distinct quadrilaterals.

Proof. Consider an embedding of K7 with a 2-link tetrahedron consisting of a
triangle A and two triangles of the tetrahedron, B1 and B2. Then lk(A, B1) = 1,
lk(A, B2) = 1, lk(A, B3) = 0, and lk(A, B4) = 0. The three distinct quadrilaterals
formed in the tetrahedron are B1 +B2, B1 +B3, and B1 +B4. From Lemma 4.2, we
know lk(A, B1 + B2) = 0, lk(A, B1 + B3) = 1, and lk(A, B1 + B4) = 1. This shows
that A is linked to B1 + B3 and B1 + B4. Clearly if the edge shared between B1

and B2 is removed, the components A and B1 + B2 are splittable.

While a 4-link tetrahedron has more (3–3) links than a 2-link tetrahedron, it
only has 1 (3–4) link.

Proposition 4.4. Every triangle that is part of a 4-link tetrahedron is linked to
exactly one quadrilateral.

Proof. Straightforward calculations of the linking numbers of Fig. 25(b) show
lk(A, B1 + B2) = lk(A, B1 + B4) = 0 and lk(A, B1 + B3) = ±2. As A and B1 + B2

(similarly A and B1 + B4) have a linking number of zero, but only 7 sticks, they
cannot form the Whitehead link which has a stick number of 8 [1], so these links are
splittable. The non-splittable link formed by A and B1+B3 is a stick representation
of what is widely known as King Solomon’s “Knot”.

Now that we know 2-link and 4-link tetrahedrons can occur in straight-edge
embeddings of K7 and how they contribute to the (3–4) linking, the next obvi-
ous question is in what embeddings can they occur? Let us consider the 4-link
tetrahedron case. To have a triangle, T , linked to all four faces of the tetrahedron,
the triangle must have at least two internal edges with respect to the polyhedron
formed by K7. This type of linking causes all the faces of the tetrahedron to be
internal. Since triangle T links all four triangles, T must be punctured by exactly
one edge from each of the triangles. The only way for this to happen is for the
triangle T to be punctured by exactly 2 non-adjacent edges of the tetrahedron.
This cannot occur with K1

7 , K2
7 or K3

7 because given any triangle with at least two
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internal edges, there are not two additional internal edges that are non-adjacent.
To have this number of internal edges would require seven vertices with at least
one internal edge each. But these cases all have at least one degree 6 vertex, which
is not incident to an internal edge. This argument provides our next proposition.

Proposition 4.5. K1
7 , K2

7 , and K3
7 only contain 2-link tetrahedrons.

With Proposition 4.5 in mind, by a simple counting argument, we have the
following.

Proposition 4.6. If a straight-edge embedding of K7 contains n (3–3) links in
which every triangle in a (3–3) link is part of a 2-link tetrahedron, there are n

distinct triangles forming these links.

We are now ready to count the number of (3–4) links in K7, that is, links formed
by a triangle and quadrilateral. Combining Propositions 4.3, 4.5, 4.6, we have the
number of (3–4) links in K1

7 , K2
7 , and K3

7 as stated in Theorem 1.1. The cases K4
7

and K5
7 will take more work.

Proposition 4.7. An embedding of K4
7 with 9 or 11 (3–3) links contains only

2-link tetrahedrons.

Proof. Consider an embedding of K4
7 with 9 or 11 (3–3) links and suppose it

contains a 4-linked tetrahedron. The triangle, T , in this 4-link tetrahedron should
have two internal edges and the face of the triangle should be punctured by two
other internal edges. Therefore, the degree set for this triangle must be [3–5] and
the internal puncturing edges are each incident to a degree 5 vertex. Suppose we
remove one of these degree five vertices incident to a puncturing edge. From the
table in Fig. 9, we have a Type 5 triangulated pentagon.

From Fig. 10, we know the two degree 5 vertices are non-adjacent within the
pentagon and neither of the degree 4 vertices is adjacent to the degree 3 vertex.
Under these conditions, a straightforward placement argument gives two possible
vertex degree arrangements depicted in Fig. 26, denoted Cases 1 and 2.

3

5

4

5

4

3

5

4

5

4

Fig. 26. The two possible triangulated pentagons in K4
7 .
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With the triangulation in Case 1, K2
6 is formed resulting in 3 (3–3) links. Simi-

larly, for the other degree five vertex 3 (3–3) links are formed. The removal of the
degree 3 results in 3 (3–3) links and the removal of the degree 4 vertices each result
in 1 (3–3) link. Considering the removal of the original degree 5 vertex in the linking
triangle, we now have at least 13 (3–3) links, a contradiction.

The triangulation in Case 2 is also not possible. Recall, for a 4-link tetrahedron
to occur, there must be two internal edges each incident to a degree 4 and degree 5
vertex that puncture the triangle T , which itself is comprised of a degree 3, degree 4,
and degree 5 vertex. The arrangement in Case 2 will result in T being punctured
by at most one 4, 5 internal edge.

Given Propositions 4.3, 4.6 and 4.7, we see that an embedding of K4
7 with 9 or

11 (3–3) links will have 18 or 22 (3–4) links respectively.

Proposition 4.8. An embedding of K4
7 with 13 or 15 (3–3) links will have at most

one 4-link tetrahedron.

Proof. In order to have a 4-link tetrahedron, it is necessary to have a triangle
disjoint from the tetrahedron with two internal edges that is punctured by two
disjoint internal edges of the tetrahedron. These can occur in certain embeddings
of K4

7 . Now we show they can only occur at most once.
Suppose an embedding of K4

7 has one 4-link tetrahedron with punctured trian-
gle labeled (3, 4a, 5a) (i.e. it has a 3, 4, and 5 degree vertex). As this triangle is
part of a 4-link tetrahedron, it is punctured by the other degree 4, 5 internal edges,
say edge 4b5b and 4c5c. Now consider one of the other triangles with two internal
edges, say (3, 4b, 5b). In order for (3, 4b, 5b) to belong to a 4-link tetrahedron, it
must be punctured by edge 4a5a and 4c5c. Notice that the planes determined by
the triangles (3, 4a, 5a) and (3, 4b, 5b) intersect in a line, say L. Observe that L
must contain the degree 3 vertex and it must intersect the line segments (4b, 5b)
and (4a, 5a). There is a positive distance from the point where L and 4b5b intersect
and the point where L and 4a5a intersect. Thus, the edge 4a5a cannot puncture
triangle (3, 4b, 5b). Hence, (3, 4b, 5b) cannot be contained in a 4-link tetrahedron.

We see from Propositions 4.3, 4.6–4.8 that the number of (3–4) links in K4
7 is

as stated in Theorem 1.1. Next, we consider the (3–4) links of K5
7 .

Proposition 4.9. An embedding of K5
7 has at most one 4-link tetrahedron.

Moreover, an embedding of K5
7 with 13 or 15 (3–3) links may or may not con-

tain a 4-link tetrahedron, but an embedding with 17 (3–3) links always contains a
4-link tetrahedron.

Proof. Recall, a 4-link tetrahedron requires one triangle with two internal edges
and the face of the triangle must be punctured by two non-adjacent internal edges
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of the tetrahedron. In K5
7 , there are only five triangles with two internal edges and

they are formed by edges incident to the 5 degree 4 vertices. Notice that up to
symmetry, there are only two ways to arrange these edges [9, Theorem 3.1]: the
image depicted in Fig. 24 and its mirror image. Now we consider the two non-
adjacent internal edges of the tetrahedron that puncture the internal triangle(s).
By Fig. 24, we see that there is only one of the internal triangles punctured by an
internal edge formed by the two degree 4 vertices (in our example, triangle v1v3v4

is punctured by edge v2v5). The only other internal edge that can puncture the
triangle is the edge incident to the two degree 5 vertices, denote it e. Therefore, a
4-link tetrahedron occurs in K5

7 if e punctures this internal triangle, otherwise a
2-link tetrahedron occurs.

Next, we summarize the number of (3–4) links that can occur in K5
7 . Considering

Propositions 4.4 and 4.9 and Fig. 24, if the internal edge adjoining the two degree 5
vertices, e, punctures the triangle in

(1) region (i), 17 (3–3) links gives 31 (3–4) links,
(2) region (ii), 15 (3–3) links gives 27 (3–4) links,
(3) region (iii), 13 (3–3) links gives 23 (3–4) links.

However, if e does not puncture the internal triangle, we have a 2-link tetrahedron
instead. So by Proposition 4.3, if e punctures

(1) region (ii), 15 (3–3) links gives 30 (3–4) links,
(2) region (iii), 13 (3–3) links gives 26 (3–4) links.

5. Questions

There are obvious directions in which this work could continue. For this work, each
embedding of K7 formed a convex polyhedron with seven vertices. What about an
embedding of K7 which forms a convex polyhedron with 4 vertices? That is, four
of the vertices form the hull of the polyhedron and the other three vertices are
internal. It seems reasonable that such embeddings are isomorphic to one of the
five cases with seven external vertices, but this is not obvious.

Question 5.1. Given a straight-edge embedding G of Kn, n ≥ 7, with k ≥ 4
external vertices and m = n − k internal vertices, is G always isomorphic to an
embedding of Kn with n external vertices?

Another direction of study is to consider Kn, n ≥ 7. While K6 has only 10
disjoint triangle pairs to consider, K7 has 70, and K8 has 280. Moreover, with K6

there were only (3–3) links. K7 introduced (3–4) links and for K8, one would have
to consider (3–3), (3–4), (3–5), and (4–4) links. Whereas there were only 5 distinct
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convex polyhedral embeddings of K7, it is well known there are 14 for K8 (see, for
example, [12]).

Question 5.2. Given a straightedge embedding of Kn, how many (k, m) links does
it contain, where 3 ≤ k ≤ n − 3 and 3 ≤ m ≤ n − k?

Clearly this is an ambitious question. Possibly a more attainable question is the
following.

Question 5.3. Given a straight-edge embedding of Kn, what is an upper or lower
bound for the number of (k, m) links it contains, 3 ≤ k ≤ n − 3 and 3 ≤ m ≤
n − k?
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