> setwd("C:/teaching/ama")
> library(tseries)
Loading required package: quadprog

    'tseries' version: 0.9-27

    'tseries' is a package for time series analysis and computational
    finance.
> da=read.table("T7-4.DAT")   % Load data
> dim(da)
[1] 63  5
> da[1,]
   V1 V2 V3 V4 V5
1 227 32 30 12  1
> y=da[,1]
> x=da[,2:5]
> x1=as.matrix(x)
> m1=lm(y~x1)    % Fit a multiple linear regression (linear model).
> summary(m1)

lm(formula = y ~ x1)

Residuals:
    Min      1Q  Median      3Q     Max 
-36.521 -13.817  -2.781  13.556  35.832 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.8581    11.5561   0.161  0.87282    
x1V2          5.8742     0.2905  20.219  < 2e-16 ***
x1V3          1.4052     0.2928   4.799 1.16e-05 ***
x1V4          1.3154     0.5787   2.273  0.02675 *  
x1V5        -15.8571     5.3344  -2.973  0.00429 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 18.32 on 58 degrees of freedom
Multiple R-Squared: 0.9521,     Adjusted R-squared: 0.9488 
F-statistic: 288.1 on 4 and 58 DF,  p-value: < 2.2e-16 

> names(m1)
 [1] "coefficients"  "residuals"     "effects"       "rank"         
 [5] "fitted.values" "assign"        "qr"            "df.residual"  
 [9] "xlevels"       "call"          "terms"         "model"        

> Box.test(m1$residuals,lag=10,type='Ljung')
        Box-Ljung test
data:  m1$residuals 
X-squared = 48.1743, df = 10, p-value = 5.768e-07

> acf(m1$residuals)
> pacf(m1$residuals)

> m2=arima(y,xreg=x1,order=c(1,0,0),seasonal=list(order=c(1,0,0),period=7))
> m2

Call:
arima(x = y, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0), period = 7), 
    xreg = x1)

Coefficients:
         ar1    sar1  intercept      V2      V3      V4        V5
      0.5414  0.3753     7.7211  5.7066  1.4087  1.2008  -10.0592
s.e.  0.1067  0.1157    12.5670  0.2195  0.2211  0.3840    6.0951

sigma^2 estimated as 188.2:  log likelihood = -255.09,  aic = 526.18
> Box.test(m2$residuals,lag=10,type='Ljung')

        Box-Ljung test

data:  m2$residuals 
X-squared = 7.0855, df = 10, p-value = 0.7173

> acf(m2$residuals)
> tsdiag(m2)