#### HW#5, June 2, 2017 #### Problem 1 #### > Kronspec(kdx=c(1,1,2)) Kronecker indices: 1 1 2 Dimension: 3 Notation: 0: fixed to 0 1: fixed to 1 2: estimation AR coefficient matrices: [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1 0 0 2 2 2 0 0 0 [2,] 0 1 0 2 2 2 0 0 0 [3,] 0 0 1 0 0 2 2 2 2 MA coefficient matrices: [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1 0 0 2 2 2 0 0 0 [2,] 0 1 0 2 2 2 0 0 0 [3,] 0 0 1 2 2 2 2 2 2 > #### Problem 2 > setwd("C:/Users/rst/teaching/mts/sp2017") > source("C:/Users/rst/HDSA/HTS/ProcMD.R") > da <- read.csv("C:/Users/rst/HDSA/HTS/current.csv",header=T) > m1 <- ProcMD(da) > names(m1) [1] "data" "dmtx" > X <- m1$dmtx > dim(X) [1] 687 120 > name <- colnames(da) > name[1] [1] "sasdate" > name <- name[-1] > length(name) [1] 120 > name [1] "RPI" "W875RX1" "DPCERA3M086SBEA" "CMRMTSPLx" [5] "RETAILx" "INDPRO" "IPFPNSS" "IPFINAL" [9] "IPCONGD" "IPDCONGD" "IPNCONGD" "IPBUSEQ" [13] "IPMAT" "IPDMAT" "IPNMAT" "IPMANSICS" [17] "IPB51222S" "IPFUELS" "CUMFNS" "CLF16OV" [21] "CE16OV" "UNRATE" "UEMPMEAN" "UEMPLT5" [25] "UEMP5TO14" "UEMP15OV" "UEMP15T26" "UEMP27OV" [29] "CLAIMSx" "PAYEMS" "USGOOD" "CES1021000001" [33] "USCONS" "MANEMP" "DMANEMP" "NDMANEMP" [37] "SRVPRD" "USTPU" "USWTRADE" "USTRADE" [41] "USFIRE" "USGOVT" "CES0600000007" "AWOTMAN" [45] "AWHMAN" "HOUST" "HOUSTNE" "HOUSTMW" [49] "HOUSTS" "HOUSTW" "PERMIT" "PERMITNE" [53] "PERMITMW" "PERMITS" "PERMITW" "AMDMNOx" [57] "AMDMUOx" "BUSINVx" "ISRATIOx" "M1SL" [61] "M2SL" "M2REAL" "AMBSL" "TOTRESNS" [65] "NONBORRES" "BUSLOANS" "REALLN" "NONREVSL" [69] "CONSPI" "S.P.500" "S.P..indust" "S.P.div.yield" [73] "FEDFUNDS" "CP3Mx" "TB3MS" "TB6MS" [77] "GS1" "GS5" "GS10" "AAA" [81] "BAA" "COMPAPFFx" "TB3SMFFM" "TB6SMFFM" [85] "T1YFFM" "T5YFFM" "T10YFFM" "AAAFFM" [89] "BAAFFM" "EXSZUSx" "EXJPUSx" "EXUSUKx" [93] "EXCAUSx" "WPSFD49207" "WPSFD49502" "WPSID61" [97] "WPSID62" "OILPRICEx" "PPICMM" "CPIAUCSL" [101] "CPIAPPSL" "CPITRNSL" "CPIMEDSL" "CUSR0000SAC" [105] "CUSR0000SAD" "CUSR0000SAS" "CPIULFSL" "CUSR0000SA0L2" [109] "CUSR0000SA0L5" "PCEPI" "DDURRG3M086SBEA" "DNDGRG3M086SBEA" [113] "DSERRG3M086SBEA" "CES0600000008" "CES2000000008" "CES3000000008" [117] "MZMSL" "DTCOLNVHFNM" "DTCTHFNM" "INVEST" > require(MTS) Loading required package: MTS > dim(X) [1] 687 120 > 687-36 [1] 651 > y <- X[2:687,6] > X1 <- X[1:686,] > m1 <- SWfore(y,X1,650,10) MSE of out-of-sample forecasts: 2.805348e-05 > names(m1) [1] "coef" "yhat" "MSE" "loadings" "DFindex" > sqrt(m1$MSE) [1] 0.005296554 > m2 <- SWfore(y,X1,650,30) MSE of out-of-sample forecasts: 2.477952e-05 > sqrt(m2$MSE) [1] 0.004977903 > m3 <- SWfore(y,X1,650,50) MSE of out-of-sample forecasts: 4.120186e-05 > sqrt(m3$MSE) [1] 0.006418868 > ### Problem 3 > y <- X[2:687,22] > m4 <- SWfore(y,X1,650,10) MSE of out-of-sample forecasts: 0.02042371 > sqrt(m4$MSE) [1] 0.1429115 > m5 <- SWfore(y,X1,650,30) MSE of out-of-sample forecasts: 0.02657126 > sqrt(m5$MSE) [1] 0.1630069 > m6 <- SWfore(y,X1,650,50) MSE of out-of-sample forecasts: 0.0267818 > sqrt(m6$MSE) [1] 0.1636515 > > y1 <- X[,22] > pacf(y1) > n1 <- arima(y1,order=c(2,0,1),seasonal=list(order=c(1,0,1),period=12)) > n1 Call: arima(x = y1, order = c(2, 0, 1), seasonal = list(order = c(1, 0, 1), period = 12)) Coefficients: ar1 ar2 ma1 sar1 sma1 intercept 0.6960 0.2032 -0.6952 0.5405 -0.7987 -0.0002 s.e. 0.0574 0.0421 0.0478 0.0726 0.0513 0.0084 sigma^2 estimated as 0.02546: log likelihood = 284.6, aic = -555.2 > tsdiag(n1,gof=24) > yf <- y1[652:687] > n1 <- arima(y1[1:651],order=c(2,0,1),seasonal=list(order=c(1,0,1),period=12),include.mean=F) > p1 <- predict(n1,36) > err <- yf-p1$pred > sqrt(mean(err^2)) [1] 0.1501588 > #### Problem 4 ### > X <- cbind(UNP,IP,PMI,TCU) > require(MTS) > MTSplot(X) > dX <- diffM(X) > colnames(X) [1] "UNP" "IP" "PMI" "TCU" > zt <- dX[,1:2]; xt <- dX[,3:4] > VARorder(zt) selected order: aic = 6 selected order: bic = 3 selected order: hq = 5 Summary table: p AIC BIC HQ M(p) p-value [1,] 0 -4.9852 -4.9852 -4.9852 0.0000 0.0000 [2,] 1 -5.1900 -5.1607 -5.1786 127.0760 0.0000 [3,] 2 -5.2502 -5.1915 -5.2273 42.6817 0.0000 [4,] 3 -5.2857 -5.1976 -5.2514 28.2548 0.0000 [5,] 4 -5.3059 -5.1885 -5.2602 19.3748 0.0007 [6,] 5 -5.3209 -5.1741 -5.2637 16.2423 0.0027 [7,] 6 -5.3209 -5.1448 -5.2523 7.6620 0.1048 [8,] 7 -5.3167 -5.1112 -5.2367 5.2267 0.2648 [9,] 8 -5.3113 -5.0765 -5.2199 4.5298 0.3390 [10,] 9 -5.3052 -5.0410 -5.2024 4.1135 0.3909 [11,] 10 -5.2997 -5.0062 -5.1855 4.4571 0.3477 [12,] 11 -5.2921 -4.9693 -5.1665 3.2369 0.5190 [13,] 12 -5.3140 -4.9618 -5.1768 19.7158 0.0006 [14,] 13 -5.3082 -4.9266 -5.1596 4.2164 0.3775 > m1 <- VAR(zt,5) Constant term: Estimates: 0.01966672 0.05670193 Std.Error: 0.007383392 0.0211047 AR coefficient matrix AR( 1 )-matrix [,1] [,2] [1,] -0.062 -0.0854 [2,] -0.506 0.0814 standard error [,1] [,2] [1,] 0.043 0.015 [2,] 0.123 0.043 AR( 2 )-matrix [,1] [,2] [1,] 0.0631 -0.0378 [2,] -0.2135 0.1062 standard error [,1] [,2] [1,] 0.0433 0.0153 [2,] 0.1239 0.0437 AR( 3 )-matrix [,1] [,2] [1,] 0.0884 -0.0175 [2,] -0.1540 0.1682 standard error [,1] [,2] [1,] 0.0432 0.0153 [2,] 0.1234 0.0437 AR( 4 )-matrix [,1] [,2] [1,] 0.0928 -0.0102 [2,] 0.2344 0.1457 standard error [,1] [,2] [1,] 0.0429 0.0155 [2,] 0.1227 0.0442 AR( 5 )-matrix [,1] [,2] [1,] 0.0687 -0.0154 [2,] 0.3259 0.0124 standard error [,1] [,2] [1,] 0.0422 0.0153 [2,] 0.1208 0.0437 Residuals cov-mtx: [,1] [,2] [1,] 0.02454520 -0.02039505 [2,] -0.02039505 0.20054556 det(SSE) = 0.004506472 AIC = -5.335463 BIC = -5.188709 HQ = -5.27833 > m1a <- refVAR(m1,thres=1) Constant term: Estimates: 0.01738008 0.05777494 Std.Error: 0.00710883 0.02074842 AR coefficient matrix AR( 1 )-matrix [,1] [,2] [1,] -0.0613 -0.0885 [2,] -0.5061 0.0828 standard error [,1] [,2] [1,] 0.0429 0.0148 [2,] 0.1227 0.0427 AR( 2 )-matrix [,1] [,2] [1,] 0.0659 -0.0401 [2,] -0.2141 0.1076 standard error [,1] [,2] [1,] 0.0432 0.0152 [2,] 0.1238 0.0434 AR( 3 )-matrix [,1] [,2] [1,] 0.0982 -0.0182 [2,] -0.1571 0.1687 standard error [,1] [,2] [1,] 0.042 0.0153 [2,] 0.123 0.0437 AR( 4 )-matrix [,1] [,2] [1,] 0.110 0.000 [2,] 0.227 0.146 standard error [,1] [,2] [1,] 0.0402 0.0000 [2,] 0.1195 0.0441 AR( 5 )-matrix [,1] [,2] [1,] 0.0853 0 [2,] 0.3161 0 standard error [,1] [,2] [1,] 0.0399 0 [2,] 0.1157 0 Residuals cov-mtx: [,1] [,2] [1,] 0.02460541 -0.0204294 [2,] -0.02042940 0.2005734 det(SSE) = 0.00451783 AIC = -5.342962 BIC = -5.218222 HQ = -5.2944 > m1b <- refVAR(m1a,thres=1.2) Constant term: Estimates: 0.01542687 0.05777494 Std.Error: 0.006918662 0.02074842 AR coefficient matrix AR( 1 )-matrix [,1] [,2] [1,] -0.0568 -0.0898 [2,] -0.5061 0.0828 standard error [,1] [,2] [1,] 0.0428 0.0147 [2,] 0.1227 0.0427 AR( 2 )-matrix [,1] [,2] [1,] 0.0769 -0.0403 [2,] -0.2141 0.1076 standard error [,1] [,2] [1,] 0.0422 0.0152 [2,] 0.1238 0.0434 AR( 3 )-matrix [,1] [,2] [1,] 0.112 0.000 [2,] -0.157 0.169 standard error [,1] [,2] [1,] 0.0403 0.0000 [2,] 0.1228 0.0437 AR( 4 )-matrix [,1] [,2] [1,] 0.118 0.000 [2,] 0.227 0.146 standard error [,1] [,2] [1,] 0.0396 0.0000 [2,] 0.1195 0.0441 AR( 5 )-matrix [,1] [,2] [1,] 0.0878 0 [2,] 0.3161 0 standard error [,1] [,2] [1,] 0.0398 0 [2,] 0.1157 0 Residuals cov-mtx: [,1] [,2] [1,] 0.02466481 -0.0204294 [2,] -0.02042940 0.2005734 det(SSE) = 0.004529745 AIC = -5.343667 BIC = -5.226265 HQ = -5.297961 > MTSdiag(m1b,gof=24) [1] "Covariance matrix:" UNP IP UNP 0.0247 -0.0205 IP -0.0205 0.2009 CCM at lag: 0 [,1] [,2] [1,] 1.00 -0.29 [2,] -0.29 1.00 Simplified matrix: CCM at lag: 1 . . . . CCM at lag: 2 . . . . CCM at lag: 3 . . . . CCM at lag: 4 . . . . CCM at lag: 5 . . . . CCM at lag: 6 + . . . CCM at lag: 7 . . . . CCM at lag: 8 . . . . CCM at lag: 9 . . . + CCM at lag: 10 . . . . CCM at lag: 11 + . . . CCM at lag: 12 - . . . CCM at lag: 13 . . . . CCM at lag: 14 . . . . CCM at lag: 15 . + . . CCM at lag: 16 . . . . CCM at lag: 17 . . . . CCM at lag: 18 . . - . CCM at lag: 19 . . . . CCM at lag: 20 . . . . CCM at lag: 21 . . . . CCM at lag: 22 . . + . CCM at lag: 23 . . . . CCM at lag: 24 - . . - Hit Enter for p-value plot of individual ccm: Hit Enter to compute MQ-statistics: Ljung-Box Statistics: m Q(m) df p-value [1,] 1.000 0.103 4.000 1.00 [2,] 2.000 0.643 8.000 1.00 [3,] 3.000 3.161 12.000 0.99 [4,] 4.000 4.192 16.000 1.00 [5,] 5.000 4.646 20.000 1.00 [6,] 6.000 12.877 24.000 0.97 [7,] 7.000 16.039 28.000 0.97 [8,] 8.000 22.671 32.000 0.89 [9,] 9.000 28.502 36.000 0.81 [10,] 10.000 31.339 40.000 0.83 [11,] 11.000 38.214 44.000 0.72 [12,] 12.000 57.672 48.000 0.16 [13,] 13.000 60.359 52.000 0.20 [14,] 14.000 64.459 56.000 0.20 [15,] 15.000 77.452 60.000 0.06 [16,] 16.000 78.128 64.000 0.11 [17,] 17.000 83.000 68.000 0.10 [18,] 18.000 90.558 72.000 0.07 [19,] 19.000 100.377 76.000 0.03 [20,] 20.000 101.698 80.000 0.05 [21,] 21.000 106.778 84.000 0.05 [22,] 22.000 119.222 88.000 0.01 [23,] 23.000 125.628 92.000 0.01 [24,] 24.000 145.757 96.000 0.00 Hit Enter to obtain residual plots: > > > VARXorder(zt,xt,maxp=11,maxm=6) selected order(p,s): aic = 7 4 selected order(p,s): bic = 4 4 selected order(p,s): hq = 5 4 > ?VARX > m2 <- VARX(zt,5,xt,4) constant term: est: 0.0118 0.0272 se: 0.0075 0.0088 AR( 1 ) matrix UNP IP UNP -0.176 0.048 IP -0.007 0.168 standard errors [,1] [,2] [1,] 0.041 0.035 [2,] 0.048 0.041 AR( 2 ) matrix UNP IP UNP 0.008 -0.051 IP 0.026 0.165 standard errors [,1] [,2] [1,] 0.040 0.035 [2,] 0.047 0.041 AR( 3 ) matrix UNP IP UNP 0.080 -0.039 IP -0.015 0.195 standard errors [,1] [,2] [1,] 0.040 0.034 [2,] 0.047 0.040 AR( 4 ) matrix UNP IP UNP 0.127 -0.029 IP 0.023 0.230 standard errors [,1] [,2] [1,] 0.040 0.034 [2,] 0.047 0.040 AR( 5 ) matrix UNP IP UNP 0.123 -0.039 IP 0.021 0.029 standard errors [,1] [,2] [1,] 0.039 0.014 [2,] 0.046 0.017 Coefficients of exogenous lag- 0 coefficient matrix PMI TCU UNP -0.010 -0.067 IP -0.005 0.812 standard errors [,1] [,2] [1,] 0.003 0.012 [2,] 0.003 0.015 lag- 1 coefficient matrix PMI TCU UNP -0.011 -0.099 IP -0.003 -0.180 standard errors [,1] [,2] [1,] 0.003 0.031 [2,] 0.003 0.037 lag- 2 coefficient matrix PMI TCU UNP -0.008 0.027 IP 0.002 -0.124 standard errors [,1] [,2] [1,] 0.003 0.032 [2,] 0.004 0.037 lag- 3 coefficient matrix PMI TCU UNP 0.005 0.017 IP 0.001 -0.129 standard errors [,1] [,2] [1,] 0.003 0.031 [2,] 0.003 0.037 lag- 4 coefficient matrix PMI TCU UNP -0.003 0.004 IP 0.002 -0.176 standard errors [,1] [,2] [1,] 0.003 0.030 [2,] 0.003 0.036 Residual Covariance Matrix UNP IP UNP 0.01966 0.00068 IP 0.00068 0.02696 =========== Information criteria: AIC: -7.401912 BIC: -7.091729 > m2a <- refVARX(m2,thres=1.0) constant term: est: 0.0073 0.0283 se: 0.007 0.0087 AR( 1 ) matrix [,1] [,2] [1,] -0.182 0.017 [2,] 0.000 0.171 standard errors [,1] [,2] [1,] 0.04 0.029 [2,] 1.00 0.041 AR( 2 ) matrix [,1] [,2] [1,] 0 -0.031 [2,] 0 0.167 standard errors [,1] [,2] [1,] 1 0.014 [2,] 1 0.041 AR( 3 ) matrix [,1] [,2] [1,] 0.087 -0.023 [2,] 0.000 0.192 standard errors [,1] [,2] [1,] 0.039 0.014 [2,] 1.000 0.040 AR( 4 ) matrix [,1] [,2] [1,] 0.142 0.000 [2,] 0.000 0.225 standard errors [,1] [,2] [1,] 0.038 1.00 [2,] 1.000 0.04 AR( 5 ) matrix [,1] [,2] [1,] 0.128 -0.040 [2,] 0.000 0.025 standard errors [,1] [,2] [1,] 0.038 0.014 [2,] 1.000 0.015 Coefficients of exogenous lag- 0 coefficient matrix [,1] [,2] [1,] -0.010 -0.072 [2,] -0.005 0.812 standard errors [,1] [,2] [1,] 0.003 0.012 [2,] 0.003 0.013 lag- 1 coefficient matrix [,1] [,2] [1,] -0.011 -0.076 [2,] 0.000 -0.183 standard errors [,1] [,2] [1,] 0.003 0.027 [2,] 1.000 0.036 lag- 2 coefficient matrix [,1] [,2] [1,] -0.007 0.000 [2,] 0.000 -0.126 standard errors [,1] [,2] [1,] 0.003 1.000 [2,] 1.000 0.036 lag- 3 coefficient matrix [,1] [,2] [1,] 0.006 0.000 [2,] 0.000 -0.124 standard errors [,1] [,2] [1,] 0.003 1.000 [2,] 1.000 0.036 lag- 4 coefficient matrix [,1] [,2] [1,] 0 0.000 [2,] 0 -0.174 standard errors [,1] [,2] [1,] 1 1.000 [2,] 1 0.034 Residual Covariance Matrix UNP IP UNP 0.01986 0.00064 IP 0.00064 0.02710 =========== Information criteria: AIC: -7.436783 BIC: -7.23738 > MTSdiag(m2a,gof=24) [1] "Covariance matrix:" UNP IP UNP 0.019898 0.000642 IP 0.000642 0.027149 CCM at lag: 0 [,1] [,2] [1,] 1.0000 0.0276 [2,] 0.0276 1.0000 Simplified matrix: CCM at lag: 1 . . . . CCM at lag: 2 . . . . CCM at lag: 3 . . . . CCM at lag: 4 . . . . CCM at lag: 5 . . . . CCM at lag: 6 + . . . CCM at lag: 7 . . . . CCM at lag: 8 . . . . CCM at lag: 9 . . . + CCM at lag: 10 . . . . CCM at lag: 11 . . . . CCM at lag: 12 - . . . CCM at lag: 13 . . . . CCM at lag: 14 . . . . CCM at lag: 15 . . . . CCM at lag: 16 . . . . CCM at lag: 17 . . . . CCM at lag: 18 . . . . CCM at lag: 19 . . . . CCM at lag: 20 . . . . CCM at lag: 21 . . . . CCM at lag: 22 . . + . CCM at lag: 23 . . . . CCM at lag: 24 - . . - Hit Enter for p-value plot of individual ccm: Hit Enter to compute MQ-statistics: Ljung-Box Statistics: m Q(m) df p-value [1,] 1.000 0.862 4.000 0.93 [2,] 2.000 1.829 8.000 0.99 [3,] 3.000 3.930 12.000 0.98 [4,] 4.000 6.322 16.000 0.98 [5,] 5.000 7.379 20.000 1.00 [6,] 6.000 14.780 24.000 0.93 [7,] 7.000 19.426 28.000 0.88 [8,] 8.000 22.747 32.000 0.89 [9,] 9.000 32.956 36.000 0.61 [10,] 10.000 33.671 40.000 0.75 [11,] 11.000 35.706 44.000 0.81 [12,] 12.000 47.127 48.000 0.51 [13,] 13.000 49.074 52.000 0.59 [14,] 14.000 52.140 56.000 0.62 [15,] 15.000 56.669 60.000 0.60 [16,] 16.000 59.787 64.000 0.63 [17,] 17.000 62.030 68.000 0.68 [18,] 18.000 67.244 72.000 0.64 [19,] 19.000 70.982 76.000 0.64 [20,] 20.000 75.728 80.000 0.61 [21,] 21.000 80.526 84.000 0.59 [22,] 22.000 91.045 88.000 0.39 [23,] 23.000 98.102 92.000 0.31 [24,] 24.000 117.203 96.000 0.07 Hit Enter to obtain residual plots: > > m3 <- VARX(Zt,5,Xt,0) constant term: est: 0.0085 0.0541 se: 0.0071 0.0089 AR( 1 ) matrix UNP IP UNP -0.180 0.031 IP 0.007 0.362 standard errors [,1] [,2] [1,] 0.04 0.030 [2,] 0.05 0.038 AR( 2 ) matrix UNP IP UNP 0.002 -0.030 IP 0.080 0.057 standard errors [,1] [,2] [1,] 0.04 0.014 [2,] 0.05 0.017 AR( 3 ) matrix UNP IP UNP 0.062 -0.022 IP 0.067 0.070 standard errors [,1] [,2] [1,] 0.04 0.014 [2,] 0.05 0.017 AR( 4 ) matrix UNP IP UNP 0.114 -0.023 IP 0.095 0.057 standard errors [,1] [,2] [1,] 0.039 0.014 [2,] 0.049 0.018 AR( 5 ) matrix UNP IP UNP 0.108 -0.043 IP 0.061 0.043 standard errors [,1] [,2] [1,] 0.038 0.014 [2,] 0.048 0.018 Coefficients of exogenous lag- 0 coefficient matrix pmi tcu pmi1 tcu1 UNP -0.011 -0.075 -0.010 -0.087 IP -0.002 0.810 -0.002 -0.350 standard errors [,1] [,2] [,3] [,4] [1,] 0.003 0.012 0.003 0.027 [2,] 0.004 0.015 0.004 0.033 Residual Covariance Matrix UNP IP UNP 0.02011 0.00020 IP 0.00020 0.03118 =========== Information criteria: AIC: -7.27329 BIC: -7.051442 > m3a <- refVARX(m3,thres=1.0) constant term: est: 0.0086 0.0537 se: 0.0071 0.0089 AR( 1 ) matrix [,1] [,2] [1,] -0.18 0.031 [2,] 0.00 0.363 standard errors [,1] [,2] [1,] 0.04 0.030 [2,] 1.00 0.038 AR( 2 ) matrix [,1] [,2] [1,] 0.000 -0.030 [2,] 0.076 0.056 standard errors [,1] [,2] [1,] 1.000 0.013 [2,] 0.049 0.017 AR( 3 ) matrix [,1] [,2] [1,] 0.061 -0.023 [2,] 0.062 0.071 standard errors [,1] [,2] [1,] 0.040 0.014 [2,] 0.049 0.017 AR( 4 ) matrix [,1] [,2] [1,] 0.114 -0.023 [2,] 0.091 0.059 standard errors [,1] [,2] [1,] 0.039 0.014 [2,] 0.048 0.018 AR( 5 ) matrix [,1] [,2] [1,] 0.108 -0.043 [2,] 0.060 0.045 standard errors [,1] [,2] [1,] 0.038 0.014 [2,] 0.047 0.017 Coefficients of exogenous lag- 0 coefficient matrix [,1] [,2] [,3] [,4] [1,] -0.011 -0.075 -0.01 -0.087 [2,] 0.000 0.806 0.00 -0.354 standard errors [,1] [,2] [,3] [,4] [1,] 0.003 0.012 0.003 0.027 [2,] 1.000 0.014 1.000 0.033 Residual Covariance Matrix UNP IP UNP 0.02011 0.00020 IP 0.00020 0.03121 =========== Information criteria: AIC: -7.285949 BIC: -7.093681 > > m3 <- VARX(Zt,6,Xt,0) constant term: est: 0.0074 0.0527 se: 0.0071 0.0089 AR( 1 ) matrix UNP IP UNP -0.193 0.027 IP 0.013 0.360 standard errors [,1] [,2] [1,] 0.04 0.031 [2,] 0.05 0.038 AR( 2 ) matrix UNP IP UNP -0.017 -0.034 IP 0.086 0.053 standard errors [,1] [,2] [1,] 0.04 0.014 [2,] 0.05 0.017 AR( 3 ) matrix UNP IP UNP 0.049 -0.021 IP 0.069 0.065 standard errors [,1] [,2] [1,] 0.04 0.014 [2,] 0.05 0.017 AR( 4 ) matrix UNP IP UNP 0.106 -0.021 IP 0.101 0.057 standard errors [,1] [,2] [1,] 0.039 0.014 [2,] 0.049 0.018 AR( 5 ) matrix UNP IP UNP 0.116 -0.035 IP 0.078 0.043 standard errors [,1] [,2] [1,] 0.039 0.014 [2,] 0.048 0.018 AR( 6 ) matrix UNP IP UNP 0.114 0.006 IP 0.011 0.032 standard errors [,1] [,2] [1,] 0.038 0.014 [2,] 0.048 0.017 Coefficients of exogenous lag- 0 coefficient matrix pmi tcu pmi1 tcu1 UNP -0.011 -0.074 -0.011 -0.087 IP -0.002 0.813 0.000 -0.350 standard errors [,1] [,2] [,3] [,4] [1,] 0.003 0.012 0.003 0.027 [2,] 0.004 0.015 0.004 0.034 Residual Covariance Matrix UNP IP UNP 0.01984 0.00025 IP 0.00025 0.03060 =========== Information criteria: AIC: -7.292062 BIC: -7.040307 > m3a <- refVARX(m3,thres=1.0) constant term: est: 0.0101 0.0527 se: 0.0065 0.0088 AR( 1 ) matrix [,1] [,2] [1,] -0.192 0.00 [2,] 0.000 0.36 standard errors [,1] [,2] [1,] 0.04 1.000 [2,] 1.00 0.038 AR( 2 ) matrix [,1] [,2] [1,] 0.000 -0.031 [2,] 0.085 0.053 standard errors [,1] [,2] [1,] 1.000 0.013 [2,] 0.049 0.017 AR( 3 ) matrix [,1] [,2] [1,] 0.055 -0.017 [2,] 0.067 0.065 standard errors [,1] [,2] [1,] 0.039 0.013 [2,] 0.049 0.017 AR( 4 ) matrix [,1] [,2] [1,] 0.107 -0.018 [2,] 0.101 0.058 standard errors [,1] [,2] [1,] 0.039 0.014 [2,] 0.048 0.017 AR( 5 ) matrix [,1] [,2] [1,] 0.113 -0.033 [2,] 0.077 0.043 standard errors [,1] [,2] [1,] 0.038 0.014 [2,] 0.048 0.017 AR( 6 ) matrix [,1] [,2] [1,] 0.107 0.000 [2,] 0.000 0.031 standard errors [,1] [,2] [1,] 0.036 1.000 [2,] 1.000 0.017 Coefficients of exogenous lag- 0 coefficient matrix [,1] [,2] [,3] [,4] [1,] -0.011 -0.075 -0.011 -0.065 [2,] 0.000 0.810 0.000 -0.353 standard errors [,1] [,2] [,3] [,4] [1,] 0.003 0.012 0.003 0.012 [2,] 1.000 0.014 1.000 0.033 Residual Covariance Matrix UNP IP UNP 0.01988 0.00025 IP 0.00025 0.03062 =========== Information criteria: AIC: -7.313026 BIC: -7.113102 > MTSdiag(m3a,gof=24) [1] "Covariance matrix:" UNP IP UNP 0.019914 0.000252 IP 0.000252 0.030671 CCM at lag: 0 [,1] [,2] [1,] 1.0000 0.0102 [2,] 0.0102 1.0000 Simplified matrix: CCM at lag: 1 . . . . CCM at lag: 2 . . . + CCM at lag: 3 . . . + CCM at lag: 4 . . . + CCM at lag: 5 . . . . CCM at lag: 6 . . . + CCM at lag: 7 . . . . CCM at lag: 8 . . . . CCM at lag: 9 . . . + CCM at lag: 10 . . . . CCM at lag: 11 . . . . CCM at lag: 12 - . . . CCM at lag: 13 . . . + CCM at lag: 14 . . . . CCM at lag: 15 . . . + CCM at lag: 16 . . . . CCM at lag: 17 . . . . CCM at lag: 18 . . . . CCM at lag: 19 . . . . CCM at lag: 20 . . . . CCM at lag: 21 . . . . CCM at lag: 22 . . . . CCM at lag: 23 . . . . CCM at lag: 24 - . . - Hit Enter for p-value plot of individual ccm: Hit Enter to compute MQ-statistics: Ljung-Box Statistics: m Q(m) df p-value [1,] 1.00 5.91 4.00 0.21 [2,] 2.00 13.39 8.00 0.10 [3,] 3.00 25.19 12.00 0.01 [4,] 4.00 50.51 16.00 0.00 [5,] 5.00 54.79 20.00 0.00 [6,] 6.00 62.19 24.00 0.00 [7,] 7.00 69.65 28.00 0.00 [8,] 8.00 74.69 32.00 0.00 [9,] 9.00 89.17 36.00 0.00 [10,] 10.00 91.06 40.00 0.00 [11,] 11.00 97.14 44.00 0.00 [12,] 12.00 109.25 48.00 0.00 [13,] 13.00 116.48 52.00 0.00 [14,] 14.00 118.23 56.00 0.00 [15,] 15.00 126.85 60.00 0.00 [16,] 16.00 130.73 64.00 0.00 [17,] 17.00 133.29 68.00 0.00 [18,] 18.00 139.73 72.00 0.00 [19,] 19.00 142.53 76.00 0.00 [20,] 20.00 147.75 80.00 0.00 [21,] 21.00 152.14 84.00 0.00 [22,] 22.00 158.81 88.00 0.00 [23,] 23.00 166.45 92.00 0.00 [24,] 24.00 185.07 96.00 0.00 Hit Enter to obtain residual plots: