** This program estimates the degrees of freedom of student-t innovations. all 0 792:1 open data sp500.dat data(org=obs) / rt set h = 0.0 nonlin mu a0 a1 b1 v frml at = rt(t)-mu frml gvar = a0+a1*at(t-1)**2+b1*h(t-1) frml tt = at(t)**2/(h(t)=gvar(t)) frml tln = %LNGAMMA((v+1)/2.)-%LNGAMMA(v/2.)-0.5*log(v-2.) frml garchln = tln-((v+1)/2.)*log(1.0+tt(t)/(v-2.0))-0.5*log(h(t)) smpl 2 792 eval v = 10 eval a1 = 0.1 eval b1 = 0.6 eval mu = 0.01 eval a0 = 0.01 maximize(method=bhhh,recursive,iterations=150) garchln set fv = gvar(t) set resid = at(t)/sqrt(fv(t)) set residsq = resid(t)*resid(t) *** *** Checking standardized residuals *** cor(qstats,number=20,span=10) resid *** Checking squared standardized residuals *** cor(qstats,number=20,span=10) residsq *** Last few observations needed for forecasts *** set shock = at(t) print 786 792 rt shock fv