
Lower Bounds for Randomized Algorithms

Two former students

December 5, 2014

1 Introduction

In this paper, we present a method to find a lower bound on the running time for
any Las Vegas randomized algorithm. We first derive Yao’s Minimax Principle
from the analysis of two-player games. Applying the result of Yao’s Minimax
Principle then gives us our desired lower bound on Las Vegas randomized algo-
rithms. More specifically, by applying Yao’s Minimax Principle, we will show
that in order to find a lower bound on running time for a Las Vegas random-
ized algorithm, it suffices to find a lower bound on the running time of any
deterministic algorithm. That is, no Las Vegas randomized algorithm can solve
a problem faster than the best possible deterministic algorithm. We will then
apply Yao’s Minimax Principle to a Las Vegas algorithm used to evaluate game
trees and to the set of all algorithms that use comparisons to sort.

2 Yao’s Minimax Principle

2.1 Rock! Paper! Scissors!

We begin our discussion of two-player games with the analysis of Rock-Paper-
Scissors. Here, a strategy is defined as the set of moves that a player selects
throughout the game. Our analysis of Rock-Paper-Scissors will be limited to
the use of pure strategies, where each player can definitively choose a particular
strategy to pursue.

For those unfamiliar with the game, Rock-Paper-Scissors has two players,
Ryan and Charlotte, who place their hands behind their back and make a sign
for rock, paper or scissors. They simultaneously choose and display a sign. The
winner is determined by the following rules: rock beats scissors, scissors beats
paper and paper beats rock. The loser pays the winner $1.

The possible payoffs for Rock-Paper-Scissors are listed in Table 1. Table 1
is called a payoff matrix and is denoted by M. The set of possible strategies
for Ryan, our row player (R) are described in each row of M. Similarly, the
set of possible strategies for Charlotte, our column player (C) are described in
each column of M. Each entry Mi,j describes the amount that C pays R when
C selects strategy j and R selects strategy i. For instance, entry M1,2 = 1
corresponds to R selecting Scissors and C picking Paper, so C pays R $1. On
the other hand, M2,1 = −1 corresponds to R picking Paper and C selecting
Scissors, so R pays C $1. If we calculate the expected winnings of C and R, we

1

find that they are both 0. Therefore, Rock-Paper-Scissors is what is known as
a zero− sum game.

Rock Paper Scissors
Rock 0 1 -1
Paper -1 0 1
Scissors 1 -1 0

Table 1: The payoff matrix for Rock-Paper-Scissors

Clearly, R would like to maximize his payoff and C would like to minimize
her payoff. Now, if R picks a particular strategy i, then he is guaranteed a payoff
of minjMi,j . However, R wants to maximize his payoff so his optimal strategy is
to pick the i that maximizes minjMi,j . Then, the lower bound on a payoff when
R uses an optimal strategy is described by Vr = maximinjMi,j . Similarly, if C
picks a particular strategy j, she is guaranteed a maximum payoff of maxiMij .
She would like to minimize her payoff, so her optimal strategy would be to select
the strategy j that minimizes maxiMij . Then, the best upper bound on a payoff
when C uses an optimal strategy is described by Vc = minjmaxiMij .

Returning to our game of Rock-Paper-Scissors, we find that Vr = −1 and
Vc = 1. Notice that Vr ≤ Vc. In fact, this inequality holds true for all payoff
matrices. That is,

Vr ≤ Vc

or

maximinjMij ≤ minimaxjMij [3]

If V = Vr = Vc, then we say that the game has a solution and call the cor-
responding strategies ρ and γ. In our original version of Rock-Paper-Scissors,
depicted in Table 1, we saw that Vr 6= Vc, which implies that the game has
no solution. Consider the modified payoff matrix shown in Table 2. Here,
Vr = Vc = 0 with γ = 1 and ρ = 1, which implies that our modified Rock-Paper
Scissors does in fact have a solution.

Rock Paper Scissors
Rock 0 1 2
Paper -1 0 1
Scissors -2 -1 0

Table 2: The payoff matrix for a modified version of Rock-Paper-Scissors

2.2 Randomized Strategies

In the previous section, we discussed an example of a pure strategy, where each
player selects a particular strategy. As it’s name suggests, a randomized or
mixed strategy introduces some randomness into our model. Now, instead of
selecting a particular strategy, each player will pick a probability distribution
over all strategies. In turn, the row player will now pick a vector p = (p1, ..., pn),
which is a probability distribution over all rows. Similarly, the column player

2

chooses a vector q = (q1, ..., qn), which is a probability distribution over all
columns. Notice that both p and q are column vectors and pi denotes the ith
element of p and qj denotes the jth item in q. If follows then that each pi and
qj is the probability that the ith and jth strategies will be played respectively.
We continue to denote our payoff matrix as M where Mij corresponds to the
payoff that C pays R when the ith row strategy and jth column strategy is
played.

Since we have introduced some randomness into model, our payoff is now a
random variable. Let X be the payoff for the game. Then, Pr(X = Mij) = piqj .
Then, our expected payoff is described by

E[X] =
∑m

j=1

∑n
i=1 piqjMij = pTMq. [3]

We now define VR = maxpminqp
TMq where q is the probability distri-

bution that minimizes pTMq for all p. We subsequently select the p that
maximizes pTMq. VC is similarly defined as VC = maxpminqp

TMq. VR and
VC retain their previous meanings. That is, VR describes the best lower bound
on the expected payoff that R can guarantee and VC is the best upper bound
on the expected payoff that C can guarantee. Interestingly, when R and C use
mixed strategies, every two-person, zero sum game has a solution. This is stated
in Von Neumann’s Minimax theorem.

Theorem 2.1 (von Neumann’s Minimax Theorem). For any two person zero-
sum game specified by a matrix M,

maxpminqp
TMq = minqmaxpp

TMq. [3]

Theorem 2.2 (Loomis’ Theorem). For any two person zero-sum game specified
by a matrix M,

maxpminjp
TM ej = minqmaxie

T
i Mq. [3]

2.3 The Ultimate Showdown: Algorithm Designer vs. Ad-
versary

To see how the previously discussed game theoretic techniques apply to ran-
domized algorithms, consider a problem Π. We assume that there are a finitely
many deterministic algorithms that solve Π. Furthermore, the set of distinct
inputs for each deterministic algorithm is finite. In this framework, the column
player now becomes the algorithm designer and the row player is our adversary
who selects the input. The rows of M correspond to the set of all possible in-
puts. The columns of M corresponds to the set of all deterministic algorithms
that complete in finite time and always outputs the correct value. The entries
of the M still correspond to the payoff, which in this context, is any real-valued
measure of the performance of the algorithm such as running time or computa-
tional cost. If our payoff is running time, then M consists of the running times
for all algorithms and for all possible inputs. Each entry Mij in M corresponds
to the running time of the jth algorithm when the adversary selects the ith in-
put. Naturally, the algorithm designer would like to minimize the running time
of the algorithm and the adversary would like to maximize the running time of
the algorithm.

3

Now, in the context of our game, a mixed strategy for the algorithm designer
is a probability distribution over the space of all deterministic algorithms that
always output the correct answer. A mixed strategy for the adversary is a
probability distribution over the space of all possible inputs. We can then restate
Von Neumann’s and Loomis’ theory in the language of randomized algorithms.

Theorem 2.3. Let Π be a problem with a finite set I of input instances (of
a fixed size), and a finite set of deterministic algorithms A. For input I ∈ I
and algorithm A ∈ A, let C(I, A) denote the running time of algorithm A on
input I. For probability distributions p over I and q over A, let Ip denote the
random input chosen according to p and Aq denote a random algorithm chosen
according to q. Then,

maxpminqE[C(Ip, Aq)] = minqmaxpE[C(Ip, Aq)]

and

maxpminA∈AE[C(Ip, A)] = minqmaxI∈IE[C(I, Aq)]. [3]

Yao’s Minimax Principle follows directly from Theorem 2.3. It is stated as
follows:

Proposition 2.4 (Yao’s Minimax Principle). For all distributions p over I and
q over A,

minA∈AE[C(Ip, A] ≤ maxI∈I E[C(I, Aq]. [3]

In other words, Yao’s Minimax Principle states that the expected cost for
a las vegas randomized algorithm is greater than the expected cost for the
best deterministic algorithm for any distribution on the inputs. Therefore, the
expected running time for the best deterministic algorithm for an arbitrary
distribution on the inputs is a lower bound for our randomized algorithm. While
we are only applying Yao’s Minimax Principle to the running time of Las Vegas
randomized algorithms, it is interesting to note that C(I, A) could also denote,
for example, the memory used by algorithm A on input I. Thus Yao’s Minimax
Principle could, in fact, be used to find lower bounds other than just running
time for Las Vegas randomized algorithms.

3 Applications of Yao’s Minimax Principle

3.1 Game Trees

Our first application of Yao’s Minimax Principle is to the evaluation of game
trees. Game trees represent a game with two players, one of which is trying to
maximize a certain score and the other is trying to minimize this score. Then,
we define a game tree as a rooted tree with MIN and MAX nodes and each
leaf of the tree is assigned an numeric value. For simplicity, each leaf will be
assigned either a 0 or a 1 as its numeric value. An example of a game tree is
depicted in Figure 1. To evaluate a game tree, we note that each leaf returns
its own numeric value, each MAX node returns the maximum of its childrens’
values, and each MIN node returns the minimum of its childrens’ values. Thus
to evaluate a game tree, we must find what the root returns.

4

Figure 1: Example of a T2,2 Game Tree

Let Td,k [3] be a game tree in which each node has d children and every leaf
is distance 2k from the root. Thus any root to leaf path must pass through
k AND nodes and K OR nodes. Every Td,k has d2k leaves. We would like to
consider the evaluation of T2,k, where we let d = 2 for simplicity. We will use
Yao’s Minimax Theorem to find a lower bound on any Las Vegas randomized
algorithm that could be used to evaluate T2,k.

3.2 Expected Running Time of a Randomized Evaluation

We now present a game tree evaluation Las Vegas randomized algorithm with
an expected running time that is faster than the worst case of any deterministic
algorithm. Then, by applying Yao’s Minimax theorem, we can find a lower
bound for the expcted running time of our algorithm.

Before we present our algorithm, consider the evaluation of a node v in a
T2,k. Assume that v is a MAX node. Since v is a MAX node, if v returns 1, then
at least one of its children returns 1. If v returns 0, then both of its children
must return 0. Now, if we wish to determine the value of v, we can begin by
randomly picking one of its children. If the first child that we chose to evaluate
returns 1 then v returns 1 regardless of the value of the other child. However,
if the first child that we select returns 0, we must inspect the other child. Our
algorithm then follows naturally.

The key difference between RandomEval and a deterministic algorithm is
the evaluation of each node’s children. Here, for a particular node, we randomly
select one of its children to be evaluated first. In constrast, a deterministic
algorithm visits each child in a particular order.

Theorem 3.1. The expected number of leaves that RandomEval must inspect

5

RandomEval
Input: A T2,k and a node v to evaluate.
Output: The evaluation of node v (either a 0 or 1).
1. Randomly pick a child v1 of v.
2. If v is an MAX node

2a: If v1 returns 1, return 1.
2b: If v1 returns 0, call RandomEval on v1.

3. If v is an MIN node
3a: If v1 returns 1, return 1.
3b: If v1 returns 0, call RandomEval on v1. [3]

on a T2,k is less than or equal to 3k [2].

Proof. Let X be the number of children we need to evaluate in order to evaluate
v. With an inductive proof, we show that the expected number of leaves that
are inspected in RandonEval less than or equal to 3k.We split this problem
into two cases:

Case 1 - v returns 1: Since v is a MAX node, at least one child must
return 1. In the best case, both children are 1, and thus E[X] = 1 no matter
what child we randomly pick first. In the worst case, v has one child v1 that
returns 1 and one child v2 that returns 0. Then we have a 1

2 chance of randomly
picking v1 first, which would require us to only have to evaluate one child. We
also have a 1

2 chance of picking v2 first, which requires evaluating both children.
Therefore, no matter what the children evaluate to,

E[X] ≤ 1
2 (1) + 1

2 (2) = 3
2

Case 2 - v returns 0: Both children must return 0. Thus, no matter which
child is picked first, both children must be evaluated. Thus

E[X] = 2

We now begin our induction. We assume that the root node of our game tree is
a MIN node, as the proof for a MAX node easily follows. Let G be the number
of grandchildren evaluated.

Base case: Consider a T2,1. In this case, G also gives us the running time
of the algorithm, as the grandchildren of the root node are leaves.

If the root returns 1, then both of its children must both return 1. Since the
children must both be MAX nodes, we just proved that E[X] for both children
is less than or equal to 3

2 . Therefore E[G] ≤ 2 · 32 = 3.
If the root returns 0, then its children either both return 0 or one child

returns a 1 and the other returns a 0. If both return a 0, then no matter which
child we pick, we only need to evaluate one child. Since the children are MAX
nodes, we just proved that E[X] for both children is 2. Therefore E[G] = 2. If
one returns a 0 and the other returns a 1, then, in the worst case, we pick the one
that returns 1. Then we have to evaluate that node with E[X] ≤ 3

2 and evaluate
the other node that returns 0 with E[X] = 1

2 . Therefore E[G] ≤ 2 + 3
2 = 7

2 .
Using Bayes’ Theorem and conditional probability, we find the expected

running time of evaluating the root in either case. First, we find the expected
value given that v returns 0.

6

E[G|return0] ≤
(
1
3

)
3
2 +

(
2
3

)
7
2 = 3.

We already know that

E[G|return1] ≤ 3.

Therefore, E[G] ≤ 3 no matter what v returns. Thus for T2,1, the running time
is definitely bounded by 31 = 3k.

Inductive Hypothesis: Let Xk be the running time of T2,k. Assume that
E[Xk] ≤ 3k−1. The grandchildren of the root of a T2,k are each a T2,k−1. Since
these grandchildren are evaluated independently of one another, we can use the
property of linearity of expectations. Since we just showed that the number of
grandchildren of the root we must evaluate is at most 3, we find that

E[Xk] ≤ 3 ·E[Xk−1] ≤ 3 ∗ 3k−1 = 3k.

[2]

Since there are 4k leaves, we can solve for the expected running time of our
algorithm in terms of the number of leaves it needs to evaluate. Let n be the
number of leaves.

3k = nx

3k = 4kx

k log4 3 = kx

x = log43

Therefore, the expected running time of our algorithm is nlog4 3 ≈ n0.793 [3].
Interestingly, we note that an adversary can make any deterministic algorithm
look at all n leaves, since a deterministic algorithm must look at leaves in a
fixed order. Since n0.793 < n, we see that our randomized performs better than
the worse case of any deterministic algorithm.

3.3 A Lower Bound for the Evaluation of Game Trees

In order to simplify our analysis, we will slightly modify our representation of
game trees. First, as depicted in Figure 2 since we each leaf is assigned a binary
(0 or 1) value, each MAX node is equivalent to a Boolean OR operation and
each MIN node is equivalent to a boolean AND operation.

Figure 2: Truth Table: MAX/MIN to OR/AND

7

Second, we realize that we can replace all of the internal nodes of our game
tree with nodes that compute the boolean NOR function. The NOR function
only returns 1 if both inputs are 0 and returns 0 otherwise. This replacement
will yield equivalent values to our previous tree with AND and OR nodes.

Using Yao’s Minimax Theorem, we know that if we set a probability distribu-
tion p of inputs and use p to find a lower bound on any deterministic algorithm
to evaluate T2,k, we will have found a lower bound on the expected running
time of any Las Vegas randomized algorithm to evaluate T2,k. Therefore, our

first step is to set a probability distribution. Let p = 3−
√
5

2 [3], and let each leaf
of T2,k be set to 1 with probability p. Notice that if a NOR node v has two
inputs that are 1 with probability p, then we can compute the probability that
v outputs 1 by realizing that both children must return 0 in order for this to
occur. Thus

Pr(v returns 1) = (Pr(both children return 0))2

= (1− p)2

=

(√
5− 1

2

)2

=
3−
√

5

2
= p

Therefore any node in our game tree returns 1 with probability p. Now,
instead of having to consider every possibly deterministic algorithm that could
evaluate a T2,k, we will only consider a certain type of deterministic algorithm.
This algorithm will evaluate the root of a game tree through a depth-first search
of the tree that stops searching once it has determined the value of the root.
This algorithm can perform as well as any deterministic algorithm, so a lower
bound on it will be a lower bound for any deterministic algorithm.

Theorem 3.2. The lower bound on the expected running time of any Las Vegas
randomized algorithm that evaluates game trees with n leaves is n0.694. [3]

Proof. Consider a T2,k with internal NOR nodes and n leaves. Let W (h) be the
expected amount of work for evaluating a node distance h from the leaves. That
is, W (h) is the expected number of leaves our algorithm will have to examine
when evaluating a node distance h from the leaves. Since the root is distance
log2 n, we want to find W (log2 n). Using a recursive algorithm, we find that

W (h) = W (h− 1) + (1− p)W (h− 1). [3]

This is true because in order to evaluate a node at distance h from the
leaves, we must evaluate at least one of its children, and we must evaluate the
other child if the first child returns 0. If we plug in h = log2 n, we can solve
this recursive formula to find that W (log2 n) ≥ n0.694. Using Yao’s Minimax
Principle, this bound also applies to any Las Vegas randomized algorithm.

This lower bound is less than the expected running time of our randomized
algorithm, which was n0.793. One possibility for this discrepancy is that our

8

probability distribution was not the best we could have chosen. However, this
lower bound does apply to all Las Vegas randomized algorithms that evaluate
game trees.

3.4 Sorting Algorithms

We would like to find a lower bound for sorting algorithms that use comparisons
to sort lists - for example, Quicksort and Bubblesort. In order to bound these
algorithms, we will create a model called a decision tree that will represent every
sorting algorithm that uses comparisons [4]. This model will be a binary tree, in
which the execution of the algorithm is a root-to-leaf path. Each internal node
corresponds to a comparison, and the leaves are the results of the execution (the
input list in a certain order). In order to find a lower bound on the running time
of these sorting algorithms, it will suffice to find a lower bound on the possible
height of our decision tree.

Theorem 3.3. The lower bound on the running time of any Las Vegas sorting
algorithm is Ω(n log n). [4]

Proof. We will assume that we are sorting a list of n distinct numbers. Since
the leaves correspond to the possible orders of this list, there must be n! leaves.
We also know that any height h tree has no more than 2h leaves. Thus, using
the logarithm laws,

2h ≥ n!

h ≥ log2(n!)

= log2((n)(n− 1)(n− 2)(n− 3)...(2))

= log2(n) + log2(n− 1) + log2(n− 2) + ...+ log2(2)

=

n∑
i=2

log2(i)

=

n
2−1∑
i=2

log2(i) +

n∑
i=n

2

log2(i)

≥
n∑

i=n
2

log2(
n

2
)

=
n

2
· log2

(n
2

)
= Ω (n log2(n))

[4]

Using Yao’s Minimax Principle, since Ω (n log2(n)) is a lower bound on the
running time of any deterministic sorting algorithm, Ω (n log2(n)) is a lower
bound on the running time of any Las Vegas randomized sorting algorithm.

9

References

[1] Habib, Michael. ”The Minimax Principle and Lower Bounds.” Probabilistic
Methods for Algorithmic Discrete Mathematics. Ed. Colin McDiarmid. 1998
ed. Vol. 16. N.p.: Springer, n.d. 28-37. Print. Algorithms and Combinatorics.

[2] Jop, Sibeyn. ”Game Theoretic Techniques” Users.informatik.uni-halle.de,
2014. [Online].[Accessed: 14- Dec- 2014].

[3] Motwani, Rajeev, and Prabhakar Raghavan. ”Game-Theoretic Techniques.”
Randomized Algorithms. 1st ed. N.p.: Cambridge UP, n.d. N. pag. Print.

[4] Toma, Laura. Sorting Lower Bound. 1st ed. Bowdoin College, 2007.

10

