
Recap

 Hashing-based sketch techniques summarize large data sets

 Summarize vectors:

– Test equality (fingerprints)

– Recover approximate entries (count-min, count sketch)

– Approximate Euclidean norm (F2) and dot product

– Approximate number of non-zero entries (F0)

– Approximate set membership (Bloom filter)

Streams, Sketching and Big Data
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Advanced Topics

 Lp Sampling

– L0 sampling and graph sketching

– L2 sampling and frequency moment estimation

 Matrix computations

– Sketches for matrix multiplication

– Compressed matrix multiplication

 Hashing to check computation

– Matrix product checking

– Vector product checking

 Lower bounds for streaming and sketching

– Basic hard problems (Index, Disjointness)

– Hardness via reductions
Streams, Sketching and Big Data
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Sampling from Sketches

 Given inputs with positive and negative weights

 Want to sample based on the overall frequency distribution

– Sample from support set of n possible items

– Sample proportional to (absolute) weights

– Sample proportional to some function of weights

 How to do this sampling effectively?

 Recent approach: Lp sampling

Streams, Sketching and Big Data
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Lp Sampling

 Lp sampling: use sketches to sample i w/prob (1±e) fi
p/ǁfǁp

p

 “Efficient” solutions developed of size O(e-2 log2 n)

– [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11]

 L0 sampling enables novel “graph sketching” techniques

– Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12]

 L2 sampling allows optimal estimation of frequency moments

Streams, Sketching and Big Data
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L0 Sampling

 L0 sampling: sample with prob (1±e) fi
0/F0

– i.e., sample (near) uniformly from items with non-zero frequency

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]

– Sub-sample all items (present or not) with probability p

– Generate a sub-sampled vector of frequencies fp

– Feed fp to a k-sparse recovery data structure

 Allows reconstruction of fp if F0 < k 

– If fp is k-sparse, sample from reconstructed vector

– Repeat in parallel for exponentially shrinking values of p

Streams, Sketching and Big Data
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Sampling Process

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U

– Let N = F0 = |{ i : fi  0}|

– Want there to be a level where k-sparse recovery will succeed

– At level p, expected number of items selected S is Np

– Pick level p so that k/3 < Np  2k/3

 Chernoff bound: with probability exponential in k, 1  S  k

– Pick k = O(log 1/) to get 1- probability

Streams, Sketching and Big Data
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p=1/U

k-sparse recovery 
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k-Sparse Recovery

 Given vector x with at most k non-zeros, recover x via sketching

– A core problem in compressed sensing/compressive sampling

 First approach: Use Count-Min sketch of x

– Probe all U items, find those with non-zero estimated frequency

– Slow recovery: takes O(U) time

 Faster approach: also keep sum of item identifiers in each cell

– Sum/count will reveal item id

– Avoid false positives: keep fingerprint of items in each cell

 Can keep a sketch of size O(k log U) to recover up to k items

Streams, Sketching and Big Data

Sum, i : h(i)=j i

Count, i : h(i)=j xi

Fingerprint, i : h(i)=j xi r
i
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Uniformity

 Also need to argue sample is uniform

– Failure to recover could bias the process

 Pr[ i would be picked if k=n] = 1/F0 by symmetry

 Pr[ i is picked ] = Pr[ i would be picked if k=n  S k]
 (1-)/F0

 So (1-)/N  Pr[i is picked]  1/N

 Sufficiently uniform (pick  = e)

Streams, Sketching and Big Data
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Application: Graph Sketching

 Given L0 sampler, use to sketch (undirected) graph properties

 Connectivity: want to test if there is a path between all pairs

 Basic alg: repeatedly contract edges between components

 Use L0 sampling to provide edges on vector of adjacencies

 Problem: as components grow, sampling most likely to 
produce internal links

Streams, Sketching and Big Data
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Graph Sketching

 Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]

 Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i

 When node i and node j get merged, sum their L0 sketches

– Contribution of edge (i,j) exactly cancels out

 Only non-internal edges remain in the L0 sketches

 Use independent sketches for each iteration of the algorithm

– Only need O(log n) rounds with high probability

 Result: O(poly-log n) space per node for connectivity

Streams, Sketching and Big Data
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Other Graph Results via sketching

 K-connectivity via connectivity

– Use connectivity result to find and remove a spanning forest

– Repeat k times to generate k spanning forests F1, F2, … Fk

– Theorem: G is k-connected if i=1
k Fi is k-connected

 Bipartiteness via connectivity: 

– Compute c = number of connected components in G

– Generate G’ over V  V’ so (u,v)  E  (u, v’)  E’, (u’, v)  E’

– If G is bipartite, G’ has 2c components, else it has <2c components

 (Weight of the) Minimum spanning tree: 

– Round edge weights to powers of (1+e)

– Define ni = number of components on edges lighter than (1+e)i

– Fact: weight of MST on rounded weights is i e(1+e)ini

Streams, Sketching and Big Data
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Application: Fk via L2 Sampling

 Recall, Fk = i fi
k

 Suppose L2 sampling samples fi with probability fi
2/F2

– And also estimates sampled fi with relative error e

 Estimator: X = F2 fi
k-2 (with estimates of F2, fi)

– Expectation: E[X] = F2 i fi
k-2  fi

2 / F2 = Fk

– Variance: Var[X]  E[X2] = i fi
2/F2 (F2 fi

k-2)2 = F2 F2k-2

Streams, Sketching and Big Data
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Rewriting the Variance

 Want to express variance F2 F2k-2 in terms of Fk and domain size n

 Hölder’s inequality: x, y  ǁxǁp ǁyǁq for 1  p, q with 1/p+1/q=1

– Generalizes Cauchy-Shwarz inequality, where p=q=2. 

 So pick p=k/(k-2) and q = k/2 for k > 2.  Then
 1n, (fi)

2  ǁ1nǁk/(k-2) ǁ(fi)
2ǁk/2

F2 n(k-2)/k Fk
2/k (1)

 Also, since ǁxǁp+a  ǁxǁp for any p 1, a > 0

– Thus ǁxǁ2k-2  ǁxǁk for k  2

– So F2k-2 = ǁfǁ2k-2
2k-2  ǁfǁk

2k-2 = Fk
2-2/k (2)

 Multiply (1) * (2) : F2 F2k-2  n1-2/k Fk
2

– So variance is bounded by n1-2/k Fk
2

Streams, Sketching and Big Data
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Fk Estimation

 For k  3, we can estimate Fk via L2 sampling:

– Variance of our estimate is O(Fk
2 n1-2/k)

– Take mean of n1-2/ke-2 repetitions to reduce variance

– Apply Chebyshev inequality: constant prob of good estimate

– Chernoff bounds: O(log 1/) repetitions reduces prob to 

 How to instantiate this?

– Design method for approximate L2 sampling via sketches

– Show that this gives relative error approximation of fi

– Use approximate value of F2 from sketch

– Complicates the analysis, but bound stays similar

Streams, Sketching and Big Data
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L2 Sampling Outline

 For each i, draw ui uniformly in the range 0…1

– From vector of frequencies f, derive g so gi = fi/√ui

– Sketch gi vector

 Sample: return (i, fi) if there is unique i with gi
2 > t=F2/e threshold

– Pr[ gi
2 > t   j  i : gj

2 < t]= Pr[gi
2 > t] ji Pr[gj

2 < t]
= Pr[ui < efi

2/F2] ji Pr[uj > efj
2/F2]

= (efi
2/F2 )ji (1 - efj

2/F2)
≈ efi

2/F2

 Probability of returning anything is not so big:i e fi
2/F2 = e

– Repeat O(1/e log 1/) times to improve chance of sampling

Streams, Sketching and Big Data
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L2 sampling continued

 Given (estimated) gi s.t. gi
2  F2/e, estimate fi = ui gi

 Sketch size O(e-1 log n) means estimate of fi
2 has error (efi

2 + ui
2)

– With high prob, no ui < 1/poly(n), and so F2(g) = O(F2(f) log n)

– Since estimated fi
2/ui

2  F2/e, ui
2  efi

2/F2

 Estimating fi
2 with error efi

2 sufficient for estimating Fk

 Many details omitted

– See Precision Sampling paper [Andoni Krauthgamer Onak 11]

Streams, Sketching and Big Data
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Advanced Topics

 Lp Sampling

– L0 sampling and graph sketching

– L2 sampling and frequency moment estimation

 Matrix computations

– Sketches for matrix multiplication

– Compressed matrix multiplication

 Hashing to check computation

– Matrix product checking

– Vector product checking

 Lower bounds for streaming and sketching

– Basic hard problems (Index, Disjointness)

– Hardness via reductions
Streams, Sketching and Big Data
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Matrix Sketching

 Given matrices A, B, want to approximate matrix product AB

 Compute normed error of approximation C: ǁAB – Cǁ

 Give results for the Frobenius (entrywise) norm ǁǁF

– ǁCǁF = (i,j Ci,j
2)½

– Results rely on sketches, so this norm is most natural

Streams, Sketching and Big Data
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Direct Application of Sketches

 Build sketch of each row of A, each column of B

 Estimate Ci,j by estimating inner product of Ai with Bj

 Absolute error in estimate is e ǁAiǁ2 ǁBjǁ2 (whp)

 Sum over all entries in matrix, squared error is
e2 i,j ǁAiǁ2

2 ǁBjǁ2
2 = e2 (i ǁAiǁ2

2)(j ǁBjǁ2
2)

= e2 (ǁAǁF
2)(ǁBǁF

2)

 Hence, Frobenius norm of error is eǁAǁFǁBǁF

 Problem: need the bound to hold for all sketches simultaneously

– Requires polynomially small failure probability

– Increases sketch size by logarithmic factors

Streams, Sketching and Big Data
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Improved Matrix Multiplication Analysis

 Simple analysis is too pessimistic [Clarkson Woodruff 09]

– It bounds probability of failure of each sketch independently

 A better approach is to directly analyze variance of error

– Immediately, each estimate of (AB) has variance e2ǁAǁF
2ǁBǁF

2

– Just need to apply Chebyshev inequality to this… almost

 Problem: how to amplify probability of correctness?

– ‘Median’ trick doesn’t work: what is median of set of matrices?

– Find an estimate which is close to most others

 Estimate ǁAǁF
2ǁBǁF

2 := d using sketches

 Find an estimate that’s closer than d/2 to more than ½ the rest

 We find an estimate with this property with probability 1-

Streams, Sketching and Big Data
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Compressed Matrix Multiplication

 What if we are just interested in the large entries of AB?

– Or, the ability to estimate any entry of (AB)

 If we had a sketch of (AB), could find these approximately

 Compressed Matrix Multiplication [Pagh 12]:

– Can we compute sketch(AB) from sketch(A) and sketch(B)?

– To do this, need to dive into structure of the Count (AMS) sketch 

Streams, Sketching and Big Data
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Compressed Matrix Multiplication

 Entry (AB)ij gets mapped by a pairwise hash function to a cell q

 Idea: choose a carefully structured hash function

– h(i,j) = h1(i) + h2(j) (mod p) is pairwise, if h1 and h2 are parwise

 Take convolution of sketch(Ak) [with h1] and sketch(Bk ) [with h2]

– Cell q contains  Aik Bkj g(i) g(j) where h(i,j) = q

– Repeat for all k and sum to get sketch(AB)
Streams, Sketching and Big Data

c*g1(j)

c*g2(j)

c*g3(j)

c*g4(j)

h1(j)

hd(j)

i,j,c
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Compressed Matrix Multiplication: Analysis

 Computing the convolution takes time O(w log w)

– Via Fast Fourier Transform

 Each sketch convolution builds sketch of k’th outer product

– Total time cost: O(n(n + w log w))

– Compared to superquadratic cost of exact matrix product

– Estimate of (AB)ij has error ǁABǁF
2/w

 Several insights needed to build the method:

– Express matrix product as summation of outer products

– Convolution of sketches gives a sketch of outer product

– FFT speeds up from O(w2) to O(w log w)

Streams, Sketching and Big Data
24



Advanced Linear Algebra

 Recent work more directly approximates matrix multiplication: 

– use more powerful hash functions in sketching

– obtain a single accurate estimate with high probability

 Linear regression given matrix A and vector b:
find x  Rd to (approximately) solve minx ǁAx – bǁ

– Approach: solve the minimization in “sketch space”

– Require a summary of size O(d2/e log 1/)

Streams, Sketching and Big Data
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Advanced Topics

 Lp Sampling

– L0 sampling and graph sketching

– L2 sampling and frequency moment estimation

 Matrix computations

– Sketches for matrix multiplication

– Compressed matrix multiplication

 Hashing to check computation

– Matrix product checking

– Vector product checking

 Lower bounds for streaming and sketching

– Basic hard problems (Index, Disjointness)

– Hardness via reductions
Streams, Sketching and Big Data
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Streams, Sketching and Big Data

Outsourced Computation

 Current trend to ‘outsource’ computation

– Cloud computing: Amazon EC2, Microsoft Azure…

– Hardware support: multicore systems, graphics cards

 We provide data to a third party, they return an answer

 How can we be sure that the computation is correct?

– Duplicate the whole computation ourselves?

– Find some ad hoc sanity checks on the answer?

 Hashing to the rescue: use hashing to prove the correctness

– Previously, use hashing to test correctness of data (fingerprints)

– Now, use hashing to test correctness of computation

– Protocols must be very low cost for the data owner (streaming)

– Amount of information transmitted should not be too large
27



Example: Freivald’s Algorithm 

 Goal: Check AB = C for n x n matrices A, B, C

– Naïve algorithm: compute AB, check = C – O(n2.37…) time

 Freivald’s: check ABrT = CrT for random vector r 

– A classic example of randomized algorithms, takes O(n2) time

 Variant: define r = [1, r, r2…rn] and s = [1, s, s2…sn] for random r, s

 Check s(AB)rT = sCrT [ mod p ]

 Define hash function hr,s(X) = sXrT mod p = ij xij si rj mod p

 Pr[h(AB) = h(C)] = Probability that a polynomial in r, s of total 
degree 2n evaluates to 0 for randomly chosen variables = 2n/p

 p only has to be polynomial in n, so logarithmic number of bits

 Streaming friendly: compute (sA), (BrT) and (sCrT) incrementally

Streams, Sketching and Big Data
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Streams, Sketching and Big Data

Streaming Proofs

 Objective: prove integrity of the computed solution

– Not concerned with security: third party sees unencrypted data  

 Prover provides “proof” of the correct answer 

– Ensure that “verifier” has very low probability of being fooled

– Related to communication complexity Arthur-Merlin model, and 
Arithmetization, with additional streaming constraints

Data Stream

P
V “Proof”
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Streams, Sketching and Big Data

Inner Product Computation

 Given vectors a, b, defined in the stream, want to compute ab

 Inner product appears in many problems

– Core computation in data streams

– Requires (N) space to compute in traditional models

 Results: for h,v s.t. (hv) > N, there exists a protocol with proof 
size O(h log m), and space O(v log m) to compute inner product

– Lower bounds: hv = (N) necessary for exact computation

30



Streams, Sketching and Big Data

Inner Product Protocol

 Map [N] to h  v array

 Interpolate entries in array as polynomials a(x,y), b(x,y)

 Verifier picks random r, evaluates a(r, j) and b(r,j) for j  [v]

 Prover sends s(x) = j[v] a(x, j)b(x,j) (degree h) 

– Verifier checks s(r) = j[v] a(r,j)b(r,j)

– Output ab = i [h] s(i) if test passed

 Probability of failure small if evaluated 
over large enough field

– A “Low Degree Extension” / arithmetization technique

– Can view a(x,y), b(x,y) as (linear) hash functions of the data

3   7   1   2

0   8   5   9

1   1   1   0

3  7  1  2  0  8  5  9  1  1  1  0
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Streams, Sketching and Big Data

Streaming Hash Functions

 Must evaluate a(r,j) incrementally as a() is defined by stream

 Structure of polynomial means updates to (w,z) cause

a(r,j)  a(r,j) + pw,z(r,j)

where pw,z(x,y) = i [h]\{w} (x-i)(w-i)-1j [v]\{z} (y-j)(z-j)-1

– p is a Lagrange polynomial corresponding to an impulse at (w,z) 

 Can be computed quickly, using appropriate precomputed
look-up tables

 Evaluation is linear: can be computed over distributed data
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Consequences

 Verifier can keep space O(√n), process proof of size O(√n) to 
verify inner product of two vectors

 Many consequences of inner-product verification

– Easily check Euclidean norm of vector described in stream

– Verify solutions to linear programs (evaluate primal and dual)

– Graph computations, e.g. check connected components

– Count triangles (expressed as polynomial over derived stream)

– Flow computations (shortest paths, max flow) via IP formulation

Streams, Sketching and Big Data
33



Further Directions in Verification

 Multi-round protocols can reduce the costs exponentially

– Evaluate the low-degree extension of the data at one location

– Functions as a hash function for computation

 “Interactive Proofs for Muggles” [Goldwasser et al 08]

– A general purpose approach to verifying computation as circuits

– Implemented and evaluated by Thaler [Thaler 13]

 Much ongoing  around verification

– Distributed/parallel versions of these protocols

– Lower bounds for multi-round versions of the protocols

– Engineering practical implementations

Streams, Sketching and Big Data
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Advanced Topics

 Lp Sampling

– L0 sampling and graph sketching

– L2 sampling and frequency moment estimation

 Matrix computations

– Sketches for matrix multiplication

– Compressed matrix multiplication

 Hashing to check computation

– Matrix product checking

– Vector product checking

 Lower bounds for streaming and sketching

– Basic hard problems (Index, Disjointness)

– Hardness via reductions
Streams, Sketching and Big Data
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Streams, Sketching and Big Data

Computation As Communication

 Imagine Alice processing a prefix of the input

 Then takes the whole working memory, and sends to Bob

 Bob continues processing the remainder of the input

1 0 1 1 1 0 1 0 1 …

Alice

Bob
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Streams, Sketching and Big Data

Computation As Communication

 Suppose Alice’s part of the input corresponds to string x, and 
Bob’s part corresponds to string y...

 ...and computing the function corresponds to computing 
f(x,y)...

 ...then if f(x,y) has communication complexity (CC) (g(n)), 
then the computation has a space lower bound of (g(n))

 Proof by contradiction:  
If there was an algorithm with better space usage, we could 
run it on x, then send the memory contents as a message, and 
hence solve the communication problem
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Streams, Sketching and Big Data

Deterministic Equality Testing

 Alice has string x, Bob has string y, want to test if x=y

 Consider a deterministic (one-round, one-way) protocol that 
sends a message of length m < n

 There are 2m possible messages, so some strings must 
generate the same message: this would cause error

 So a deterministic message (sketch) must be (n) bits

– In contrast, we saw a randomized sketch of size O(log n)

1 0 1 1 1 0 1 0 1 …

1 0 1 1 0 0 1 0 1 …
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Streams, Sketching and Big Data

Four Hard Communication Problems

 INDEX: Alice’s x is binary string of length n, Bob’s y is index in [n]

Goal: output x[y]
Result: one-way randomized CC of INDEX is (n) bits

 AUGINDEX: as INDEX, but Bob also receives x[y+1]…x[n]
Result: one-way randomized CC of AUGINDEX is (n) bits

 DISJ: Alice’s x and Bob’s y are both length n binary strings 
Goal: Output 1 if i: x[i]=y[i]=1, else 0
Result: multi-round randomized CC of DISJ (disjointness) is (n) bits

 Gap-Hamming: Alice’s x and Bob’s y are both length n binary strings 

Promise: Ham(x,y) is either  N/2 - √N or  N/2 + √N

Goal: determine which case holds
Result: multi-round randomized CC of Gap-Hamming is (n) bits
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Streams, Sketching and Big Data

Simple Reduction to Disjointness

 F: output the highest frequency in the input

 Input: the two strings x and y from disjointness instance

 Reduction: if x[i]=1, then put i in input; then same for y

– A streaming reduction (compare to polynomial-time reductions)

 Analysis: if F=2, then intersection; if F1, then disjoint.

 Conclusion: Giving exact answer to F requires (N) bits

– Even approximating up to 50% relative error is hard

– Even with randomization: DISJ bound allows randomness

x: 1 0 1 1 0 1

y: 0 0 0 1 1 0

1, 3, 4, 6

4, 5
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Streams, Sketching and Big Data

Simple Reduction to Index

 F0: output the number of items in the stream

 Input: the strings x and index y from INDEX

 Reduction: if x[i]=1, put i in input; then put y in input

 Analysis: if (1-e)F’0(xy)>(1+e)F’0(x) then x[y]=1, else it is 0

 Conclusion: Approximating F0 for e<1/N requires (N) bits

– Implies that space to approximate must be (1/e)

– Bound allows randomization

x: 1 0 1 1 0 1

y: 5

1, 3, 4, 6

5
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Reduction to AUGINDEX [Clarkson Woodruff 09]

 Matrix-Multiplication: approximate ATB with error e2ǁAǁF ǁBǁF

– For r  c matrices.  A encodes string x, B encodes index y

 Bob uses suffix of x in y to remove heavy entries from A
ǁBǁF = 1 ǁAǁF = cr/log (cn) *(1 + 4 + … 22k)  4cr22k/3log (cn)

 Choose  r =  log(cn)/8e
2

so permitted error is c 22k / 6e2

– Each error in sign in estimate of (ATB) contributes 22k error

– Can tolerate error in at most 1/6 fraction of entries

 Matrix multiplication requires space (rc) = (c/e2 log (cn))
Streams, Sketching and Big Data

+1 -1 -2 -2  …  2k 2k … 0 0 0 0 0

-1 -1 -2 +2  …  2k 2k … 0 0 0 0 0

+1 +1 +2 -2  …  2k 2k … 0 0 0 0 0

-1 -1 +2 +2  …  2k 2k … 0 0 0 0 0[ ][
0 0 …

0 0 …

0 0 …

0 0 …

0 0 …

0 0 …

1 0 …

0 0 …

0 0 …

0 0 …

]c

r/log(cn)

ATB “reads off” 
j’th column of AT
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Streams, Sketching and Big Data

Lower Bound for Entropy

Gap-Hamming instance—Alice: x  {0,1}N, Bob: y  {0,1}N

Entropy estimation algorithm A

 Alice runs A on enc(x) = (1,x1), (2,x2), …, (N,xN)

 Alice sends over memory contents to Bob

 Bob continues A on enc(y) = (1,y1), (2,y2), …, (N,yN)

010011

(6,0)(5,1)(4,0)(3,0)(2,1)(1,1)

Bob

(6,1)(5,1)(4,0)(3,0)(2,1)(1,0)

110010
Alice
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Streams, Sketching and Big Data

Lower Bound for Entropy

 Observe: there are

– 2Ham(x,y) tokens with frequency 1 each

– N-Ham(x,y) tokens with frequency 2 each

 So (after algebra), H(S) = log N + Ham(x,y)/N = log N + ½  1/√N

 If we separate two cases, size of Alice’s memory contents = (N)
Set e = 1/(√(N) log N) to show bound of (e/log 1/e)-2)

010011

(6,0)(5,1)(4,0)(3,0)(2,1)(1,1)

Bob

(6,1)(5,1)(4,0)(3,0)(2,1)(1,0)

110010
Alice
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Streams, Sketching and Big Data

Lower Bound for F0

 Same encoding works for F0 (Distinct Elements)

– 2Ham(x,y) tokens with frequency 1 each

– N-Ham(x,y) tokens with frequency 2 each

 F0(S) = N + Ham(x,y)

 Either Ham(x,y)>N/2 + N or Ham(x,y)<N/2 - N

– If we could approximate F0 with e < 1/N, could separate

– But space bound = (N) = (e-2) bits

 Dependence on e for F0 is tight

 Similar arguments show (e-2) bounds for Fk

– Proof assumes k (and hence 2k) are constants
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Summary of Tools

 Vector equality: fingerprints

 Approximate item frequencies:

– Count-min (L1 guarantee), Count sketch (L2 guarantee)

 Euclidean norm, inner product: AMS sketch, JL sketches

 Count-distinct: k-Minimum values, Hyperloglog

 Compact set-representation: Bloom filters

 L0 sampling:hashing and sparse recovery

 L2 sampling: via count-sketch

 Graph sketching: L0 samples of neighborhood

 Frequency moments: via L2 sampling

 Matrix sketches: adapt AMS sketches, compressed matrix multiplication

Streams, Sketching and Big Data
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Summary of Lower Bounds

 Can’t deterministically test equality

 Can’t retrieve arbitrary bits from a vector of n bits: INDEX

– Even if some unhelpful suffix of the vector is given: AUGINDEX

 Can’t determine whether two n bit vectors intersect: DISJ

 Can’t distinguish small differences in Hamming distance:
GAP-HAMMING

 These in turn provide lower bounds on the cost of

– Finding the maximum frequency

– Approximating the number of distinct items

– Approximating matrix multiplication

Streams, Sketching and Big Data
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Current Directions in Streaming and Sketching

 Sparse representations of high dimensional objects

– Compressed sensing, sparse fast fourier transform

 Numerical linear algebra for (large) matrices

– k-rank approximation, linear regression, PCA, SVD, eigenvalues

 Computations on large graphs

– Sparsification, clustering, matching

 Geometric (big) data

– Coresets, facility location, optimization, machine learning

 Use of summaries in distributed computation

– MapReduce, Continuous Distributed models

Streams, Sketching and Big Data
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