Recap

Hashing-based sketch techniques summarize large data sets

- Summarize vectors:
 - Test equality (fingerprints)
 - Recover approximate entries (count-min, count sketch)
 - Approximate Euclidean norm (F₂) and dot product
 - Approximate number of non-zero entries (F_0)
 - Approximate set membership (Bloom filter)

Advanced Topics

L_p Sampling

- L₀ sampling and graph sketching
- L₂ sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Compressed matrix multiplication
- Hashing to check computation
 - Matrix product checking
 - Vector product checking
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions

Sampling from Sketches

- Given inputs with positive and negative weights
- Want to sample based on the overall frequency distribution
 - Sample from support set of n possible items
 - Sample proportional to (absolute) weights
 - Sample proportional to some function of weights
- How to do this sampling effectively?
- Recent approach: L_p sampling

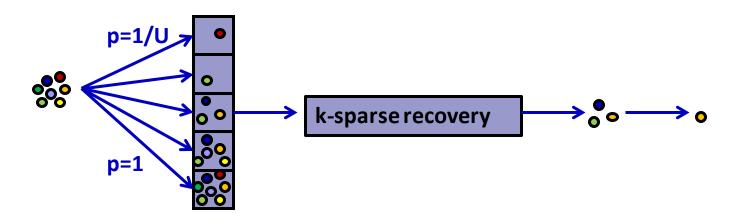
L_p Sampling

- **L**_p sampling: use sketches to sample i w/prob $(1\pm\epsilon) f_i^p / ||f||_p^p$
- "Efficient" solutions developed of size O(e⁻² log² n)
 - [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11]
- L₀ sampling enables novel "graph sketching" techniques
 - Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12]
- L₂ sampling allows optimal estimation of frequency moments

L₀ Sampling

- L_0 sampling: sample with prob (1± ϵ) f_i^0/F_0
 - i.e., sample (near) uniformly from items with non-zero frequency
- General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 - Sub-sample all items (present or not) with probability p
 - Generate a sub-sampled vector of frequencies f_p
 - Feed f_p to a k-sparse recovery data structure
 - Allows reconstruction of f_p if $F_0 < k$
 - If f_p is k-sparse, sample from reconstructed vector
 - Repeat in parallel for exponentially shrinking values of p

Sampling Process



- Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16... 1/U
 - Let N = $F_0 = |\{i : f_i \neq 0\}|$
 - Want there to be a level where k-sparse recovery will succeed
 - At level p, expected number of items selected S is Np
 - Pick level p so that $k/3 < Np \le 2k/3$
- Chernoff bound: with probability exponential in $k, 1 \le S \le k$
 - Pick k = O(log $1/\delta$) to get $1-\delta$ probability

k-Sparse Recovery

- Given vector x with at most k non-zeros, recover x via sketching
 - A core problem in compressed sensing/compressive sampling
- First approach: Use Count-Min sketch of x
 - Probe all U items, find those with non-zero estimated frequency
 - Slow recovery: takes O(U) time
- **Faster approach**: also keep sum of item identifiers in each cell
 - Sum/count will reveal item id
 - Avoid false positives: keep fingerprint of items in each cell
- Can keep a sketch of size O(k log U) to recover up to k items

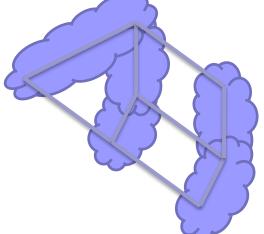
	Sum, $\sum_{i:h(i)=j} i$
	Count, $\sum_{i:h(i)=j} x_i$
	Fingerprint, $\sum_{i:h(i)=j} x_i r^i$
Str	earns, Skelching and big Dala

Uniformity

- Also need to argue sample is uniform
 - Failure to recover could bias the process
- Pr[i would be picked if k=n] = 1/F₀ by symmetry
- Pr[i is picked] = Pr[i would be picked if k=n \land S≤k] \ge (1- δ)/F₀
- So $(1-\delta)/N \le Pr[i \text{ is picked}] \le 1/N$
- Sufficiently uniform (pick $\delta = \varepsilon$)

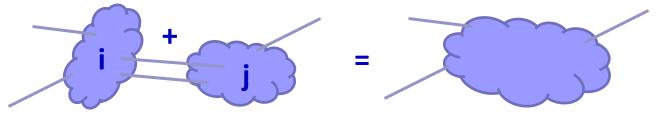
Application: Graph Sketching

- Given L₀ sampler, use to sketch (undirected) graph properties
- Connectivity: want to test if there is a path between all pairs
- Basic alg: repeatedly contract edges between components
- Use L₀ sampling to provide edges on vector of adjacencies
- Problem: as components grow, sampling most likely to produce internal links



Graph Sketching

- Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]
- Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i
- When node i and node j get merged, sum their L₀ sketches
 - Contribution of edge (i,j) exactly cancels out



- Only non-internal edges remain in the L₀ sketches
- Use independent sketches for each iteration of the algorithm
 - Only need O(log n) rounds with high probability
- Result: O(poly-log n) space per node for connectivity

Other Graph Results via sketching

- K-connectivity via connectivity
 - Use connectivity result to find and remove a spanning forest
 - Repeat k times to generate k spanning forests F₁, F₂, ... F_k
 - Theorem: G is k-connected if $\bigcup_{i=1}^{k} F_i$ is k-connected
- Bipartiteness via connectivity:
 - Compute c = number of connected components in G
 - Generate G' over $V \cup V'$ so $(u,v) \in E \Rightarrow (u, v') \in E'$, $(u', v) \in E'$
 - If G is bipartite, G' has 2c components, else it has <2c components
- (Weight of the) Minimum spanning tree: - Round edge weights to powers of $(1+\epsilon)$ - Define $n_i =$ number of components on edges lighter than $(1+\epsilon)^i$ - Fact: weight of MST on rounded weights is $\sum_i \epsilon (1+\epsilon)^i n_i$

Application: F_k via L₂ Sampling

- Recall, $F_k = \sum_i f_i^k$
- Suppose L₂ sampling samples f_i with probability f_i²/F₂
 - And also estimates sampled f_i with relative error ϵ
- **Estimator:** $X = F_2 f_i^{k-2}$ (with estimates of F_2 , f_i)
 - Expectation: $E[X] = F_2 \sum_i f_i^{k-2} \cdot f_i^2 / F_2 = F_k$
 - Variance: Var[X] $\leq E[X^2] = \sum_i f_i^2 / F_2 (F_2 f_i^{k-2})^2 = F_2 F_{2k-2}$

Rewriting the Variance

- Want to express variance $F_2 F_{2k-2}$ in terms of F_k and domain size n
- Hölder's inequality: $\langle x, y \rangle \le ||x||_p ||y||_q$ for $1 \le p$, q with 1/p+1/q=1
 - Generalizes Cauchy-Shwarz inequality, where p=q=2.
- So pick p=k/(k-2) and q = k/2 for k > 2. Then $\langle 1^{n}, (f_{i})^{2} \rangle \leq \|1^{n}\|_{k/(k-2)} \|(f_{i})^{2}\|_{k/2}$ $F_{2} \leq n^{(k-2)/k} F_{k}^{2/k}$ (1)
- Also, since $\|\mathbf{x}\|_{p+a} \leq \|\mathbf{x}\|_p$ for any $p \geq 1$, a > 0
 - Thus $\|x\|_{2k-2} \leq \|x\|_k$ for $k \geq 2$
 - So $F_{2k-2} = \|f\|_{2k-2}^{2k-2} \le \|f\|_{k}^{2k-2} = F_{k}^{2-2/k}$ (2)
- Multiply (1) * (2) : $F_2 F_{2k-2} \le n^{1-2/k} F_k^2$
 - So variance is bounded by $n^{1-2/k} F_k^2$

F_k Estimation

For $k \ge 3$, we can estimate F_k via L_2 sampling:

- Variance of our estimate is $O(F_k^2 n^{1-2/k})$
- Take mean of $n^{1-2/k}\epsilon^{-2}$ repetitions to reduce variance
- Apply Chebyshev inequality: constant prob of good estimate
- Chernoff bounds: O(log $1/\delta$) repetitions reduces prob to δ
- How to instantiate this?
 - Design method for approximate L₂ sampling via sketches
 - Show that this gives relative error approximation of f_i
 - Use approximate value of F_2 from sketch
 - Complicates the analysis, but bound stays similar

L₂ Sampling Outline

For each i, draw u_i uniformly in the range 0...1

- From vector of frequencies f, derive g so $g_i = f_i/Vu_i$
- Sketch g_i vector

Sample: return (i, f_i) if there is unique i with $g_i^2 > t = F_2/\varepsilon$ threshold

-
$$\Pr[g_i^2 > t \land \forall j \neq i : g_j^2 < t] = \Pr[g_i^2 > t] \prod_{j \neq i} \Pr[g_j^2 < t]$$

= $\Pr[u_i < \varepsilon f_i^2 / F_2] \prod_{j \neq i} \Pr[u_j > \varepsilon f_j^2 / F_2]$
= $(\varepsilon f_i^2 / F_2) \prod_{j \neq i} (1 - \varepsilon f_j^2 / F_2)$
 $\approx \varepsilon f_i^2 / F_2$

Probability of returning anything is not so big: $\sum_{i} \varepsilon f_{i}^{2}/F_{2} = \varepsilon$

- Repeat $O(1/\epsilon \log 1/\delta)$ times to improve chance of sampling

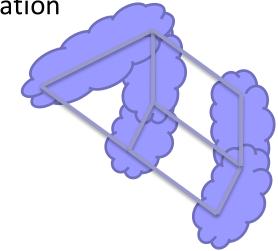
L₂ sampling continued

- Given (estimated) g_i s.t. $g_i^2 \ge F_2/\epsilon$, estimate $f_i = u_i g_i$
- Sketch size $O(\epsilon^{-1} \log n)$ means estimate of f_i^2 has error $(\epsilon f_i^2 + u_i^2)$
 - With high prob, no $u_i < 1/poly(n)$, and so $F_2(g) = O(F_2(f) \log n)$
 - Since estimated $f_i^2/u_i^2 \ge F_2/\epsilon$, $u_i^2 \le \epsilon f_i^2/F_2$
- Estimating f_i^2 with error εf_i^2 sufficient for estimating F_k
- Many details omitted
 - See Precision Sampling paper [Andoni Krauthgamer Onak 11]

Advanced Topics

L_p Sampling

- L₀ sampling and graph sketching
- L₂ sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Compressed matrix multiplication
- Hashing to check computation
 - Matrix product checking
 - Vector product checking
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions



Matrix Sketching

- Given matrices A, B, want to approximate matrix product AB
- Compute normed error of approximation C: |AB C|
- Give results for the Frobenius (entrywise) norm ||·||_F
 - $\|C\|_{\mathsf{F}} = (\sum_{i,j} C_{i,j}^{2})^{\frac{1}{2}}$
 - Results rely on sketches, so this norm is most natural

Direct Application of Sketches

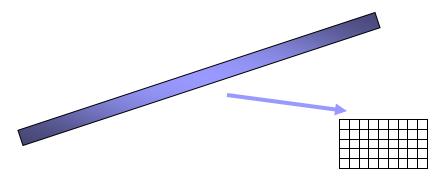
- Build sketch of each row of A, each column of B
- Estimate C_{i,i} by estimating inner product of A_i with B^j
- Absolute error in estimate is $\varepsilon \|A_i\|_2 \|B^j\|_2$ (whp)
- Sum over all entries in matrix, squared error is $\epsilon^{2} \sum_{i,j} \|A_{i}\|_{2}^{2} \|B^{j}\|_{2}^{2} = \epsilon^{2} (\sum_{i} \|A_{i}\|_{2}^{2}) (\sum_{j} \|B_{j}\|_{2}^{2})$ $= \epsilon^{2} (\|A\|_{F}^{2}) (\|B\|_{F}^{2})$
- Hence, Frobenius norm of error is $\varepsilon \|A\|_{F} \|B\|_{F}$
- Problem: need the bound to hold for all sketches simultaneously
 - Requires polynomially small failure probability
 - Increases sketch size by logarithmic factors

Improved Matrix Multiplication Analysis

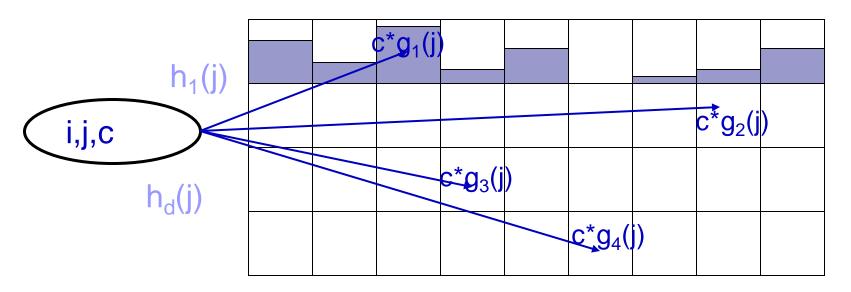
- Simple analysis is too pessimistic [Clarkson Woodruff 09]
 - It bounds probability of failure of each sketch independently
- A better approach is to directly analyze variance of error
 - Immediately, each estimate of (AB) has variance $\varepsilon^2 \|A\|_{F}^2 \|B\|_{F}^2$
 - Just need to apply Chebyshev inequality to this... almost
- Problem: how to amplify probability of correctness?
 - 'Median' trick doesn't work: what is median of set of matrices?
 - Find an estimate which is close to most others
 - Estimate ||A||_F² ||B||_F² := d using sketches
 - Find an estimate that's closer than d/2 to more than ½ the rest
 - We find an estimate with this property with probability 1- δ

Compressed Matrix Multiplication

- What if we are just interested in the large entries of AB?
 - Or, the ability to estimate any entry of (AB)
- If we had a sketch of (AB), could find these approximately
- Compressed Matrix Multiplication [Pagh 12]:
 - Can we compute sketch(AB) from sketch(A) and sketch(B)?
 - To do this, need to dive into structure of the Count (AMS) sketch



Compressed Matrix Multiplication



- Entry (AB)_{ij} gets mapped by a pairwise hash function to a cell q
- Idea: choose a carefully structured hash function
 - $h(i,j) = h_1(i) + h_2(j) \pmod{p}$ is pairwise, if h_1 and h_2 are parwise
- Take convolution of sketch (A_k) [with h_1] and sketch (B_k) [with h_2]
 - Cell q contains $\sum A_{ik} B_{kj} g(i) g(j)$ where h(i,j) = q
 - Repeat for all k and sum to get sketch(AB)

Compressed Matrix Multiplication: Analysis

- Computing the convolution takes time O(w log w)
 - Via Fast Fourier Transform
- Each sketch convolution builds sketch of k'th outer product
 - Total time cost: O(n(n + w log w))
 - Compared to superquadratic cost of exact matrix product
 - Estimate of $(AB)_{ij}$ has error $||AB||_F^2/w$
- Several insights needed to build the method:
 - Express matrix product as summation of outer products
 - Convolution of sketches gives a sketch of outer product
 - FFT speeds up from $O(w^2)$ to $O(w \log w)$

Advanced Linear Algebra

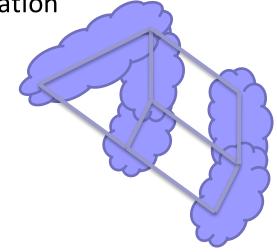
Recent work more directly approximates matrix multiplication:

- use more powerful hash functions in sketching
- obtain a single accurate estimate with high probability
- Linear regression given matrix A and vector b: find x ∈ R^d to (approximately) solve min_x ||Ax − b||
 - Approach: solve the minimization in "sketch space"
 - Require a summary of size $O(d^2/\epsilon \log 1/\delta)$

Advanced Topics

L_p Sampling

- L₀ sampling and graph sketching
- L₂ sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Compressed matrix multiplication
- Hashing to check computation
 - Matrix product checking
 - Vector product checking
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions



Outsourced Computation

- Current trend to 'outsource' computation
 - Cloud computing: Amazon EC2, Microsoft Azure...
 - Hardware support: multicore systems, graphics cards
- We provide data to a third party, they return an answer
- How can we be sure that the computation is correct?
 - Duplicate the whole computation ourselves?
 - Find some ad hoc sanity checks on the answer?
- Hashing to the rescue: use hashing to prove the correctness
 - Previously, use hashing to test correctness of data (fingerprints)
 - Now, use hashing to test correctness of computation
 - Protocols must be very low cost for the data owner (streaming)
 - Amount of information transmitted should not be too large

Example: Freivald's Algorithm

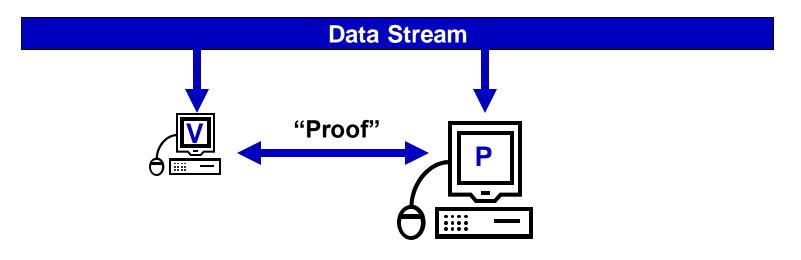
- Goal: Check AB = C for n x n matrices A, B, C
 - Naïve algorithm: compute AB, check = $C O(n^{2.37...})$ time
- Freivald's: check ABr^T = Cr^T for random vector r
 - A classic example of randomized algorithms, takes O(n²) time
- Variant: define r = [1, r, r²...rⁿ] and s = [1, s, s²...sⁿ] for random r, s
- Check s(AB)r^T = sCr^T [mod p]
 - Define hash function $h_{r,s}(X) = sXr^T \mod p = \sum_{ij} x_{ij} s^i r^j \mod p$
 - Pr[h(AB) = h(C)] = Probability that a polynomial in r, s of total degree 2n evaluates to 0 for randomly chosen variables = 2n/p
 - p only has to be polynomial in n, so logarithmic number of bits

Streaming friendly: compute (sA), (Br^T) and (sCr^T) incrementally

Streaming Proofs

Objective: prove integrity of the computed solution

- Not concerned with security: third party sees unencrypted data
- Prover provides "proof" of the correct answer
 - Ensure that "verifier" has very low probability of being fooled
 - Related to communication complexity Arthur-Merlin model, and Arithmetization, with additional streaming constraints



Inner Product Computation

- Given vectors a, b, defined in the stream, want to compute a.b
- Inner product appears in many problems
 - Core computation in data streams
 - Requires $\Omega(N)$ space to compute in traditional models
- Results: for h,v s.t. (hv) > N, there exists a protocol with proof size O(h log m), and space O(v log m) to compute inner product
 - Lower bounds: $hv = \Omega(N)$ necessary for exact computation

Inner Product Protocol

Map [N] to h × v array

3

2

- Interpolate entries in array as polynomials a(x,y), b(x,y)
- Verifier picks random r, evaluates a(r, j) and b(r,j) for j ∈ [v]
- Prover sends $s(x) = \sum_{j \in [v]} a(x, j)b(x, j)$ (degree h)
 - Verifier checks $s(r) = \sum_{j \in [v]} a(r,j)b(r,j)$
 - Output $a \cdot b = \sum_{i \in [h]} s(i)$ if test passed
- Probability of failure small if evaluated over large enough field
- passed0859evaluated1110
 - A "Low Degree Extension" / arithmetization technique
 - Can view a(x,y), b(x,y) as (linear) hash functions of the data

Streaming Hash Functions

- Must evaluate a(r,j) incrementally as a() is defined by stream
- Structure of polynomial means updates to (w,z) cause

 $a(r,j) \leftarrow a(r,j) + p_{w,z}(r,j)$

where $p_{w,z}(x,y) = \prod_{i \in [h] \setminus \{w\}} (x-i)(w-i)^{-1} \cdot \prod_{j \in [v] \setminus \{z\}} (y-j)(z-j)^{-1}$

- p is a Lagrange polynomial corresponding to an impulse at (w,z)
- Can be computed quickly, using appropriate precomputed look-up tables
- Evaluation is linear: can be computed over distributed data

Consequences

- Verifier can keep space O(vn), process proof of size O(vn) to verify inner product of two vectors
- Many consequences of inner-product verification
 - Easily check Euclidean norm of vector described in stream
 - Verify solutions to linear programs (evaluate primal and dual)
 - Graph computations, e.g. check connected components
 - Count triangles (expressed as polynomial over derived stream)
 - Flow computations (shortest paths, max flow) via IP formulation

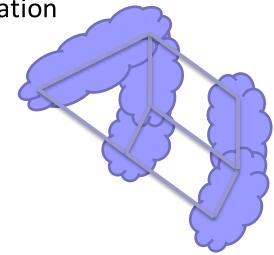
Further Directions in Verification

- Multi-round protocols can reduce the costs exponentially
 - Evaluate the low-degree extension of the data at one location
 - Functions as a hash function for computation
- "Interactive Proofs for Muggles" [Goldwasser et al 08]
 - A general purpose approach to verifying computation as circuits
 - Implemented and evaluated by Thaler [Thaler 13]
- Much ongoing around verification
 - Distributed/parallel versions of these protocols
 - Lower bounds for multi-round versions of the protocols
 - Engineering practical implementations

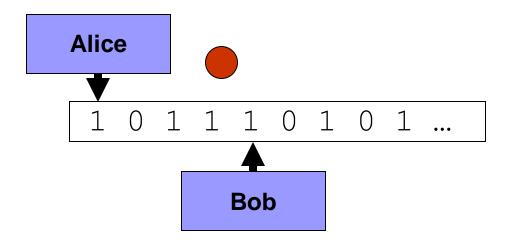
Advanced Topics

L_p Sampling

- L₀ sampling and graph sketching
- L₂ sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Compressed matrix multiplication
- Hashing to check computation
 - Matrix product checking
 - Vector product checking
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions



Computation As Communication



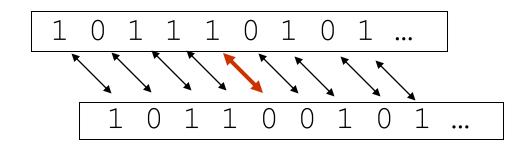
- Imagine Alice processing a prefix of the input
- Then takes the whole working memory, and sends to Bob
- Bob continues processing the remainder of the input

Computation As Communication

- Suppose Alice's part of the input corresponds to string x, and Bob's part corresponds to string y...
- ...and computing the function corresponds to computing f(x,y)...
- ...then if f(x,y) has communication complexity (CC) Ω(g(n)), then the computation has a *space lower bound* of Ω(g(n))
- Proof by contradiction:

If there was an algorithm with better space usage, we could run it on x, then send the memory contents as a message, and hence solve the communication problem

Deterministic Equality Testing



- Alice has string x, Bob has string y, want to test if x=y
- Consider a deterministic (one-round, one-way) protocol that sends a message of length m < n
- There are 2^m possible messages, so some strings must generate the same message: this would cause error
- So a deterministic message (sketch) must be $\Omega(n)$ bits
 - In contrast, we saw a randomized sketch of size O(log n)

Four Hard Communication Problems

- INDEX: Alice's x is binary string of length n, Bob's y is index in [n] Goal: output x[y] Result: one-way randomized CC of INDEX is Ω(n) bits
- AUGINDEX: as INDEX, but Bob also receives x[y+1]...x[n] Result: one-way randomized CC of AUGINDEX is Ω(n) bits
- DISJ: Alice's x and Bob's y are both length n binary strings
 Goal: Output 1 if ∃i: x[i]=y[i]=1, else 0
 Result: multi-round randomized CC of DISJ (disjointness) is Ω(n) bits
- Gap-Hamming: Alice's x and Bob's y are both length n binary strings Promise: Ham(x,y) is either ≤ N/2 - √N or ≥ N/2 + √N Goal: determine which case holds Result: multi-round randomized CC of Gap-Hamming is Ω(n) bits

Simple Reduction to Disjointness

$$x: 1 0 1 1 0 1 \longrightarrow 1, 3, 4, 6$$

y: 0 0 0 1 1 0 → 4, 5

- **F** $_{\infty}$: output the highest frequency in the input
- Input: the two strings x and y from disjointness instance
- Reduction: if x[i]=1, then put i in input; then same for y
 - A streaming reduction (compare to polynomial-time reductions)
- Analysis: if $F_{\infty}=2$, then intersection; if $F_{\infty}\leq 1$, then disjoint.
- Conclusion: Giving exact answer to F_{∞} requires $\Omega(N)$ bits
 - Even approximating up to 50% relative error is hard
 - Even with randomization: **DISJ** bound allows randomness

Simple Reduction to Index

$$\mathbf{x:} \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{1} \mathbf{0} \mathbf{1} \longrightarrow \mathbf{1,} \mathbf{3,} \mathbf{4,} \mathbf{6}$$

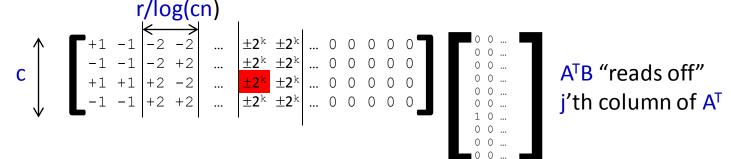
y: 5 → 5

- F₀: output the number of items in the stream
- Input: the strings x and index y from INDEX
- Reduction: if x[i]=1, put i in input; then put y in input
- Analysis: if $(1-\varepsilon)F'_0(x \cup y) > (1+\varepsilon)F'_0(x)$ then x[y]=1, else it is 0
- Conclusion: Approximating F_0 for $\varepsilon < 1/N$ requires $\Omega(N)$ bits
 - Implies that space to approximate must be $\Omega(1/\epsilon)$
 - Bound allows randomization

Reduction to AUGINDEX [Clarkson Woodruff 09]

• Matrix-Multiplication: approximate A^TB with error $\varepsilon^2 \|A\|_{F} \|B\|_{F}$

- For $\mathbf{r} \times \mathbf{c}$ matrices. A encodes string x, B encodes index y



- Bob uses suffix of x in y to remove heavy entries from A $\|B\|_{F} = 1$ $\|A\|_{F} = cr/log(cn) * (1 + 4 + ... 2^{2k}) \le 4cr2^{2k}/3log(cn)$
- Choose $r = \log(cn)/8\epsilon^2$ so permitted error is $c 2^{2k} / 6\epsilon^2$
 - Each error in sign in estimate of (A^TB) contributes 2^{2k} error
 - Can tolerate error in at most 1/6 fraction of entries
- Matrix multiplication requires space $\Omega(rc) = \Omega(c/\epsilon^2 \log (cn))$

Lower Bound for Entropy

Gap-Hamming instance—Alice: $x \in \{0,1\}^N$, Bob: $y \in \{0,1\}^N$ Entropy estimation algorithm **A**

- Alice runs **A** on enc(x) = $\langle (1, x_1), (2, x_2), ..., (N, x_N) \rangle$
- Alice sends over memory contents to Bob
- Bob continues **A** on enc(y) = $\langle (1,y_1), (2,y_2), ..., (N,y_N) \rangle$

Streams, Sketching and Big Data

Lower Bound for Entropy

Observe: there are

- 2Ham(x,y) tokens with frequency 1 each
- N-Ham(x,y) tokens with frequency 2 each
- So (after algebra), $H(S) = \log N + Ham(x,y)/N = \log N + \frac{1}{2} \pm \frac{1}{\sqrt{N}}$
- If we separate two cases, size of Alice's memory contents = Ω(N)
 Set ε = 1/(√(N) log N) to show bound of Ω(ε/log 1/ε)⁻²)

Streams, Sketching and Big Data

Lower Bound for F₀

- Same encoding works for F₀ (Distinct Elements)
 - 2Ham(x,y) tokens with frequency 1 each
 - N-Ham(x,y) tokens with frequency 2 each
- $F_0(S) = N + Ham(x,y)$
- Either Ham(x,y)>N/2 + \sqrt{N} or Ham(x,y)<N/2 \sqrt{N}
 - If we could approximate F_0 with $\varepsilon < 1/\sqrt{N}$, could separate
 - But space bound = $\Omega(N) = \Omega(\epsilon^{-2})$ bits
- Dependence on ε for F_0 is tight
- Similar arguments show $\Omega(\epsilon^{-2})$ bounds for F_k
 - Proof assumes k (and hence 2^k) are constants

Summary of Tools

- Vector equality: fingerprints
- Approximate item frequencies:
 - Count-min (L₁ guarantee), Count sketch (L₂ guarantee)
- Euclidean norm, inner product: AMS sketch, JL sketches
- Count-distinct: k-Minimum values, Hyperloglog
- Compact set-representation: Bloom filters
- L₀ sampling: hashing and sparse recovery
- L₂ sampling: via count-sketch
- Graph sketching: L₀ samples of neighborhood
- Frequency moments: via L₂ sampling
- Matrix sketches: adapt AMS sketches, compressed matrix multiplication

Summary of Lower Bounds

- Can't deterministically test equality
- Can't retrieve arbitrary bits from a vector of n bits: INDEX
 - Even if some unhelpful suffix of the vector is given: **AUGINDEX**
- Can't determine whether two n bit vectors intersect: DISJ
- Can't distinguish small differences in Hamming distance:
 GAP-HAMMING
- These in turn provide lower bounds on the cost of
 - Finding the maximum frequency
 - Approximating the number of distinct items
 - Approximating matrix multiplication

Current Directions in Streaming and Sketching

- Sparse representations of high dimensional objects
 - Compressed sensing, sparse fast fourier transform
- Numerical linear algebra for (large) matrices
 - k-rank approximation, linear regression, PCA, SVD, eigenvalues
- Computations on large graphs
 - Sparsification, clustering, matching
- Geometric (big) data
 - Coresets, facility location, optimization, machine learning
- Use of summaries in distributed computation
 - MapReduce, Continuous Distributed models