I
Recap

m Hashing-based sketch techniques summarize large data sets

B Summarize vectors:
— Test equality (fingerprints)
— Recover approximate entries (count-min, count sketch)
— Approximate Euclidean norm (F,) and dot product
— Approximate number of non-zero entries (F;)
— Approximate set membership (Bloom filter)

Streams, Sketching and Big Data

I
Advanced Topics

m L, Sampling
— Ly sampling and graph sketching

— L, sampling and frequency moment estimation
B Matrix computations f
— Sketches for matrix multiplication 4D
— Compressed matrix multiplication /3 {\ﬂ
m Hashing to check computation %
— Matrix product checking
— Vector product checking
m Lower bounds for streaming and sketching

— Basic hard problems (Index, Disjointness)
— Hardness via reductions

Streams, Sketching and Big Data

I
Sampling from Sketches

®m Given inputs with positive and negative weights

m Want to sample based on the overall frequency distribution
— Sample from support set of n possible items
— Sample proportional to (absolute) weights

— Sample proportional to some function of weights
m How to do this sampling effectively?
m Recentapproach: L,sampling

Streams, Sketching and Big Data

I
L, Sampling

m L, sampling: use sketchesto sample i w/prob (1+¢g) fP/[|f[| P
m “Efficient” solutions developed of size O(¢ log? n)
— [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11]
m L, sampling enables novel “graph sketching” techniques
— Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12]
m L, sampling allows optimal estimation of frequency moments

Streams, Sketching and Big Data

I
L, Sampling

m L, sampling: sample with prob (1z¢) f°/F,

— i.e., sample (near) uniformly from items with non-zero frequency
m General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]

— Sub-sample all items (present or not) with probability p

— Generate a sub-sampled vector of frequencies f,

— Feed f, to a k-sparse recovery data structure

= Allows reconstruction of f, if Fy <k
— If f,is k-sparse, sample from reconstructed vector
— Repeat in parallel for exponentially shrinking values of p

Streams, Sketching and Big Data

I
Sampling Process

> | k-sparserecovery >: o—>0

m Exponential set of probabilities, p=1, ¥, %, 1/8, 1/16... 1/U
— LetN=Fy=|{i:f =0}
— Want there to be a level where k-sparse recovery will succeed
— At level p, expected number of items selected Sis Np
— Pick level p so that k/3 < Np < 2k/3

m Chernoff bound: with probability exponential in k, 1 <S <k
— Pick k = O(log 1/8) to get 1-0 probability

Streams, Sketching and Big Data

I
k-Sparse Recovery

m Given vector x with at most k non-zeros, recover x via sketching
— A core problem in compressed sensing/compressive sampling

m First approach: Use Count-Min sketch of x
— Probe all U items, find those with non-zero estimated frequency
— Slow recovery: takes O(U) time

m Faster approach: also keep sum of item identifiers in each cell
— Sum/count will reveal item id
— Avoid false positives: keep fingerprint of items in each cell

m Can keep a sketch of size O(k log U) to recover up to k items

Sum, 2. (i) i
Count, Zi : h(i)=j X;

Fingerprint, 2;. i< X I'

StrEdlllS, SKELLIINY dllu Bly Ddld

I
Uniformity

m Also need to argue sample is uniform
— Failure to recover could bias the process

m Pr[iwould be picked if k=n] = 1/F, by symmetry

m Pr[iis picked] =Pr[iwould be picked if k=n A S<K]
> (1-0)/F,

m So (1-8)/N < PrJiis picked] <1/N
m Sufficiently uniform (pick o =€)

Streams, Sketching and Big Data

I
Application: Graph Sketching

Given L, sampler, use to sketch (undirected) graph properties
Connectivity: want to test if there is a path between all pairs

: repeatedly contract edges between components
Use L, sampling to provide edges on vector of adjacencies

Problem: as components grow, sampling most likely to

oroduce internal links /))
& }

10 Streams, Sketching and Big Data

Graph Sketching

11

Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]
Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i
When node i and node j get merged, sum their L, sketches

— Contribution of edge (i,j) exactly cancels out

/ﬁ e <4
< J

RS

Only non-internal edges remain in the L, sketches

Use independent sketches for each iteration of the algorithm
— Only need O(log n) rounds with high probability
Result: O(poly-log n) space per node for connectivity

Streams, Sketching and Big Data

I
Other Graph Results via sketching

B K-connectivity via connectivity
— Use connectivity result to find and remove a spanning forest
— Repeat k times to generate k spanning forests Fy, F,, ... F,
— Theorem: G is k-connected if U;_,F; is k-connected
B Bipartiteness via connectivity:
— Compute ¢ = number of connected components in G
— Generate G overVUV'so (uv) e E=(u,V') e E/, (U,Vv) e
— If Gis bipartite, G’ has 2c components, else it has <2c components

spanning tree:

yights tofpowers o
f £dmponents 4 o
' —

Fact: eight of MST on rounded eights is 2 €(1+€)'n,

12 Streams, Sketching and Big Data

I
Application: F, via L, Sampling

m Recall, F, = 2. fX

m Suppose L, sampling samples f. with probability f2/F,
— And also estimates sampled f; with relative error ¢

m Estimator: X =F, f*2 (with estimates of F,, f;)
- CEX]=F, 2 f*%- 2/ F, = F
_ : Var[X] < E[X?] = 2. f2/F, (F, f*2)2=F, Fy 5

13 Streams, Sketching and Big Data

I
Rewriting the Variance

m Want to express variance F, F,, , in terms of F, and domain size n

= (%, ¥) < |Ixll, llylly for 1 <p, g with 1/p+1/g=1
— Generalizes Cauchy-Shwarz inequality, where p=g=2.

m So pick p=k/(k-2) and g = k/2 for k> 2. Then

1 (F)2) < M2 jgeay NCFD M2
F2 < n(k-Z)/k F 2/k (1)

m Also, since [[x]|,,, < [Ix]|, for any p=1, a>0

— Thus [|x[l52 < [Ix[l for k > 2

— S0 Fap = [Iflla?2 < Ifll 2<% = F 22k (2)
m Multiply (1) * (2) : F, Fy, <n%kF2

— So variance is bounded by n12/kF, 2

14 Streams, Sketching and Big Data

|
F, Estimation

m For k>3, we can estimate F, via L, sampling:
— Variance of our estimate is O(F 2 n1-2/k)
— Take mean of n1"%/kg=2 repetitions to reduce variance
— Apply Chebyshev inequality: constant prob of good estimate
— Chernoff bounds: O(log 1/9) repetitions reduces prob to o
m How toinstantiate this?
— Design method for approximate L, sampling via sketches
— Show that this gives relative error approximation of f;
— Use approximate value of F, from sketch
— Complicates the analysis, but bound stays similar

15 Streams, Sketching and Big Data

I
L, Sampling Outline

m Foreach i, draw u; uniformly in the range 0...1
— From vector of frequencies f, derive g so g; = f,/Vu
— Sketch g; vector
m Sample: return (i, f.) if there is unique i with g > t=F, /¢ threshold
- Prlg®>tAVj=i:g?<t]=Pr[g?>t] [l Prlg?<t]
= Prlu; < &fi?/F,] 11 Prlu; > efi?/F,]
= (efi?/Fy) 114 (1 - €f?/F,)
= gf?/F,
m Probability of returning anything is not so big: 2. ef2/F,=¢

— Repeat O(1/¢ log 1/0) times to improve chance of sampling

16 Streams, Sketching and Big Data

I
L, sampling continued

m Given (estimated) g; s.t. g2 > F, /¢, estimatef = u, g,

m Sketchsize O(e™ log n) means estimate of f2 has error (ef2 + u?)
— With high prob, no u; < 1/poly(n), and so F,(g) = O(F,(f) log n)
— Since estimated f2/u? > F,/¢, u? < ef/F,

m Estimating f.2 with error &f 2 sufficient for estimating F,

m Many details omitted
— See Precision Sampling paper [Andoni Krauthgamer Onak 11]

17 Streams, Sketching and Big Data

I
Advanced Topics

m L, Sampling
— Ly sampling and graph sketching

— L, sampling and frequency moment estimation
B Matrix computations f
— Sketches for matrix multiplication 4D

— Compressed matrix multiplication /3 {\,_
m Hashing to check computation %

— Matrix product checking
— Vector product checking

m Lower bounds for streaming and sketching
— Basic hard problems (Index, Disjointness)
— Hardness via reductions

18 Streams, Sketching and Big Data

I
Matrix Sketching

m Given matrices A, B, want to approximate matrix product AB
m Compute normed error of approximation C: ||[AB —C]||

m Give results for the Frobenius (entrywise) norm |||

- |IClls = (Zi,j Ci,jz)yz
— Results rely on sketches, so this norm is most natural

19 Streams, Sketching and Big Data

I
Direct Application of Sketches

Build sketch of each row of A, each column of B
Estimate C;; by estimating inner product of A; with B
Absolute error in estimate is € || A, ||B|l, (whp)

Sum over all entries in matrix, squared error is
&2 255 Al B> = &2 (25 1AL (2 11B4ll,2)
= g (A=) (IBI:2)
m Hence, Frobenius norm of error is €||A||¢||B]|
m Problem: need the bound to hold for all sketches simultaneously

— Requires polynomially small failure probability
— Increases sketch size by logarithmic factors

20 Streams, Sketching and Big Data

I
Improved Matrix Multiplication Analysis

m Simple analysis is too pessimistic [Clarkson Woodruff 09]
— It bounds probability of failure of each sketch independently
m A betterapproach is to directly analyze variance of error
— Immediately, each estimate of (AB) has variance £?||A||:%||B||¢?
— Just need to apply Chebyshev inequality to this... almost
m Problem: how to amplify probability of correctness?
— ‘Median’ trick doesn’t work: what is median of set of matrices?
— Find an estimate which is close to most others
m Estimate ||Al|:%[|B||? := d using sketches
m Find an estimate that’s closer than d/2 to more than % the rest

m We find an estimate with this property with probability 1-0

21 Streams, Sketching and Big Data

I
Compressed Matrix Multiplication

m What if we are just interested in the large entries of AB?
— Or, the ability to estimate any entry of (AB)
m |f we had a sketch of (AB), could find these approximately
m Compressed Matrix Multiplication [Pagh 12]:
— Can we compute sketch(AB) from sketch(A) and sketch(B)?
— To do this, need to dive into structure of the Count (AMS) sketch

22 Streams, Sketching and Big Data

I
Compressed Matrix Multiplication

R0
S
00
T letg()

m Entry (AB); gets mapped by a pairwise hash function to a cell g

m |dea: choose a carefully structured hash function
— h(i,j) = hy(i) + hy(j) (mod p) is pairwise, if h; and h, are parwise

m Take convolution of sketch(A.,) [with h;] and sketch(B,) [with h,]
— Cell g contains 2. A, By; g(i) g(j) where h(i,j) = g
— Repeat for all k and sum to get sketch(AB)

23 Streams, Sketching and Big Data

I
Compressed Matrix Multiplication: Analysis

m Computing the convolution takes time O(w log w)
— Via Fast Fourier Transform
m Each sketch convolution builds sketch of k’th outer product
— Total time cost: O(n(n + w log w))
— Compared to superquadratic cost of exact matrix product
— Estimate of (AB);; has error ||AB||:2/w
m Several insights needed to build the method:
— Express matrix product as summation of outer products
— Convolution of sketches gives a sketch of outer product
— FFT speeds up from O(w?) to O(w log w)

24 Streams, Sketching and Big Data

I
Advanced Linear Algebra

m Recent work more directly approximates matrix multiplication:
— use more powerful hash functions in sketching
— obtain a single accurate estimate with high probability

m Linear regression given matrix A and vector b:
find x € RY to (approximately) solve min, ||Ax—b||

— Approach: solve the minimization in “sketch space”

— Require a summary of size O(d?/¢ log 1/5)

25 Streams, Sketching and Big Data

I
Advanced Topics

m L, Sampling
— Ly sampling and graph sketching

— L, sampling and frequency moment estimation
B Matrix computations f
— Sketches for matrix multiplication 4D

— Compressed matrix multiplication /3 {\ﬂ
m Hashing to check computation %

— Matrix product checking
— Vector product checking

m Lower bounds for streaming and sketching
— Basic hard problems (Index, Disjointness)
— Hardness via reductions

26 Streams, Sketching and Big Data

I
Outsourced Computation

m Current trend to ‘outsource’ computation
— Cloud computing: Amazon EC2, Microsoft Azure... f,\
— Hardware support: multicore systems, graphics cards \

m We provide data to a third party, they return an answer \\
m How can we be sure that the computationis correct?

— Duplicate the whole computation ourselves?

— Find some ad hoc sanity checks on the answer?

m Hashing to the rescue: use hashing to prove the correctness
— Previously, use hashing to test correctness of data (fingerprints)
— Now, use hashing to test correctness of
— Protocols must be very low cost for the data owner (streaming)
— Amount of information transmitted should not be too large

27 Streams, Sketching and Big Data

I
Example: Freivald’s Algorithm

O : Check AB = C for n x n matrices A, B, C
— Naive algorithm: compute AB, check = C — O(n%37+) time
m Freivald’s: check ABr" = Cr' for random vector r
— A classic example of randomized algorithms, takes O(n?) time
N :definer=[1,r, r%..r"land s =[1, s, s%...s"] for randomr, s
m Check s(AB)r'=sCr’' [modp]
= Define hash function h, ((X) = sXr" mod p =2; x;;s' mod p

m Pr[h(AB) = h(C)] = Probability that a polynomial inr, s of total
degree 2n evaluates to O for randomly chosen variables = 2n/p

m p only has to be polynomial in n, so logarithmic number of bits

m Streaming friendly: compute (sA), (Br') and (sCr') incrementally

28 Streams, Sketching and Big Data

I
Streaming Proofs

m Objective: prove integrity of the computed solution
— Not concerned with security: third party sees unencrypted data
m Prover provides “proof” of the correct answer

— Ensure that “verifier” has very low probability of being fooled

— Related to communication complexity Arthur-Merlin model, and
Arithmetization, with additional streaming constraints

Data Stream

29 Streams, Sketching and Big Data

I
Inner Product Computation

m Given vectors a, b, defined in the stream, want to compute a-b

®m Inner product appears in many problems
— Core computation in data streams

— Requires Q2(N) space to compute in traditional models

m Results: for h,vs.t. (hv) > N, there exists a protocol with proof
size O(h log m), and space O(v log m) to compute inner product

— Lower bounds: hv = QQ(N) necessary for exact computation

30 Streams, Sketching and Big Data

_
Inner Product Protocol

371208591110 |

m Map [N]to h xvarray
m Interpolate entries in array as polynomials a(x,y), b(x,y)
m Verifier picks random r, evaluates a(r, j) and b(r,j) forj € [v]
m Prover sends s(x) = 2.1,y a(x, j)b(x,j) (degree h)
— Verifier checks s(r) = 2y a(r,j)b(r,j) S 712
— Output a-b =2 g s(i) if test passed O 8 5 9
m Probability of failure small if evaluated 1 1 1 0

over large enough field
— A “Low Degree Extension” / arithmetization technique
— Can view a(x,y), b(x,y) as (linear) hash functions of the data

31 Streams, Sketching and Big Data

Streaming Hash Functions

32

Must evaluate a(r,j) incrementally as a() is defined by stream
Structure of polynomial means updates to (w,z) cause

a(r,j) <= a(rj) + py,(r))

where pw,z(xry) = 1_[i e [h]\{w} (X_i)(w'i)_l'Hj e[v]\{z} (y_j)(z'j)_l
— pis alagrange polynomial corresponding to an impulse at (w,z)

Can be computed quickly, using appropriate precomputed
look-up tables

Evaluation is linear: can be computed over distributed data

Streams, Sketching and Big Data

I
Consequences

m Verifier can keep space O(Vn), process proof of size O(Vn) to
verify inner product of two vectors

m Many consequences of inner-product verification
— Easily check Euclidean norm of vector described in stream
— Verify solutions to linear programs (evaluate primal and dual)
— Graph computations, e.g. check connected components
— Count triangles (expressed as polynomial over derived stream)
— Flow computations (shortest paths, max flow) via IP formulation

33 Streams, Sketching and Big Data

_
Further Directions in Verification

m Multi-round protocols can reduce the costs exponentially
— Evaluate the low-degree extension of the data at one location
— Functions as a hash function for computation
m “Interactive Proofs for Muggles” [Goldwasser et al 08]
— A general purpose approach to verifying computation as circuits
— Implemented and evaluated by Thaler [Thaler 13]
m Much ongoing around verification
— Distributed/parallel versions of these protocols
— Lower bounds for multi-round versions of the protocols
— Engineering practical implementations

34 Streams, Sketching and Big Data

I
Advanced Topics

m L, Sampling
— Ly sampling and graph sketching

— L, sampling and frequency moment estimation
B Matrix computations f
— Sketches for matrix multiplication 4D

— Compressed matrix multiplication /? {\,_
m Hashing to check computation %

— Matrix product checking
— Vector product checking

m Lower bounds for streaming and sketching
— Basic hard problems (Index, Disjointness)
— Hardness via reductions

35 Streams, Sketching and Big Data

I
Computation As Communication

Alice
O

4

1 01 1 10101 ..
A
Bob

m Imagine Alice processing a prefix of the input
m Then takes the whole working memory, and sends to Bob
m Bob continues processing the remainder of the input

36 Streams, Sketching and Big Data

I
Computation As Communication

m Suppose Alice’s part of the input corresponds to string x, and
Bob’s part corresponds to string y...

m ...and computing the function corresponds to computing
f(x,y)...

m ...thenif f(x,y) has communication complexity (CC) Q(g(n)),
then the computation has a space lower bound of €2(g(n))

m Proof by contradiction:
If there was an algorithm with better space usage, we could
run it on x, then send the memory contents as a message, and
hence solve the communication problem

37 Streams, Sketching and Big Data

Deterministic Equality Testing

38

101110101 ..

SOOI,

101100101 ..

Alice has string x, Bob has string y, want to test if x=y

Consider a deterministic (one-round, one-way) protocol that
sends a message of length m <n

There are 2™ possible messages, so some strings must
generate the same message: this would cause error

So a deterministic message (sketch) must be €2(n) bits

— In contrast, we saw a randomized sketch of size O(log n)

Streams, Sketching and Big Data

Four Hard Communication Problems

39

INDEX: Alice’s x is binary string of length n, Bob’s y is index in [n]
Goal: output x[y]
Result: one-way randomized CC of INDEX is 2(n) bits

AUGINDEX: as INDEX, but Bob also receives x[y+1]...x[n]
Result: one-way randomized CC of AUGINDEX is €2(n) bits

DISJ: Alice’s x and Bob’s y are both length n binary strings

Goal: Output 1 if Ji: x[i]=y][i]=1, else O

Result: multi-round randomized CC of DISJ (disjointness) is 2(n) bits
Gap-Hamming: Alice’s xand Bob’sy are both length n binary strings
Promise: Ham(x,y) is either < N/2 - VN or > N/2 + VN

Goal: determine which case holds

Result: multi-round randomized CC of Gap-Hamming is Q2(n) bits

Streams, Sketching and Big Data

I
Simple Reduction to Disjointness

x:101101— 1,3,4,6

y:000110— 4,5

m F_:outputthe highest frequency in the input
m Input: the two strings x and y from disjointness instance
m Reduction: if x[i]=1, then puti in input; then same fory
— A streaming reduction (compare to polynomial-time reductions)
m Analysis: if F_=2, then intersection; if F_<1, then disjoint.
m Conclusion: Giving exact answer to F_ requires QQ(N) bits

— Even approximating up to 50% relative error is hard
— Even with randomization: DISJ bound allows randomness

40 Streams, Sketching and Big Data

I
Simple Reduction to Index

x:101101— 1,3,4,6

y: 5 — 5

Fo: output the number of items in the stream
Input: the strings x and index y from INDEX

Reduction: if x[i]=1, putiin input; then put y in input
Analysis: if (1-)F o(xwy)>(1+€)F 4(x) then x[y]=1, else it is O

Conclusion: Approximating F, for e<1/N requires QQ(N) bits
— Implies that space to approximate must be Q(1/¢)
— Bound allows randomization

41 Streams, Sketching and Big Data

I
Reduction to AUGINDEX [Clarkson Woodruff 09]

m Matrix-Multiplication: approximate A™B with error &2||A]|¢ ||B|l¢
— For r x c matrices. A encodes string x, B encodes index y

r/log(cn)

A'B “reads off”
j’th column of AT

O O O O
O O O O
O O O O
O O O O
O O O O

+1 -1|-2 -2| .. |$2% £2% ..
-1 -1(-2 +2| .. (428 +25
¢ +1 +1[+2 -2| . -J_rzk
-1 =1 [+2 +2| .. |$2F £2%| .

m Bob uses suffix of x in y to remove heavy entries from A
1Bl =1 IA]l: = cr/log (cn) *(1 + 4 + ... 2%%) <4cr2%¢/3log (cn)

m Choose r = Iog(cn)/&e2 so permitted error is ¢ 22¢ / 6¢2

O OO Rr OO O OO Oo
[cleoNeoNoNeNoNoNeNoN o]

— Each error in sign in estimate of (ATB) contributes 22 error
— Can tolerate error in at most 1/6 fraction of entries

m Matrix multiplication requires space Q(rc) = Q(c/e? log (cn))

42 Streams, Sketching and Big Data

Lower Bound for Entropy

43

Gap-Hamming instance—Alice: x € {0,1}", Bob:y € {0,1}"
Entropy estimation algorithm A

Alice runs A on enc(x) = {(1,xy), (2,X5), ..., (N,xy))

Alice sends over memory contents to Bob

Bob continues A on enc(y) ={(1,y,), (2,¥,), -.., (N,y\))

0 1 0 0 1 1
Alice
(1,0) (2,1) (3,0) (4,0) (5,1) (6,1)
(1,1) (2,1) (3,0) (4,0) (5,1) (6,0)
Bob

1 1 0 0 1 0

Streams, Sketching and Big Data

I
Lower Bound for Entropy

m Observe: there are
— 2Ham(x,y) tokens with frequency 1 each
— N-Ham(x,y) tokens with frequency 2 each
m So (after algebra), H(S) = log N + Ham(x,y)/N =log N + % + 1/VN

m [f we separate two cases, size of Alice’s memory contents = C2(N)
Set e = 1/(V(N) log N) to show bound of Q(g/log 1/¢)?)

0 1 0 0 1 1
Alice
(1,0) (2,1) (3,0) (4,0) (5,1) (6,1)
(1,1) (2,1) (3,0) (4,0) (5,1) (6,0)
Bob

1 1 0 0 1 0

44 Streams, Sketching and Big Data

]
Lower Bound for F,

m Same encoding works for F, (Distinct Elements)
— 2Ham(x,y) tokens with frequency 1 each
— N-Ham(x,y) tokens with frequency 2 each
m Fy(S)=N+Ham(x,y)
m Either Ham(x,y)>N/2 + N or Ham(x,y)<N/2 - N
— If we could approximate Fy with € < 1/7N, could separate
— But space bound = Q(N) = Q(g?) bits
m Dependence on ¢ for Fjis tight

m Similar arguments show Q(&2) bounds for F,
— Proof assumes k (and hence 2X) are constants

45 Streams, Sketching and Big Data

I
Summary of Tools

m \Vector equality: fingerprints

Approximate item frequencies:

— Count-min (L, guarantee), Count sketch (L, guarantee)
Euclidean norm, inner product: AMS sketch, JL sketches
Count-distinct: k-Minimum values, Hyperloglog
Compact set-representation: Bloom filters
Lo sampling:hashing and sparse recovery
L, sampling: via count-sketch
Graph sketching: Ly samples of neighborhood
Frequency moments:via L, sampling

Matrix sketches: adapt AMS sketches, compressed matrix multiplication

46 Streams, Sketching and Big Data

Summary of Lower Bounds

47

Can’t deterministically test equality
Can’t retrieve arbitrary bits from a vector of n bits: INDEX

— Even if some unhelpful suffix of the vector is given: AUGINDEX
Can’t determine whether two n bit vectors intersect: DISJ

Can’t distinguish small differences in Hamming distance:
GAP-HAMMING

These in turn provide lower bounds on the cost of
— Finding the maximum frequency
— Approximating the number of distinct items
— Approximating matrix multiplication

Streams, Sketching and Big Data

I
Current Directions in Streaming and Sketching

m Sparse representations of high dimensional objects
— Compressed sensing, sparse fast fourier transform
m Numerical linear algebra for (large) matrices
— k-rank approximation, linear regression, PCA, SVD, eigenvalues
m Computations on large graphs
— Sparsification, clustering, matching
m Geometric (big) data
— Coresets, facility location, optimization, machine learning
m Use of summaries in distributed computation

— MapReduce, Continuous Distributed models

48 Streams, Sketching and Big Data

