
Lab 1
CS111: Scientific Data and Dynamics Fall 2018
Instructor: David White Due: September 16, 11:59pm

Welcome to your first lab! In this lab you will get to experiment with the Python interpreter,

familiarize yourself with Atom (the editor you will use to write programs), and write your first

complete Python program. You will have a partner for this lab, but only for Part 6. All the early

parts should be done alone.

Part 1: Visualizing a program’s execution

At the following webpage https://tinyurl.com/ybo4q2bt, also linked from the course webpage, the

following code has been copied into a visualization website called Python Tutor. This website

simulates the precise steps that Python follows when executing code you give it, i.e. when you

click the Run button in IDLE. If the links are not working, just copy and paste the code there

directly.

def boxVolume(length,width,height):

volume = length*width*height

return volume

def costOfWood(unitCost,amount):

return (unitCost * amount)

def main():

v = boxVolume(5,3,3)

cost = costOfWood(5.25,v)

print("Building the box will cost $",cost)

main()

Here is a high-level description of what this code does. The code first computes the volume of a

box (in units of cubic feet, i.e. f eet3). It then computes the cost of building such a box out of solid

wood, where the cost of a cubic foot of wood is $5.25. Visualize the execution of this code by

clicking Forward over and over again, and answer the following questions. If you’re having

trouble, please read the rest of the lab, especially Part 5.

Question 1. Please answer the following using Python Tutor:

(1) Which line numbers are defining functions (there are three)?

(2) Which line numbers are calls to functions?

(3) Which line numbers are the first four lines of code executed?

(4) Why isn’t the line volume = length*width*height executed before the line main()?

(5) In Step 7 of 16, what are the values of the variables length, width, height?
1

https://tinyurl.com/ybo4q2bt
http://www.pythontutor.com/visualize.html#mode=edit

2

(6) In Step 10 of 16, when the value of the variable volume is returned, which line number is

that value returned to? What happens to that numerical value when it appears on that line?

(7) What parameter values are sent to the function costOfWood in line 10?

(8) What is returned (implicitly) by main()?

Now click Edit code and modify the code so that it finds the price of a box of dimension 3 × 2 × 4.

Report the result of this computation. You do not need to put this code on Note Bowl or write about

it in your Lab Report, since I’ve already given you a high-level description of the code above.

Part 2: Typing up a program in Python

Open IDLE (the blue and yellow icon program) as you did in class. Create a new window in IDLE

and type in the code below (changing the comment at the top to include your name and the date):

A program to calculate compound interest

Author: (Enter your name here)

Date: (Enter the date here)

print("This is a program to calculate compound interest.")

principal = float(input("Enter the principal amount (dollars): "))

timeInYears = int(input("Enter the time (years): "))

rate = int(input("Enter the interest rate (percent): "))

newAmount = principal * (1 + rate/100.0) ** timeInYears

print("After", timeInYears, "years the amount will be", newAmount, "dollars.")

Now save this file as <username> compoundInterest.py and upload to the Lab 1 assignment

on Note Bowl. For example, mine would be called whiteda compoundInterest.py. Be sure to

test run your code before uploading it. For those with a PC, be sure that you are not uploading a

file whose name starts with a period (.) or underscore (). Such files are fake and cannot be read by

other computers.

Congratulations! You have your first running program! Notice that this program has no functions
whatsoever. In the future we will want our programs to have main() functions.

We will now determine what this program does. The first several lines start with a #. In Python,

this is the symbol for comments (parts of the program that the interpreter should ignore). They are

meant solely for anyone reading the code to have a better understanding of what it does. Though

your code would run the same without them, it is always good practice to include information

about it (e.g., author, date started, description of program, etc.) at the beginning. You can also add

comments to the main body of the code, if there is something complicated that you want to make a

note of for the reader of the code (e.g., the person grading your assignment, another person you are

working with on a project, or even yourself when you come back to some code months later).

Now that you have your first program, look at the Project Report Guidelines handout. In part 3 it

explains that you’re supposed to write a high level description of your program. This is separate

3

from the docstrings that you are supposed to write in your Python file. The high level description

goes in the lab report, and is written as a paragraph.

Part 3: Messing it up

Now that you have a working program, let’s see what happens when you deliberately add some

errors into it. The idea is to learn the error messages produced by the interpreter so that when you

get errors in more complex programs in the future you can understand what’s going on.

Make the following changes in your program, making sure to revert to the original version before

introducing the next change. Save the error reports that you see for each error in the Results and

Conclusions section of your lab report.

Question 2. For each of the following, please give a one-line explanation of why you got an error

message (or didn’t get one). Does the error message only appear on some inputs? If so, state which
ones in your report.

(1) Capitalize the “p” in the first “print” statement.

(2) Change all the double quotes in the first print statement to single quotes.

(3) Remove the word “float”, along with the first “(” and the last “)” on that line.

(4) Replace “float” with “int”. Be sure to try several different inputs when testing.

(5) Change “100.0” to “10.0” in the computation statement. Did you get an error message?

Was the output computed correct?

(6) Indent the line that begins with rate.

(7) Misspell the variable name “newAmount” in the final print statement.

(8) Run the correct program, but use “CS” (or any other string) as one of the inputs.

Part 4: Types of Errors

Record your answers to the questions in this section in the Results and Conclusions section of your

lab report.

A syntax error is caused by a violation of the syntax, or grammar, of Python. The Python

interpreter sees these errors on all inputs. Several examples are given in Section 2.3.

Question 3. What happens on your screen when Python detects a syntax error? Which of the

errors in Part 3 are syntax errors?

Question 4. Create another syntax error and record the change you would need to make to the

code in order to get this syntax error, as well as an explanation of why it is a syntax error.

An exception is the sort of error which arises only during execution and not necessarily on all

inputs. Consider the following code:

4

distanceTravelled = int(input("Enter the distance travelled (meters): "))

timeInSeconds = int(input("Enter the time that has passed (seconds): "))

velocity = distanceTravelled/timeInSeconds

Question 5. Can you think of any inputs for which this would cause an exception error?

The third main type of error which can occur is a logical error, i.e. if the algorithm does not

perform as expected and so does not correctly compute the desired output. Again, the algorithm

may not fail on all choices of input, and this is why creating a wide battery of tests is a good idea.

Consider the following code:

x = 0.0

y = 0.0

z = 0.0

x = float(input("Enter the first number: "))

y = float(input("Enter the second number: "))

y = float(input("Enter the third number: "))

mean = (x+y+z) / 3.0

Question 6. Can you spot the logical error in this code? Give examples of inputs (first, second,

third) for which this algorithm would produce correct output and for which it would produce
incorrect output.

Hint: if you’re having trouble finding it, consider using Python Tutor to go through this code step

by step.

Because logical errors are so difficult to spot, you should always test your code before submitting

it. Because syntax errors and exceptions are so easy to catch, you should never submit code which

creates such errors when I run it. Submitting such code will result in a hefty penalty to your grade

on that assignment.

Part 5: Writing your own program

Okay, time to try your hand at writing a program all of your own. Write a program
username ageInSeconds.py (where username is your Denison username) that prompts the user

to enter his/her age in years, months, and days (it should have 3 different input statements) and

prints on the screen how many seconds you have been alive. To make things simple, you may

ignore the existence of leap years and assume that all months have 30 days. Remember to add

documentation at the top (your name, the date, what the program does). Remember that we want

our programs to have main() functions which interface with the user, call our other functions,

print output to the screen, and which don’t return anything.

Your program should have two functions. One should be a main() function and the other should

be a function called ageCalculation that takes three parameters (years, months, days) and

returns a number of seconds. The main() function should get the input from the user and store it as

variables, then call ageCalculationwith those inputs as the parameters, then it should print the

result of the computation along with a string telling the user what this number represents (i.e. their

5

age in seconds). Your function ageCalculation should have a comment which describes what it

does, what parameters it takes, and what it returns. Follow the model on page 118 of the textbook.

Once you have written the program (and it runs without any errors) test it on the following inputs,

and verify that it is working correctly (i.e. that there are no logical errors):

• 1 year

• 20 years, 2 months

• 18 years, 7 months, 6 days

Include the results in your lab report. In order for the main method to be run (i.e. in order for

computation to occur) you must put a non-indented line

main()

at the very bottom of your code. This should be the only non-indented line which does not start

with the keyword ‘def’.

Part 6: Testing your Code

In this part of the lab you will work with your partner. First, check to make sure you both have

code that correctly completes Part 5.

Question 7. Did you both come up with the same solution? If the solution was different, explain

why both are correct.

With your partner you are to write a program called username conversions.py, which has the

ability to do several different conversions. In this file you will create two functions which do

conversions and a main() function. Both conversion functions should have comments as in the

previous section (following the model on page 118). You will write one and your partner will write

the other, then you’ll check each others’ work. If there are 3 people in the group, the third can

choose which of the two functions to write.

The first is a function heightInIncheswhich takes as parameter a float representing height in

meters. Your function should compute this height in feet and inches, and return these two values,
e.g. via a return statement like

return(ft,inches)

People usually give their height with an integer number of feet and inches (e.g. 6 feet 3 inches), so

use the int() command to round down to an integer once the computation is finished. Warning:

Don’t round off feet before figuring out how many inches there are!

The second is a function weightInPoundswhich takes as parameter a float which is weight in

kilograms, computes the weight in pounds, and returns that value. This should be kept as a float

rather than rounded to an integer.

Trade code with your partner. You are now looking at someone else’s code, but of course that’s

okay because it’s your lab partner and you can always share lab related code with your lab partner.

6

Question 8. Can you understand what these functions do based on the comments alone? Does the

code look cluttered or is it easy to read like the code in the textbook? Do any lines run over the

right edge of the Atom window (so that you can’t read them without scrolling)?

Write feedback about the style of the code you are reading and include it in Section 5 of your lab

report, additionally giving it to your partner.

Come up with at least 5 test values for each of the two functions your partner wrote, in a way

analogous to Part 5. Try to think of common errors and which values they might occur on. Think

of boundary cases (e.g. what happens at zero?). Write your test cases and the correct outputs in

your lab report. In your main() function, call your partner’s function from above (either

weightInPounds or heightInInches) on the test cases you came up with, and print the results.

For example, this might look like print(weightInPounds(73.4)), inside your main function.

Question 9. Does your partner’s code work correctly on these test cases? Do you think it’ll work

correctly on all inputs? (Note that if you vouch for your partner’s code and it’s wrong you’ll lose

points)

Write your conclusions in Section 5 of the lab report and also share them with your partner. If you

diagnosed a problem with your partner’s code he/she can fix it before uploading the lab to Note

Bowl. Work with your partner to get the conversions.py program to a place where you’re happy

handing it in with your name on it as well as your partner’s. Make sure you both upload the same

code (and comments too) because I may only read one of them.

Congratulations! You’ve now completed your first lab and learned how to write programs, write

and call functions, respond to errors, and test your code.

Documentation and Style

Ten percent of your lab grade will be based on following these documentation and style

conventions:

• Follow the style guidelines of Section 3.4 in the book.

• Every file you hand in should have your name/the project name/start date on top.

• Your code should be well-documented. As a rule of thumb, you should aim for at least one

comment for every three lines of code.

• Use descriptive variable names. For example, timeInSeconds is good, but t is not.

• Assign to variables any values that have meaning or that you use more than once.

Submitting your lab

Upload the following to Note Bowl’s Lab 1 assignments by 11:59pm on Sunday, September 16.

• username compoundInterest.py

7

• username ageInSeconds.py

• username conversions.py

• Lab Report, following the specifications in the Project Report Guidelines, answering all

questions in this document, and including all error reports, explanations, errors you

created, test values you created, and feedback on your partner’s code. Do not forget to

write the introduction (why was this lab important?) and a concluding paragraph in the

conclusions section (what did you learn from this lab?). You and your partner should have

the same code, except for the username. The docstring on top of each file can have both

your names.

	Part 1: Visualizing a program's execution
	Part 2: Typing up a program in Python
	Part 3: Messing it up
	Part 4: Types of Errors
	Part 5: Writing your own program
	Part 6: Testing your Code
	Documentation and Style
	Submitting your lab

