CHAPTER 2

Game-Theoretic Techniques

IN this chapter we study several ideas that are basic to the design and analysis
of randomized algorithms. All the topics in this chapter share a game-theoretic
viewpoint, which enables us to think of a randomized algorithm as a proba-
bility distribution on deterministic algorithms. This leads to the Yao’s Minimax
Principle, which can be used to establish a lower bound on the performance of
a randomized algorithm.

2.1. Game Tree Evaluation

We begin with another simple illustration of linearity of expectation, in the
setting of game tree evaluation. This example will demonstrate a randomized
algorithm whose expected running time is smaller than that of any deterministic
algorithm. It will also serve as a vehicle for demonstrating a standard technique
for deriving a lower bound on the running time of any randomized algorithm for
a problem.

A game tree is a rooted tree in which internal nodes at even distance from
the root are labeled MIN and internal nodes at odd distance are labeled MAX.
Associated with each leaf is a real number, which we call its value. The evaluation
of the game tree is the following process. Each leaf returns the value associated
with it. Each MAX node returns the largest value returned by its children, and
each MIN node returns the smallest value returned by its children. Given a
tree with values at the leaves, the evaluation problem is to determine the value
returned by the root.

The evaluation of game trees plays a central role in artificial intelligence,
particularly in game-playing programs. The reader may readily associate the
children of a node with the options available to one of the two players in
a game. The leaves represent the value of the game for either player. One
player seeks to maximize this value, while the other tries to minimize it.
At each step, an evaluation algorithm chooses a leaf and reads its value.

28

21 GAME TREE EVALUATION

We study the number of such steps taken by an algorithm for evaluat-
ing a game tree. We do not charge the algorithm for any other computa-
tion.

We will limit our discussion to the special case in which the values at the
leaves are bits, 0 or 1. Thus, each MIN node can be thought of as a Boolean
AND operation and each MAX node as a Boolean OR operation. This special
case is of interest in its own right, having applications in mechanical theorem
proving. Let T, denote a uniform tree in which the root and every internal
node has d children and every leaf is at distance 2k from the root. Thus, any
root-to-leaf path passes through k AND nodes (including the root itself) and k OrR
nodes, and there are d* leaves. An instance of the evaluation problem consists
of the tree T, together with a Boolean value for each of the d* leaves. Given
an algorithm, we study the maximum number of steps it takes to evaluate any
instance of Tyy.

An algorithm begins by specifying a leaf whose value is to be read at the first
step. Thereafter, it specifies such a leaf at each step, based on the values it has
read on previous steps. In a deterministic algorithm, the choice of the next leaf
to be read is a deterministic function of the values at the leaves read so far. For
a randomized algorithm, this choice may be randomized.

In Problem 2.1, the reader is asked to show that for any deterministic evalua-
tion algorithm, there is an instance of T, that forces the algorithm to read the
values on all d* leaves.

We now give a simple randomized algorithm and study the expected number
of leaves it reads on any instance of T,. To simplify our presentation, we
restrict ourselves to the case d = 2. Any deterministic algorithm for this case can
be made to read all 2% = 4* leaves on some instance of Ty4. Our randomized
algorithm is based on the following simple observation. Consider a single AND
node with two leaves. If the node were to return O, at least one of the leaves
must contain 0. A deterministic algorithm inspects the leaves in a fixed order,
and an adversary can therefore always “hide” the O at the second of the two
leaves inspected by the algorithm. Reading the leaves in a random order foils
this strategy. With probability 1/2, the algorithm chooses the hidden 0 on the
first step, so its expected number of steps is 3/2, which is better than the worst
case for any deterministic algorithm. Similarly, in the case of an OR node, if it
were to return a 1, then a randomized order of examining the leaves will reduce
the expected number of steps to 3/2.

The reader may wonder how the randomized algorithm can benefit if the AND
node were to return 1, or if the orR node were to return a 0. If the two children
of these nodes are leaves, then clearly both leaves must be examined. The point
is that at an internal AND node in a tree returning a 1, examining the two OR
children (and evaluating their sub-trees) in a random order is still beneficial
The two OR children of an AND node must also return 1, and this is the easy
case for the oR nodes. Similarly, at an internal OR node returning 0, the two AND
children must return 0, and this is the easy case for the AND nodes. To explain
this better, we specify the complete algorithm.

29

GAME-THEORETIC TECHNIQUES

To evaluate an AND node v, the algorithm chooses one of its children (a sub-
tree rooted at an OR node) at random and evaluates it by recursively invoking
the algorithm. If 1 is returned by the sub-tree, the algorithm proceeds to evaluate
the other child (again by recursive application). If O is returned, the algorithm
returns O for v. To evaluate an OR node, the procedure is the same with the roles
of 0 and 1 interchanged. We now argue by induction on k that the expected
cost of evaluating any instance of Ty is at most 3.

The basis (k = 1) is an easy extension of our illustration above. Assume now
that the expected cost of evaluating any instance of T,x_; is at most 3*~!. We
establish the inductive step. Consider first a tree T whose root is an OR node,
each of whose children is the root of a copy of T>x—;. If the root of T were to
evaluate to 1, at least one of its children returns 1. With probability 1/2 this
child is chosen first, incurring (by the inductive hypothesis) an expected cost of
at most 3*~! in evaluating T. With probability 1/2 both sub-trees are evaluated,
incurring a net cost of at most 2 x 3!, Putting these observations together, the
expected cost of determining the value of T is at most

1 3“"+1x2x3“"=

2 k—1
3 X 3 x 31, 2.1)

NI W

If on the other hand the OorR were to evaluate to 0, both children must be
evaluated, incurring a cost of at most 2 x 3%~1,

Consider next the root of the tree T4, an AND node. If it evaluates to 1, then
both its sub-trees rooted at OR nodes return 1. By the discussion in the previous
paragraph and by linearity of expectation, the expected cost of evaluating Ty
to 1 is at most 2 x (3/2) x 3*~! = 3. On the other hand, if the instance of T»x
evaluates to 0, at least one of its sub-trees rooted at orR nodes returns 0. With
probability 1/2 it is chosen first, and so the expected cost of evaluating Ty is
at most

2x3"“1+% x%x3"“1 < 3k,
Here the first term bounds the cost of evaluating both sub-trees of the orR node
that returns 0; the second term accounts for the fact that with probability 1/2,
an additional cost of (3/2)3*~! may be incurred in evaluating its sibling that
returns 1.

Theorem 2.1: Given any instance of T, the expected number of steps for the
above randomized algorithm is at most 3*.

Since n = 4* the expected running time of our randomized algorithm is n'83,
which we bound by n%™3. Thus, the expected number of steps is smaller than
the worst case for any deterministic algorithm. We will see other instances in
later chapters. Note that the algorithm above is a Las Vegas algorithm and
always produces the correct answer.

30

22 THE MINIMAX PRINCIPLE

Scissors Paper Stone

Scissors 0 1 -1
Paper -1 0 1
Stone 1 -1 0

Figure 2.1: Matrix for scissors-paper-stone.

2.2. The Minimax Principle

The randomized algorithm of the preceding section has an expected -running
time of n®’** on any uniform binary AND-OR tree with n leaves. Can we establish
that no randomized algorithm can have a lower expected running time? We are
thus seeking a lower bound on the running time of any randomized algorithm
for this problem. As a first step toward this end, we introduce a standard
technique for proving such lower bounds: the minimax principle. Indeed, it is the
only known general technique for proving lower bounds on the running times of
randomized algorithms. This technique only applies to algorithms that terminate
in finite time on all inputs and sequences of random choices. In Section 2.2.3,
we will apply this technique to the game tree evaluation problem. We begin with
a review of some elementary concepts in game theory. Note that the notion of
game theory is not directly related to the game tree evaluation problem studied
above. Rather, the game theory studied below yields the minimax principle, a
general tool, which we will then apply to randomized algorithms for the game
tree evaluation problem.

2.2.1. Game Theory

Consider the following game. Roberta and Charles put their hands behind
their backs and make a sign for one of the following: stone (closed fist), paper
(open palm), and scissors (two fingers). They then simultaneously display their
chosen sign. The winner is determined by the following rules: paper beats stone
by wrapping it, scissors beats paper by cutting it, and stone beats scissors by
dulling it. The loser pays $1 to the winner, and the outcome is a draw when
the two players choose the same sign. We can represent this game by the matrix
in Figure 2.1. The rows of the matrix represent Roberta’s choices; the columns,
Charles’ choices. The entries in the matrix are the amounts to be paid by Charles
to Roberta.

This is an instance of a two-person zero-sum game, and the matrix is called
the payoff matrix. It is called a zero-sum game because the net amount won
by Roberta and Charles is always exactly zero. In general, any two-person
zero-sum game can be represented by an n x m payoff matrix M with real
entries. (Throughout this book, we use boldface to denote vectors and matrices;

31

GAME-THEORETIC TECHNIQUES

Scissors Paper Stone

Scissors 0 1 2
Paper -1 0 1
Stone -2 -1 0

Figure 2.2: Matrix for modified scCissors-paper-stone.

generally, vectors will be lower-case symbols, and matrices upper-case symbols.
For a vector x, we denote by x; its ith component. All vectors are column vectors
unless otherwise specified.) The set of possible strategies of the row player R
is in correspondence with the rows of M, and likewise for the strategies of the
column player C. The entry M;; is the amount paid by C to R when R chooses
strategy i and C chooses strategy j.

Naturally, the goal of the row (column) player is to maximize (minimize) the
payoff. Assume that this is a zero-information game, in that neither player has
any information about the opponent’s strategy. If R chooses strategy i, then
she is guaranteed a payoff of min; M;;, regardless of C’s strategy. An optimal
strategy for R is an i that maximizes min; M;;. Let Vg = max; min; M;; denote
the lower bound on the value of the payoff to R when she uses an optimal
strategy. An optimal strategy for C is a j that gives the best possible upper
bound on the payoff from C to R. A similar argument establishes that C’s
optimal strategy ensures that his payoff to R is at most V¢ = min; max; M;;.

Exercise 2.1: Show that the following inequality is valid for all payoff matrices.

max minM;; < minmaxM,;.
1 I U

In general, the inequality in Exercise 2.1 is strict; for example, in scissors-
paper-stone, Vg = —1 and V¢ = 1. When these two quantities are equal, the
game is said to have a solution and the value of the game is V = Vg = V.
The solution (or the saddle-point) is the specific choice of (optimal) strategies
that lead to this payoff. For games with a solution, let p and y denote optimal
strategies for R and C, respectively; clearly, V = M,,. In general, a player could
have more than one optimal strategy.

Figure 2.2 shows a modified version of the scissors-paper-stone game, where
the amount to be paid in certain cases is changed. It is easy to verify that this
game has value V = 0 and the solution is p = 1 and y = 1. (Do you see why
the other diagonal entries do not correspond to saddle-points?)

What happens when a game has no solution? Then there is no clear-
cut optimal strategy for any player. In fact, any knowledge of the opponent’s
strategy can be used to improve the payoff, unlike the case of games with saddle-
points. An interesting way to get around this is to introduce randomization in

32

22 THE MINIMAX PRINCIPLE

the choice of strategies. So far we have been talking about deterministic or
pure strategies, but now we focus on randomized or mixed strategies. A mixed
strategy is a probability distribution on the set of possible strategies. The row
player picks a vector p = (p1,...,Pn), Which is a probability distribution on the
rows of M, ie, p; is the probability that R will choose strategy i; similarly, the
column player has a vector ¢ = (q,...,qm), Which is a probability distribution
on the columns of M. The payoff is now a random variable, and its expectation
is given by '

n m
E[payoff] = p"Mgq =) ") pMiq;.
im1 jm=1
As before, using Vi to denote the best possible lower bound on the expected
payoff to R that can be ensured by choosing a strategy p, and using- V¢ to
denote the best possible upper bound on the expected payoff by C by choosing
a strategy ¢, we obtain

Vk = maxminp’ Mg
[]

Ve = minmaxp” Mgy.
9 b

Here, the min and max range over all possible distributions. The well-known
Minimax Theorem of von Neumann implies that this game always has a solution
and that Vg = V.

Theorem 2.2 (von Neumann’s Minimax Theorem): For any two-person zero-sum
game specified by a matrix M,

maxmin p” Mq = minmax p"Mgq.
P 4 9 P

In other words, the largest expected payoff that R can guarantee by choosing
a mixed strategy is equal to the smallest expected payoff that C can guarantee
using a mixed strategy. This common expected payoff value, called the value of
the game, is denoted by V. A pair of mixed strategies (p,§) which respectively
maximize the left-hand side and minimize the right-hand side of the equation
in Theorem 2.2 is called a saddle-point, and the two distributions are called
optimal mixed strategies.

Observe that once p is fixed, p” Mq is a linear function of ¢ and is minimized
by setting to 1 the g; with the smallest coefficient in this linear function.
The implications of this observation are rather interesting. If C knows the
distribution p being used by R, then his optimal strategy is a pure strategy. A
similar comment applies in the other direction. Also, this observation leads to a
simplified version of the minimax theorem. Let e, denote a unit vector with a 1
in the kth position and Os elsewhere.

Theorem 2.3 (Loomis’ Theorem): For any two-person zero-sum game specified
by a matrix M,

maxminp”Me; = minmaxe! Mgq.
P] i

33

GAME-THEORETIC TECHNIQUES

2.2.2. Yao’s Technique

We now describe the application of the above game-theoretic results to proving
lower bounds on the performance of randomized algorithms. The idea is to view
the algorithm designer as the column player C and the adversary choosing the
input as the row player R. The columns correspond to the set of all possible
algorithms; the rows correspond to the set of all possible inputs (of a fixed size).
It is important to keep in mind that each column corresponds to a deterministic
algorithm that always produces a correct solution. The payoff from C to R
is some real-valued measure of the performance of an algorithm, such as the
running time, the quality of the solution obtained, communication cost, or space.
(In all the examples we will encounter in this book, the entries in the payoff
matrix will be positive integers.) For the sake of concreteness, we assume in this
chapter that the payoff refers to the running time, but it should be obvious that
the following observations apply to any other measure. The algorithm designer
would like to choose an algorithm that minimizes the payoff, while the adversary
would like to maximize the payoff.

Consider a problem where the number of distinct inputs of a fixed size is
finite, as is the number of distinct (deterministic, terminating, and always correct)
algorithms for solving that problem. A pure strategy for C corresponds to the
choice of a deterministic algorithm, while a pure strategy for R corresponds
to a specific input. Notice that an optimal pure strategy for C corresponds
to an optimal deterministic algorithm, and V¢ is the worst-case running time
of any deterministic algorithm for the problem, which we call the deterministic
complexity of the problem. (The meaning of Vy is related to the non-deterministic
complexity of the problem. If the game has a solution, then the non-deterministic
and deterministic complexities coincide.)

Our interest is in the interpretation of the mixed strategies for the algorithm
designer and the adversary. A mixed strategy for C is a probability distribution
over the space of (always correct) deterministic algorithms, so it is a Las Vegas
randomized algorithm. An optimal mixed strategy for C is an optimal Las Vegas
algorithm. A mixed strategy for R is a distribution over the space of all inputs.

Let us define the distributional complexity of the problem at hand as the
expected running time of the best deterministic algorithm for the worst distribu-
tion on the inputs. This complexity is smaller than the deterministic complexity,
since the algorithm knows the input distribution.

Theorem 2.3 implies that the distributional complexity equals the least possible
expected running time achievable by any randomized algorithm. (We reiterate
that these observations apply only to scenarios where the number of algorithms
is finite.) We restate von Neumann’s and Loomis’s theorems in the language of
algorithms as follows.

Corollary 2.4: Let I1 be a problem with a finite set T of input instances (of a
fixed size), and a finite set of deterministic algorithms A. For input I € T and
algorithm A € A, let C(I, A) denote the running time of algorithm A on input I.

34

22 THE MINIMAX PRINCIPLE

For probability distributions p over I and q over A, let I, denote a random input

chosen according to p and Ay denote a random algorithm chosen according to q.
Then,

mpax rnqin E[C(,,A45)] = rnqin m‘?.x E[C(,,A,)]

and

ml?.x min E[C(,,A)] = mqm r;xeazx E[C(I,A,)].

From this corollary, we obtain the following proposition, which provides the
desired lower bound technique.

Proposition 2.5 (Yao’s Minimax Principle): For all distributions p over I and q
over A,

aneiil E[C(,,A4)] < max E[C(I,A,)]).

In other words, the expected running time of the optimal deterministic al-
gorithm for an arbitrarily chosen input distribution p is a lower bound on the
expected running time of the optimal (Las Vegas) randomized algorithm for
I1. Thus, to prove a lower bound on the randomized complexity, it suffices
to choose any distribution p on the input and prove a lower bound on the
expected running time of deterministic algorithms for that distribution. The
power of this technique lies in the flexibility in the choice of p and, more
importantly, the reduction to a lower bound on deterministic algorithms. It is
important to remember that the deterministic algorithm “knows” the chosen
distribution p.

The above discussion dealt only with lower bounds on the performance of
Las Vegas algorithms. We conclude this section with a brief discussion of
Monte Carlo algorithms with error probability ¢ € [0,1/2]. Let us define the
distributional complexity with error €, denoted minsec4 E[C.(I,,A4)], to be the
minimum expected running time of any deterministic algorithm that errs with
probability at most € under the input distribution p. Similarly, we denote
by max, ez E[C.(I,A4)] the expected running time (under the worst input) of
any randomized algorithm that errs with probability at most ¢ (again, the
randomized algorithm is viewed as a probability distribution ¢ on deterministic
algorithms). Analogous to Proposition 2.5, we then have:

Proposition 2.6: For all distributions p over I and q over A and any € € [0,1/2],
1, .
5(2}512 E[Ca (1, A)]) < rflgIXE[Ce(I,Aq)]-

A pointer to the source of Proposition 2.6 is given in the Notes section.

35

GAME-THEORETIC TECHNIQUES

2.2.3. Lower Bound for Game Tree Evaluation

We now apply Yao’s Minimax Principle to the problem of game tree evaluation.
The lower bound that results only applies to algorithms that terminate in a
finite number of steps on any input and sequence of random choices. Note that
a randomized algorithm for game tree evaluation can in fact be viewed as a
probability distribution over deterministic algorithms, because the length of the
computation as well as the number of choices at each step are both finite. We may
imagine that all of these coins are tossed before the beginning of the execution.

Once again, we limit our attention to instances of the AND-OR tree Toy.
While we could continue our discussion in the language of alternating levels of
AND and OR nodes, the following exercise will lead to a.slightly more compact
representation.

Exercise 2.2: Show that the tree T, is equivalent to a balanced binary tree all of
whose leaves are at distance 2k from the root, and all of whose internal nodes
compute the NOR function: a node returns the value 1 if both inputs are 0, and 0
otherwise.

We proceed with the analysis of this tree of NORs of depth 2k. In order to prove
a lower bound on the expected number of leaves evaluated by any randomized
algorithm, we have to specify a distribution on instances (values for the leaves),
and then prove a lower bound on the expected running time of any deterministic
algorithm on such inputs. It is important to distinguish between the expected
running time of the randomized algorithm (which is over the random choices
made by the algorithm), and the expected running time of the deterministic
algorithm when proving the lower bound (this being over the random instances).
We also remind the reader that our lower bound will only apply to Las Vegas
randomized algorithms that always evaluate the tree correctly.

Let p = (3 — ﬁ)/Z. Each leaf of the tree is independently set to 1 with
probability p. Note that if each input to a NOR node is independently 1 with
probability p, then the probability that its output is 1 is the probability that
both its inputs are 0, which is

2

Thus the value of every node of the NOR tree is 1 with probability p, and the
value of a node is independent of the values of all the other nodes on the same
level. Consider a deterministic algorithm that is evaluating a tree furnished with
such random inputs; let v be a node of the tree whose value the algorithm is
trying to determine. Intuitively, the algorithm should determine the value of one
child of v before inspecting any leaf of the other sub-tree. By doing so, it can
try to maximize the benefit of information obtained by inspecting leaves. An
alternative view of this process is that the deterministic algorithm inspects leaves

36

22 THE MINIMAX PRINCIPLE

visited in a depth-first search of the tree, except of course that it ceases to visit
sub-trees of a node v once the value of v has been determined. Let us call such
algorithms depth-first pruning algorithms, referring to the order of traversal and
the fact that sub-trees that supply no additional information are “pruned” away
without being inspected.

Proposition 2.7: Let T be a NOR tree each of whose leaves is independently set
to 1 with probability q for a fixed value q € [0,1]. Let W(T) denote the minimum,
over all deterministic algorithms, of the expected number of steps to evaluate T.
Then, there is a depth-first pruning algorithm whose expected number of steps to
evaluate T is W(T).

A formal proof of Proposition 2.7 by induction is omitted here and can be found
in the reference given at the end of this chapter.

Proposition 2.7 tells us that for the purposes of our lower bound, we may
restrict our attention to depth-first pruning algorithms. We return to a NOR
tree with n leaves, each of which is set to 1 independently with probability
p = (3 —./5)/2. For a depth-first pruning algorithm evaluating this tree, let
W (h) be the expected number of leaves it inspects in determining the value of
a node at distance h from the leaves. Clearly

W(h)=W(h—1) +(1—p) x Wh—1),

where the first term represents the work done in evaluating one of the sub-trees
of the node, and the second term represents the work done in evaluating the
other sub-tree (which will be necessary if the first sub-tree returns the value 0,
an event occurring with probability 1 — p). Letting h be log, n and solving, we
get W(h) > n®%%,

Theorem 2.8: The expected running time of any randomized algorithm that always
evaluates an instance of Ty correctly is at least n®%*, where n = 2% is the number
of leaves.

We note that our lower bound of n®%* is less than the upper bound of n%3
that follows from Theorem 2.1. Could it be that our lower bound technique is
weak? Corollary 2.4 precludes this possibility, since the identity it gives is an
equality; thus for any lower bound on the expected running time there must be
a distribution on the inputs such that the running time of the best deterministic
algorithm matches this lower bound. One possibility is that we have not chosen
the best possible probability distribution for the values of the leaves. Indeed, in
the NOR tree if both inputs to a node are 1, no reasonable algorithm will read
leaves of both sub-trees of that node. Thus, to prove the best lower bound,
we have to choose a distribution on the inputs that precludes the possibility
that both inputs to a node will be 1; in other words, the values of the inputs
are chosen at random but not independently. This stronger (and considerably
harder) analysis shows that our algorithm of Section 2.1 is optimal.

37

