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The Miller-Rabin Randomized Primality Test

1 Introduction

Primality testing is an important algorithmic problem. In addition to being a fun-
damental mathematical question, the problem of how to determine whether a given
number is prime has tremendous practical importance. Every time someone uses the
RSA public-key cryptosystem, they need to generate a private key consisting of two
large prime numbers and a public key consisting of their product. To do this, one
needs to be able to check rapidly whether a number is prime.

The simplest algorithm to test whether n is prime is trial division: for k =
2, 3, . . . , b

√
nc test whether n ≡ 0 (mod k). This runs in time O(

√
n log2(n)), but

this running time is exponential in the input size since the input represents n as a
binary number with dlog2(n)e digits. (A good public key these days relies on using
prime numbers with at least 2250 binary digits; testing whether such a number is
prime using trial division would require at least 2125 operations.)

In 1980, Michael Rabin discovered a randomized polynomial-time algorithm to
test whether a number is prime. It is called the Miller-Rabin primality test because
it is closely related to a deterministic algorithm studied by Gary Miller in 1976. This
is still the most practical known primality testing algorithm, and is widely used in
software libraries that rely on RSA encryption, e.g. OpenSSL.

2 Randomized algorithms

What does it mean to say that there is a randomized polynomial-time algorithm to
solve a problem? Here are some definitions to make this notion precise.

Definition 1 (randomized algorithm, RP, coRP, BPP). A randomized algorithm for
a language L is an algorithm A(x, r) which receives an input string x and a random
string r, and attempts to output 1 if x ∈ L, 0 if x 6∈ L.

A language L is in RP if there exists a randomized algorithm A(x, r) which runs
in time polynomial in |x| and satisfies:

• If x ∈ L, Pr(A(x, r) = 1) ≥ 1/2, when r is randomly sampled from the uniform
distribution on {0, 1}|r|.

• If x 6∈ L, A(x, r) = 0 for every r.
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The complexity class coRP is defined in the same way except we replace the two
conditions with:

• If x ∈ L, A(x, r) = 1 for every r.

• If x 6∈ L, Pr(A(x, r) = 0) ≥ 1/2.

(Equivalently, we could just say L belongs to coRP if its complement belongs to
RP.) The complexity class BPP is defined in the same way except we replace the
two conditions with:

• If x ∈ L, Pr(A(x, r) = 1) ≥ 2/3.

• If x 6∈ L, Pr(A(x, r) = 0) ≥ 2/3.

Theorem 1. Definition 1 defines the same complexity classes if we change the con-
stant 1/2 to any constant strictly less than 1, or if we change the constant 2/3 to any
constant strictly between 1/2 and 1.

In particular, this means that if a language is in any of these complexity classes,
there is a randomized polynomial-time algorithm A(x, r) such that for every input x,
A(x, r) outputs the correct answer with probability at least 1 − 2−1000. So when we
discover an efficient randomized algorithm for a problem, it is reasonable to consider
that problem to be solved for all practical purposes.

The main theorem in this lecture is:

Theorem 2. PRIMES is in coRP.

In other words, there is a randomized test which always outputs “prime” if its
input is prime, and which outputs “composite” with probability at least 1/2 if its
input is composite. However the algorithm may sometimes output “prime” when its
input is actually composite.

In 2002, Agrawal, Kayal, and Saxena discovered a deterministic polynomial-time
primality test. In other words, they proved PRIMES is in P. While this is a great
algorithmic discovery, the Miller-Rabin algorithm is still the most widely used pri-
mality testing algorithm (and will probably remain so) because its running time is
much faster.

3 Fermat’s little theorem, the Fermat test, and

Carmichael numbers

Theorem 3 (Fermat’s little theorem). The number n is prime if and only if the
congruence

xn−1 ≡ 1 (mod n)

is satisfied for every integer x between 0 and n.
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We will prove the theorem in a series of steps, beginning with:

Lemma 4. If p is prime, then every pair of integers a, b satisfies

(a+ b)p ≡ ap + bp (mod p).

Proof. By the binomial theorem,

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k.

Every term in the sum is divisible by p except the k = 0 and k = p terms.

Proposition 5. If A is a subset of the integers which is closed under addition and
subtraction, then A is equal to dZ, the set of all multiples of d, for some integer d.

Proof. If A = {0} then d = 0 and we are done. Otherwise, let d be the absolute value
of the smallest non-zero element of A. The set A contains all multiples of d, since it
contains {±d} and is closed under addition and subtraction. Furthermore, A cannot
contain any element x which is not divisible by d, since then we could subtract the
nearest multiple of d to obtain a non-zero element of A whose absolute value is less
than d.

Proof of Fermat’s little theorem. If n is not prime then it has a divisor d > 1. The
number dn−1 is divisible by d so it is not equal to 1 mod n.

If n is prime, let A be the set of integers x which satisfy xn ≡ x (mod n). This set
contains x = 1, and it is closed under addition and subtraction, by Lemma 4. Hence
every integer x belongs to A.

Now let x by any integer not divisible by n. The fact that x ∈ A means that
n |xn − x = x(xn−1 − 1). Since n is prime and x is indivisible by n, this implies
n |xn−1 − 1, i.e. xn−1 ≡ 1 (mod n).

Definition 2. Let n be a composite number. If n - x and xn−1 6≡ 1 (mod n), we say
that x is a Fermat witness for n. If xn−1 ≡ 1 (mod n) we say x is a Fermat liar for
n.

Figure 1 describes a primality testing algorithm based on Fermat’s little theorem.
The idea of the algorithm is simple: pick a positive integers x < n and checking
whether x is a Fermat witness. If so, then output “composite.” Otherwise output
“prime.” To determine whether x is a Fermat witness for n, one needs to compute xn−1

mod n; the obvious way of doing this requires n−2 iterations of mod-n multiplication.
But using the binary expansion of n− 1 and repeated squaring, we can reduce this to
O(log n) multiplication operations. For example, if n = 23 then n−1 = 22 = 16+4+2
so

x22 = x16x4x2 = (((x2)2)2)2 · (x2)2 · x2
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FermatTest(n)

Choose x ∈ {1, 2, . . . , n− 1} uniformly at random.
If xn−1 6≡ 1 (mod n), return composite;
Else return probably prime.

Figure 1: The Fermat primality test.

and this describes an efficient algorithm for raising any integer to the 22nd power.
If n is prime, the Fermat primality test will always output “probably prime.” But

if n is composite, the algorithm will not output “composite” unless it randomly picks
a Fermat witness for n. How hard is it to find a Fermat witness? Any proper divisor
of n will do, but there may be very few of these. (For example, if n = pq and p, q
are distinct primes, the only two proper divisors of n are p and q.) But for most
composite numbers, Fermat witnesses are much more prevalent. The next series of
lemmas explains why this is so.

Lemma 6. Let a, b be any two integers and let d = gcd(a, b). The set aZ + bZ =
{ar + bs : r, s ∈ Z} is equal to dZ where d = gcd(a, b).

Proof. The set aZ + bZ is closed under addition and subtraction, so aZ + bZ = cZ
for some integer c. If d = gcd(a, b) then every element of aZ + bZ is divisible by d,
so d | c. But a and b are both elements of cZ, i.e. they are both divisible by c. This
means c is a common divisor of a and b, so c | d. It follows that c = d.

Lemma 7. If gcd(a, n) = 1 then there is an integer a−1 such that a · a−1 ≡ 1 (mod n).

Proof. By Lemma 6, the set aZ + nZ is equal to Z, the set of all integers. In par-
ticular, this means there are integers r, s such that ar + ns = 1. This implies that
a · r ≡ 1 (mod n), as desired.

Lemma 8. If b, c, n are positive integers such that gcd(c, n) = 1 and the congruence
xb ≡ c (mod n) has k > 0 solutions, then the congruence xb ≡ 1 (mod n) also has k
solutions.

Proof. Let x0 be a solution of xb ≡ c (mod n). We must have gcd(x0, n) = 1, since
otherwise gcd(xb0, n) = gcd(c, n) would be greater than 1, contradicting our hypoth-
esis. Lemma 7 now says that there is a number x−10 such that x0 · x−10 ≡ 1 (mod n).
A one-to-one correspondence between the solution sets of xb ≡ c (mod n) and of
xb ≡ 1 (mod n) is given by the mapping y 7→ y · x−10 .

Corollary 9. If a composite number n has at least one Fermat witness x such that
gcd(x, n) = 1, then at least half of the elements of 1, 2, . . . , n− 1 are Fermat witnesses
for n.
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Proof. If gcd(x, n) = 1 and x is a Fermat witness for n, then xn−1 ≡ c (mod n) for
some c 6= 1 satisfying gcd(c, n) = 1. Now we can use Lemma 8 to show that there are
at least as many Fermat witnesses as Fermat liars.

Definition 3. An odd composite number n is a Carmichael number if every x satis-
fying gcd(x, n) = 1 is a Fermat liar for n.

So far we have established that the Fermat test FermatTest(n) always outputs
“prime” when n is prime, and that it outputs “composite” with probability at least
1/2 when n is an odd composite number but not a Carmichael number. Obviously,
it is easy to test whether an even number is prime. But we still don’t have a good
algorithm for distinguishing Carmichael numbers from prime numbers. The Miller-
Rabin test is a more sophisticated version of the Fermat test which accomplishes this.

4 The Miller-Rabin test

So far, we know of two ways to prove that a number n is composite:

1. Exhibit a factorization n = ab, where a, b > 1.

2. Exhibit a Fermat witness for n, i.e. a number x satisfying xn−1 6≡ 1 (mod n).

The Miller-Rabin test is based on a third way to prove that a number is composite.

3. Exhibit a “fake square root of 1 mod n,” i.e. a number x satisfying x2 ≡ 1 (mod n)
but x 6≡ ±1 (mod n).

The following lemma explains why this is a satisfactory proof of compositeness.

Lemma 10. If x, n are positive integers such that x2 ≡ 1 (mod n) but x 6≡ ±1 (mod n),
then n is composite.

Proof. The hypotheses of the lemma imply that n is a divisor of x2−1 = (x+1)(x−1),
but n divides neither x+ 1 nor x− 1. This is impossible when n is prime.

Later on, we will need the following generalization of Lemma 10.

Lemma 11. If p is prime, then for any k > 0 the number of x ∈ {1, 2, . . . , p − 1}
satisfying xk ≡ 1 (mod p) is at most k.

Proof. We will prove, more generally, that for any nonzero polynomial

P (x) = a0 + a1x+ . . .+ akx
k,

the number of x ∈ {1, 2, . . . , p − 1} satisfying P (x) ≡ 0 (mod p) is at most k. The
proof is by induction on k, the base case k = 0 being trivial. Otherwise, suppose a
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MillerRabin(n)

If n > 2 and n is even, return composite.

/* Factor n− 1 as 2st where t is odd. */
s← 0
t← n− 1
while t is even

s← s+ 1
t← t/2

end /* Done. n− 1 = 2st. */

Choose x ∈ {1, 2, . . . , n− 1} uniformly at random.
Compute each of the numbers xt, x2t, x4t, . . . , x2

st = xn−1 mod n.
If xn−1 6≡ 1 (mod n), return composite.
for i = 1, 2, . . . , s

If x2
it ≡ 1 (mod n) and x2

i−1t 6≡ ±1 (mod n), return composite.
end /* Done checking for fake square roots. */

Return probably prime.

Figure 2: The Miller-Rabin primality test.

satisfies P (a) ≡ 0 (mod p). We may write P (x) = (x− a)Q(x) + c, where Q(x) is a
polynomial of degree k−1 with integer coefficients. The congruence P (a) ≡ 0 (mod p)
implies that c is divisible by p. If b satisfies P (b) ≡ 0 (mod p) but Q(b) 6≡ 0 (mod p)
then p is a divisor of (b − a)Q(b) but not of Q(b), hence b ≡ a (mod p). It fol-
lows that every b ∈ {1, 2, . . . , p − 1} satisfying P (b) ≡ 0 (mod p) satisfies either
b = a or Q(b) ≡ 0 (mod p). By the induction hypothesis, at most k − 1 elements
of {1, 2, . . . , p− 1} satisfy the second congruence.

The Miller-Rabin test is shown in Figure 2. The idea of the test is to pick a random
number x in {1, 2, . . . , n − 1} and use it to try finding either a Fermat witness or a
fake square root of 1 mod n.

Why does the Miller-Rabin test work? We have seen that when n is prime, the
test always outputs “probably prime.” When n is composite but is not a Carmichael
number, we have seen that it outputs “composite” with probability at least 1/2.

What if n is a Carmichael number? The workings of the Miller-Rabin test in this
case can best be understood in terms of the Chinese Remainder Theorem.

Theorem 12 (Chinese Remainder Theorem). Let n1, n2, . . . , nk be numbers, no two
of which have a common factor. For any numbers a1, a2, . . . , ak, the system of con-
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gruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ ak (mod nk)

has a solution. Any two solutions x1, x2 are congruent mod n1n2 . . . nk.

Proof. Let mi denote the product of all elements of the set {n1, n2, . . . , nk} other
than ni. Note that gcd(mi, ni) = 1 so Lemma 7 implies that there is a number ri
such that miri ≡ 1 (mod ni). Now let x =

∑k
i=1 aimiri and check that x satisfies the

given system of congruences. If x1, x2 both satisfy the given system of congruences,
then x1− x2 is divisible by each of n1, n2, . . . , nk. As these numbers have no common
factors, we may conclude that x1 − x2 is divisible by n1n2 . . . nk.

Corollary 13. Let n = pb11 p
b2
2 . . . p

bk
k . Numbers x ∈ {1, 2, . . . , n − 1} which are rela-

tively prime to n (i.e. satisfy gcd(x, n) = 1) are in one-to-one correspondence with
ordered k-tuples (x1, x2, . . . , xk) such that 1 ≤ xi ≤ pbii − 1 and pi - xi.

Now let’s take an example of a Carmichael number and see what happens when we
run the Miller-Rabin primality test. The smallest Carmichael number is n = 561 =
3 · 11 · 17. We have n− 1 = 560 = 24 · 35. Let’s take a random number, e.g. x = 245,
and see what happens when we run the algorithm.

Number mod 3 mod 11 mod 17
x −1 3 7
x35 −1 1 3
x70 1 1 9
x140 1 1 −4
x280 1 1 −1
x560 1 1 1

As we read down the numbers in each column, if any entry is equal to 1, then all
subsequent entries in that column are also equal to 1. Define the “crossover row”
for column j to be the row in which the number 1 first appears. In order for the
Miller-Rabin test to output “probably prime”, the crossovers must be synchronized,
i.e. the crossover row must be the same in each column. We will see that this is an
improbable event.

To begin with, we need the following description of Carmichael numbers.

Lemma 14. If n is a Carmichael number, then n has at least three distinct prime
factor and is not divisible by the square of any prime.
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Proof. First suppose that p is prime and p2 |n. Write n = pkq where k > 1 and
p - q. Using the Chinese Remainder Theorem we may find a number x such that
x ≡ p+ 1 (mod pk) and x ≡ 1 (mod q). We claim that (x, n) = 1 and x is a Fer-
mat witness for n. The fact that (x, n) = 1 is obvious: by construction, x has no
common factors with pk or with q, and n = pkq. To see that xn−1 6≡ 1 (mod n),
it suffices to prove that xn−1 6≡ 1 (mod p2), or equivalently xn 6≡ x (mod p2). The
formula (p + 1)p =

∑p
k=0

(
p
k

)
pk implies (p+ 1)p ≡ 1 (mod p2), which in turn implies

xn ≡ 1 (mod p2) and, which establishes that xn 6≡ x (mod p2) as claimed.
It remains to prove that when p, q are distinct odd primes, their product n =

pq is not a Carmichael number. Assume without loss of generality that p < q.
Lemma 11 ensures that there we can choose x ∈ {1, 2, . . . , q−1} such that congruence
xp−1 6≡ 1 (mod q). We claim x is a Fermat witness for n. To prove this, observe that

xn−1 = xpq−1 = xpq−pxp−1 = (xp)q−1xp−1 ≡ xp−1 6≡ 1 (mod q).

Since q is a divisor of n, it follows that xn−1 6≡ 1 (mod n) as claimed.

Theorem 15. If n is a Carmichael number, then MillerRabin(n) outputs “com-
posite” with probability at least 3/4.

Proof. Suppose n is a Carmichael number. By analogy with the definitions of “Fermat
witness” and “Fermat liar”, let us call a number x a “Miller-Rabin witness” (or MR-
witness) for n if the algorithm MillerRabin(n) outputs “composite” when x is the
element of {1, 2, . . . , n − 1} randomly chosen by the algorithm; otherwise we call x
a “Miller-Rabin liar” (or MR-liar) for n. We must prove that there are at most n−1

4

MR-liars.
Write n−1 = 2st where t is odd. Partition {1, 2, . . . , n−1} into setsX, Y, Z1, Z2, . . . , Zs

defined as follows:

• x ∈ X if x shares a common divisor with n;

• x ∈ Y if xt ≡ 1 (mod n).

• x ∈ Zj (1 ≤ j ≤ s) if x2
jt ≡ 1 (mod n) but x2

j−1t 6≡ 1 (mod n).

It is clear that X does not contain any MR-liars. We claim that |Y | ≤ n−1
8

and that
each set Zj contains at most |Zj|/7 MR-liars. Assuming this claim, the total number
of MR-liars is at most

|Y |+ n− 1− |Y |
7

=
6|Y |

7
+
n− 1

7
≤ 6(n− 1)

7 · 8
+
n− 1

7
=
n− 1

4
,

which will establish the theorem.
Suppose n = p1p2 . . . pk is the prime factorization of n; recall from Lemma 14

that k ≥ 3 and that the primes p1, . . . , pk are all distinct. According to the Chinese
Remainder Theorem, choosing a number x ∈ {1, 2, . . . , n − 1} \ X is equivalent to

8



choosing numbers xi ∈ {1, 2, . . . , pi−1} for each i = 1, 2, . . . , k. The number x belongs
to Y if and only if xti ≡ 1 (mod pi) for every i. We claim that at most half of the
elements y ∈ {1, 2, . . . , pi−1} satisfy yt ≡ 1 (mod pi). Let Ai be the set of all integers
u such that every y ∈ {1, 2, . . . , pi − 1} satisfies yu ≡ 1 (mod pi). This set is closed
under addition and subtraction, hence it is equal to dZ for some integer d. Moreover,
Fermat’s Little Theorem ensures that pi − 1 ∈ Ai and Lemma 11 ensures that Ai

does not contain any number between 0 and pi− 1. This implies that Ai is the set of
all multiples of pi − 1; in particular, every element of Ai is even and this means that
t 6∈ Ai. Thus there is at least one y ∈ {1, 2, . . . , pi − 1} satisfying yt 6≡ 1 (mod pi),
and by Lemma 8 this means that at most half of the elements of {1, 2, . . . , pi − 1}
satisfy yt ≡ 1 (mod pi). When we pick elements xi in {1, 2, . . . , pi − 1} uniformly at
random, for each i = 1, 2, . . . , k, the probability that each of these numbers xi satisfies
xti ≡ 1 (mod pi) is at most (1/2)k, which is less than or equal to 1/8 since k ≥ 3.
Thus the probability that a random x ∈ {1, 2, . . . , n− 1} \X belongs to Y is at most
1/8, which establishes that |Y | ≤ n−1

8
.

We turn now to showing that each set Zj contains at most |Zj|/7 MR-liars.
As before, an element x ∈ Zj may be represented by a k-tuple of numbers xi ∈
{1, 2, . . . , pi − 1}. The fact that x ∈ Zj means that x2

jt
i ≡ 1 (mod pi) for each value

of i. Note that this implies x2
j−1t

i ≡ ±1 (mod pi) for each i, so we can associate to
each x ∈ Zj a sequence of k +/- signs, with the i-th sign being + or - according

to whether x2
j−1t

i ≡ +1 or − 1 (mod pi). (The sign sequence is never (+,+, . . . ,+),
since this would imply that x ∈ Z` for some ` < j.) An element x ∈ Zj is a MR-liar
if and only if its sign sequence is (−,−, . . . ,−). Let us assume there is at least one
MR-liar in Zj; otherwise there is nothing to prove. If Zj contains a MR-liar, this

implies that each of the congruences y2
j−1t ≡ −1 (mod pi) (1 ≤ i ≤ k) has a solution

yi. Let wi be an element of {1, 2, . . . , n − 1} which satisfies wi ≡ yi (mod pi) and
wi ≡ 1 (mod pi′) for every i′ 6= i. If σ, σ′ are two sign sequences which differ only by
flipping the i-th sign in the sequence, then multiplication by wi defines a one-to-one
correspondence between the set of elements of Zj with sign sequence σ and those with
sign sequence σ′. It follows that each of the 2k − 1 possible sign sequences defines a
subset of Zj whose cardinality is exactly |Zj|/(2k − 1). In particular, the set of MR-
liars is defined by the sign sequence (−,−, . . . ,−) and consequently has cardinality
|Zj|/(2k − 1) ≤ |Zj|/7.

Remark 16. Above, we proved that the error probability of MillerRabin(n) is at
most 1/4 when n is a Carmichael number. In fact, the error probability is bounded
above by 1/4 even when n is not a Carmichael number, though the material in
Section 3 established only the weaker bound 1/2.

Remark 17. The running time of MillerRabin(n) is O(log3 n). To see this, recall
our earlier observation that it is possible to compute xt (mod n) using O(log n) mod-n
multiplication operations. (Each mod-n multiplication takes time O(log2 n) using the
naive algorithms for integer multiplication and division.) Once we have computed
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xt (mod n), the remaining numbers x2t, x4t, . . . , x2
st (mod n) may be obtained by

s ≤ log2(n) iterations of repeated squaring mod n, which again entails only O(log n)
mod-n multiplication operations. All the remaining operations in the Miller-Rabin
algorithm require much less running time.

Remark 18. Miller proved that if one assumes the Extended Riemann Hypothesis (a
number-theoretic conjecture generally believed to be true), then for every composite
number n the set {1, 2, . . . , 2 ln2(n)} contains a MR-witness for n. Thus, assuming the
Extended Riemann Hypothesis, there is a deterministic algorithm to test primality
in time O(log5 n).

Without assuming the Extended Riemann Hypothesis, a deterministic primality
test with running time O((log n)O(log log logn)) was discovered in 1983 by Adleman,
Pomerance, and Rumely.

5 Epilogue: The AKS primality test

For almost 20 years no one made significant further progress toward proving PRIMES
is in P. Then in 2002, Agrawal, Kayal, and Saxena proved that PRIMES is in P
by discovering a completely different way to prove a number n is composite without
using Fermat witnesses or fake square roots of 1. Their algorithm is based on the
following theorem.

Theorem 19. Let n ≥ 2 and a ≥ 0 be integers. If n is prime then the polynomials
P (x) = (x − a)n and Q(x) = xn − a are congruent mod n. If n is composite and
gcd(a, n) = 1, then P (x) and Q(x) are not congruent mod n.

In general, comparing P (x) and Q(x) mod n requires exponential time because
it requires enumerating all n coefficients of the polynomials, and n is exponential in
the input size. Here, the AKS algorithm uses a clever trick to reduce the work of
enumerating coefficients: instead of comparing P (x) and Q(x) mod n, they divide
both polynomials by xr − 1 (for some value of r which is only polynomial in log(n))
and compare the remainders mod n. The remainders have only r coefficients, and can
be efficiently computed without enumerating all the coefficients of P (x) and Q(x).
Agrawal, Kayal, and Saxena proved that if n is composite, then one can always find
a proof of compositeness by searching exhaustively through pairs of numbers a, r
such that both a and r are bounded by some polynomial in log(n). Having found
the proper pair a, r, one verifies that the polynomials (x − a)n (mod xr − 1) and
xn−a (mod xr−1) are not congruent mod n. Subsequent improvements to the AKS
algorithm have brought the running time down to O(log6 n), still much slower than
the O(log3 n) randomized test presented in this lecture.
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