ACTIVITY 12, PART A: ANALYSIS OF MEDIAN ALGORITHM

The median *m* of a list of *n* numbers has $\lfloor n/2 \rfloor$ of the elements smaller or equal to *m*. If the elements are distinct then the median is the $\lceil n/2 \rceil^{th}$ element in the sorted list. So you can always find it in $O(n \log n)$ time by sorting, but in fact you can do better. There is a complicated deterministic algorithm which finds it in O(n) time but we can get the same end result in a less complicated way via a randomized algorithm.

To make the analysis simpler, assume *n* odd and all elements distinct.

Suppose *S* is a list of *n* distinct numbers with *n* odd. The **median** of *S* is the element $m \in S$ such that (n - 1)/2 of the elements are less than *m* and (n - 1)/2 of the elements are greater than *m*. Obviously, one way to find *m* is to sort *S* and then select the middle element. But that takes $O(n \ln n)$ time and we can find *m* with high probability in linear time if we use randomness. Our goal is to analyze the following randomized algorithm to find *m*, which works via **sampling**:

AlgorithmFM. Input: The list *S*

Step1: Pick $\lceil n^{3/4} \rceil$ elements of *S* independently and uniformly at random with replacement.

Step2: Sort that collection of elements and let *R* be the result. Step3. Let *d* be the $\lfloor .5n^{3/4} - \sqrt{n} \rfloor^{th}$ smallest element in *R*. Step4. Let *u* be the $\lfloor .5n^{3/4} + \sqrt{n} \rfloor^{th}$ smallest element in the sorted set R. Step5. By comparing every element in S to d and u. compute the set $C = \{x \in S : d \le x \le u\}$ and the numbers $\ell_d = |\{x \in S : x < d\}|$ and $\ell_u = |\{x \in S : x > u\}|$. Step6. If $\ell_d > n/2$ or $\ell_u > n/2$ then FAIL. Step7. If $|C| \le 4n^{3/4}$ then sort *C*. Otherwise FAIL. Step8. Output the $(\lfloor n/2 \rfloor - \ell_d + 1)^{st}$ element in the sorted order of C.

Question 1. Recalling that our goal is an algorithm which runs in linear time, what is the purpose of Step7? Argue why Step7 fulfills this purpose.

Date: September 23, 2016.

Question 2. Why are d and u chosen the way they are? (This will be easier to answer after section 2)

Question 3. What is the total running time in Big Oh notation? Hint: compute the running times for Step 1, Step 2, and Step 5, and note that $\log(n^{3/4}) < n^{1/4}$ asymptotically.

Question 4. BONUS: What is the expected number of duplicate elements in *R* in step 1? Which probability problem is this reminiscent of?

The algorithm either outputs FAIL or the $(\lfloor n/2 \rfloor - \ell_d + 1)^{st}$ element in the sorted order of C. You may assume \sqrt{n} and $n^{3/4}$ are integers.

Question 5. Argue that this element is the median of *S*. It might help to draw a picture of the sorted versions of *C* and *S* on a line.

In order to compute the probability that the algorithm fails, consider the following two events:

 $\begin{array}{l} E: m \notin C \\ F: |C| > 4n^{3/4} \end{array}$

Question 6. *Prove the following claim: the algorithm outputs FAIL if and only if one of these events occurs.*

Observe that *E* occurs if and only if EITHER: (1) u < m OR (2) d > m

For each element *x* chosen to go into *R*, what is the probability that $x \le m$?

Let *X* be the expected number of elements $x \in R$ (henceforward called samples) with $x \le m$. Write *X* as a sum of independent Bernoulli random variables.

What is the Variance of *X*? Why?

Apply Chebyshev's inequality to give an upper bound on $P(|X - n^{3/4}/2| \ge \sqrt{n})$ Use this to compute a bound on P(E).

In order to bound P(F) we need to show that it is likely that *d* is greater than the $(n/2 - 2n^{3/4})^{th}$ smallest element in *S* and that *u* is less than the $(n/2 + 2n^{3/4})^{th}$ element in *S*. Let X_d be the number of samples in *R* which are among the $(n/2 - 2n^{3/4})$ largest elements in *S*. Write $X_d = \sum_{i=1}^{|R|} X_i$ where X_i is 1 if the *i*th sample is among the $(n/2 - 2n^{3/4})$ largest elements in *S*.

$$E[X_d] = (.5 - 2n^{-1/4})n^{3/4}$$
 and $Var[X_d] \le .25n^{1/4}$

Observe that $|X_d - .5n^{3/4} + 2\sqrt{n}| \ge |X_d - .5n^{3/4}$ so Chebyshev's Inequality says:

$$P(|X - .5n^{3/4}| \ge \sqrt{n}) \le P(|X_d - E[X]| \ge \sqrt{n}) \le .25n^{-1/4}$$

The probability p_1 that at least $2n^{3/4}$ elements of *C* are greater than the median can be computed as the probability that the upper bound R_r is greater than the $(n/2 + 2n^{3/4})^{th}$ element in the sorted version of *S*. This probability is equal to the probability that $X_d \ge n/2 \cdot n^{-1/4} - \sqrt{n}$. Hence, it's less than $n^{-1/4}/4$ as required. Morally, what's going on is that all ways for the X_d event to occur are contained in the event regarding R_r (which is happening in *C*).

By symmetry, this same bound applies to the probability p_2 that at least $2n^{3/4}$ elements of *C* are smaller than the median. Use this to bound

$$P(F) \le p_1 + p_2 \le .5n^{-1/4}$$

Finally, combine this with your bound on P(E) to prove that the probability that the algorithm fails is $\leq n^{-1/4}$.