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Localization in Algebra

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, S ⊂ R multiplicatively closed

Get: S−1R = R × S/ ∼, e.g. (Z×)−1Z = Q , 〈2〉−1Z = Z(2)

Also get: universal ring homomorphism R→ S−1R taking S to units ,
i.e. for any f : R→ E taking S to units

∃ !g making diagram commute: R i //

f
��

S−1R

g
}}

E

How to generalize to categories? (No mult. inverses)

Inverting s is the same as inverting the map µs(r) = s · r
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Localization in Categories

Setup: C = category, T = set of morphisms. Get: C[T−1] and
universal C → C[T−1] taking T to isomorphisms.

C //

��

C[T−1]

||
D obj(C[T−1]) = obj(C)

Example: Top[{homotopy equivalences}−1] = HoTop

Adjoining f −1 forces us to adjoin many g ◦ f −1 & f −1 ◦ h

C[T−1](X,Y) = Zigzags/ ∼ •

f1
��

g1

��

•

f2
��

g2

��
Oops! Zigzags is not a set X • Y
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Model Categories

Can’t localize an arbitrary C at an arbitrary T

Let C =M have all small (co)limits and distinguished classes of maps
W, F , Q satisfying some axioms.

Called: weak equivalences, fibrations (e.g. F → E → B), cofibrations
(e.g. satisfying homotopy extension property)

If we set T =W thenM[W−1] = Ho(M) exists and has the desired
universal property

Some model categories: Spaces, Spectra, Ch(R), G-spectra (many
model category structures)
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(Left) Bousfield Localization

Suppose we want to invert f <W. Because Ho(M) is nice:
M

��

// LfM

��

obj(LfM) = obj(M)

Ho(M) // Ho(M)[f −1] LfM(X,Y) =M(X,Y)

Under standard hypotheses onM, LfM = model category.
Wf = 〈f ∪W〉 ⊃ W ,Qf = Q ,Ff ⊂ F

Note: localizing a set T of maps is the same as localizing f =
∐

g∈T g,
so it’s fine to look at just Lf
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A question

Lf preserves many standard properties of model categories. Does it
preserve monoids? Yes for A∞ and E∞. No for strict commutative
(Hill, 2011). Goal: Figure out when it does

Given associative ⊗ :M×M→M with unit S, a monoid E has
µ : E ⊗ E → E, η : S→ E, commutative diagrams
E ⊗ E ⊗ E //

��

E ⊗ E

��

S ⊗ E //

$$

E ⊗ E

��

E ⊗ Soo

zz
E ⊗ E // E E

Morally: a(bc) = (ab)c and 1 · a = a = a · 1

Commutative E also has twist τ : E ⊗ E → E ⊗ E.
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Monoidal Model Categories

1 Pushout Product Axiom: Given f : A→ B and g : X → Y
cofibrations, f�g is a cofibration. If f ∈ W then f�g ∈ W.

A ⊗ X

u

//

��

B ⊗ X

��

��

A ⊗ Y //

//

P
f2g

$$
B ⊗ Y

2 Unit Axiom: For cofibrant X, QS ⊗ X → S ⊗ X � X is inW

3 Monoid Axiom: Transfinite compositions of pushouts of maps in
{Trivial-Cofibrations ⊗idX} are weak equivalences.
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Preservation of Strict Monoids

(1) & (2)⇒ Ho(M) is monoidal (⊗ is a Quillen bifunctor)
(3) implies the monoids Mon(M) form a model category.

X ∈ Ho(M) is a strict monoid if there is a monoid R ∈ M commuting
“on the nose” such that R � X in Ho(M).

Localization preserves strict monoids if the composition
Ho(M)→ Ho(LfM)→ Ho(M) takes X to a strict monoid

Theorem
If LfM satisfies (1)-(3) then Lf preserves strict monoids

LfM can fail Pushout Product Axiom: M = F2[Σ3]-mod and
f : F2 → F2 ⊕ F2 ⊕ F2 taking 1 to (1, 1, 1)
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Preservation of Monoidal Structure

The Unit Axiom is trivially preserved by Lf because Qf = Q

Theorem
IfM is a cofibrantly generated, left proper, monoidal model category
with cofibrant objects flat and generating (trivial) cofibrations I and J
having cofibrant domains, and if f ⊗ K is an f -local equivalence for
all (co)domains K of maps in I ∪ J, then Lf M is a monoidal model
category with cofibrant objects flat and domains of If ∪ Jf cofibrant.

Theorem
Assuming further thatM is weakly finitely generated, that f has
SSet-small (co)domain, and a technical condition on Q ⊗ −, then LfM

satisfies the monoid axiom.
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Preservation of Strict Commutative Monoids

Theorem
If LfM is a monoidal model category with CommMon(LfM) a model
category, then Lf preserves strict commutative monoids

John Harper suggested a Σn-equivariant monoid axiom

This gets CommMon(−) to be a model category, and should work for
more general coloured operads

Next: Lf preserves Σn-equivariant monoid axiom

After that: Applying results to examples, especially G-spectra.
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